Instituto de Computacao UFF

Departamento de Ciéncia da Computacao

Otton Teixeira da Silveira Filho



Comandos de repeticao

Alguns aspectos no processamento numMerico
AtribuicbGes multiplas

Exemplos

Algumas funcdes implicitas de Python

Aspectos dos tipos de dados no Python



Python tem um comando de repeticdo que apresentaremos na forma

for elemento in iterador :
comando(s)

OBS:
Esta uma verséo simples do for. Ele tem mais recursos.

Um iterador € uma das particularidades de Python, embora exista algo equivalente
em outras linguagens. Enquanto elemento estiver no iterador, a repeticao sera feita

Aqui apresentaremos um criador de iterador que € muito util: range()



Uma versao de uso do for:

for contador in range(inicio, fim, passo) :
comando(s)

Tanto o contador quanto o inicio da contagem, o fim da contagem e o passo da
contagem serao int neste momento. range() permite maior amplitude de utilizacao
como veremos em breve

A omissdo do passo de contagem supora o uso de passo 1

A contagem apresentada no range() sera até fim - 1



Exemplo:

Imprima 0s numeros inteiros entre 1 e 10

# Imprime wvalores de 1 a 18
def main():

for 1 in range(l, 11) :
print{i}

main()

provocara a impresséao dos numeros 1, 2, 3,4,5,6,7, 8,9, 10, um
por linha.



Exemplo:

Imprima 0s numeros inteiros impares de entre 1 e 10

# Imprime valores impares entre 1 e 18
def main():

for 1 in rangef{l, 18, 2} :
print(i)

maini( ]

provocara a impressao dos numeros 1, 3, 5, 7, 9, um por linha.



Some todos 0s numeros inteiros entre 1 e 100.

# Programa gque soma os valores de 1 a 16808
def main() :
s =0

for i in range(l, 1081) :
s =5+ 1

print("A soma dos numeros de 1 a 100 &' igual a ", s)

main()



Some todos 0s numeros inteiros entre 1 e 100.

# Programa gque soma os valores de 1 a 16808
def main() :
s =0

for i in range(l, 1081) :
s =5+ 1

print("A soma dos numeros de 1 a 100 &' igual a ", s)

main()

« EXxperimente mudar a indentacao colocando o print() sob efeito do for



Imprima 0s numeros inteiros entre 1 e 10 regressivamente

# Imprime valores de 1 a 10 regressivamente
def main():

for 1 in range(l1l®, 8, -1) :
print(i)

maini()

provocara a impresséao dos numeros 10,9, 8,7, 6, 5,4, 3,2, 1, um
por linha.



Usaremos um outro lagco de repeticao

while (condicao logica) :
comando(s)

0 laco repetira as operacdes dentro do bloco enquanto a condicao
l0gica for verdadeira

 Podemos criar um “laco eterno” se a condicao logica for sempre True



Some uma variavel int a partir de 1 enquanto a soma seja menor que
1000. Imprima o valor do int para o qual a condicao passou a nao
valer e também o resultado final.

# Programa usando while

def main() :

s a
i a

while 5 = 1080 ;
i1=1+1

5 =5+ 1
print(i, s)

main()



Faca um programa que solicite dois ints que deverao ser somados. O
programa continuara solicitando dois int até que ambos sejam
negativos.



# Programa usando while
# Exemplo de laco interrompidoc por uma condicac logica composta

def main()

print("Este programa solicitara' a entrada de dois int que serao somados.")
print("So" parara’ a solicitacdo se os dois numeros forem negativos")

a = int(input("Entre com um numero: "})

b = int(input("Entre com outro numerc: "))

while (a > @) or (b > @)
print("A soma de ", a, "e ", b, "e" igual a ", a + b}
a = int{input("Entre com um numero: "))
b = int(input("Entre com outro numerc: "))

print("Programa interrompido."}

maini()



Observe a logica do programa, incluindo o uso do or no contexto do
while



Facamos um programa:

Atribua a uma variavel float de identificador dx e conteudo 0,01.
Inicialize uma variavel de acumulacéo com zero e acumule nela 100
vezes o valor da variavel x. Imprima o resultado.

# Programa sobre tipos
# float nao e' um real
def main():

dx = 0.081
n = 168
s =0

for i in range(@, n):
s = 5 + dx

print("0 resultado de somar ", dx, n, " vezes e' ", 5]

main()



Observe que a soma de 0,01 cem vezes nhao deu 1!

O gue temos num computador séo representacoes limitadas dos

numeros da matematica, ndo sdo 0s numeros da matematica, sejam
eles inteiros ou reais

Neste caso especial o resultado gerado € consequéncia de 0,01 ser
dizima peridédica em binario



Mas poderiamos escrever este programa usando o for de modo mais
sintetico

# Programa sobre tipos
# float ndo e'um real
# for de um "parametro”
def main():

dx = 8.081
n = 1@8a
5 =0

for 1 in range(n):
s =5 + dx

print("0 resultado de somar ", dx, n, " vezes e' ", 5}

maini( ]



Quando colocamos o for com apenas um elemento no range, a
contagem partira de zero



Mais um exemplo:

Faca 0,1 + 0,1 e teste se e igual a 0,2. Depoisfaca 0,1 +0,1+0.1 e
teste se é igual a 0,3.

# Programa sobre tipos
# float
def main():

if(8.1 + 8.1) == 8.2 :
print("8.1 + 8.1 &' igual a 8.2")
else :

print("8.1 + 8.1 nao &' igual a 8.2")

if(8.1 + 8.1 + 8.1) == 0
print("8.1 + 0.1 + @

else

.3
.1 e' igual a 8.3")
print("8.1 + 8.1 + 0.1 nao ' igual z ©8.3")

maini( ]



Novamente temos um resultado “estranho” se estivermos supondo
gue 0s numeros num computador sao 0os numeros da matematica



Obtenha o fatorial de um ndmero inteiro nao negativo n, imprimindo o
resultado calculado.



J'/ \\
inicio

programa fatorial

Inteiro fat, i, n

lela n

fat <1

parai < 1 atén

fat —fat * i

fim para
imprima fat

fim




Fatorial de n

# Programa que calcula o fatorial de um numero inteiro dado
def main():
n = int(input("Entre com um valor inteiro positivo : "))
fat = 1

for 1 in range(l, n + 1}:
fat = fat = i

print{("0 fatorial de ", n, " e' ", fat)

main()



Calcule o valor da funcéo exponencial no ponto x=1 usando a série
de Taylor truncada em n termos que é dada por

2 3 n
% X X X X

e =1+

+—t—+---
1 2! 3! n!



Programa exponencial

real exp
inteiro fat, i, j, n

leia n
exp <« 1
parai — 1 atén
fat <1
paraj « 1 atéi
fat —fat * |
fim para

exp < exp + 1l/fat
fim para

Imprima exp

fim



Programa exponencial

# Exemplo de uso do for aninhado
real exp # Programa gue calculz_l e, base dos logaritmos neplerianos,
inteiN)faI,i,L n # com n termos da serie de Taylor

def main():

leia n n = int{input{"Entre com um valor positivo "}}
exp = 1
exp <1
for 1 in range(l, n)
. , fat = 1
parai — 1atén .
fat <1 for j in range(1l, i + 1)
paraj « 1 até i fat = fat * j
_ fat —fat * | exp = exp + 1/fat
fim para _
print("0 valor procurado com”, n, " termos &' ", exp]
exp < exp + l/fat main ()
fim para
Imprima exp

fim



Se vocé achou um tanto confuso, n&o se preocupe

Esta implementacé&o inclui o calculo do fatorial com o da soma da
série. E funcional mas néo € algo recomendado.

Mais a frente veremos uma nova versao mais legivel



Calcule o enésimo termo da sequéncia de Fibonacci



Calcule o enésimo termo da sequéncia de Fibonacci

A sequencia de Fibonacci € apresentada aqui da seguinte forma:

Dados como primeiros termos F,=1 e F,=1, geramos 0S proximos
elementos usando a equacao

|:n: |:n-1+|:n—2



Calcule o enésimo termo da sequéncia de Fibonacci

A sequencia de Fibonacci € apresentada aqui da seguinte forma:

Dados como primeiros termos F,=1 e F,=1, geramos 0S proximos
elementos usando a equacao

|:n: |:n-1+|:n—2
Entao teriamos a sequéncia

1,1,2,3,5, 8,13, 21, 34, 55...



Calcule o enésimo termo da sequéncia de Fibonacci

# Geracao do n-esimo termo da sequencia de Fibonacci
# Ha' um pequeno erro...

def main():

a=1

b=1

n = int{input{ 'Entre com n ')}
ifn=e=8:

print('n negativo')

elif n <= 2 :
fibo = n
print("N-esimo termo da sequencia de Fibonacci: ", fibo)
else :
while n = 2 :
fibo = a + b
a b
b = fibo
n n -1

print("N-esimo termo da sequencia de Fibonacci: ", fibo)

main()



O codigo anterior um tem erro

Veja se o localiza antes de avancar



Repare que se o valor dado for negativo, o if fara o fluxo do
programa saltar para fora do encadeamento de if, onde fibo nao esta

definido.
O interpretador de Python gerara um erro. Experimente...

Para corrigir, basta colocar o print() no nivel de indentacéo do else



Calcule o enésimo termo da sequéncia de Fibonacci

# Geracao do n-esimo termo da sequencia de Fibonacci

def main():

a=1

b=1

n = int{input('Entre com n '}}
ifn=e=8:

print{'n negativo')

elif n <= 2 :

fibo = n
print("N-esimo termo da sequencia de Fibonacci: ", fibo)
else :
while n = 2 :
fibo = a + b
a=>b
b = fibo
n=mn-1
print("N-esimo termo da sequencia de Fibonacci: ", fibo)

main()



Python permite que possamos fazer atribuicbes multiplas, ou seja,
fazer atribuicOes de valores simultaneamente e sequencialmente

Vejamos um exemplo numa modificacao do programa anterior



Calcule o enésimo termo da sequéncia de Fibonacci

# Geracao do n-esimo termo da sequencia de Fibonacci
# Uso de atribuicao multipla em Python

def main():
a = fibo = 1
n = int(input('Entre com n "))

ifn==20:
print(°'n negativo')

elif n == 2 :

fibo = n
print{"N-esimo termo da sequencia de Fibonacci: ", fibo)
else :
while n = 2 :
a, fibo = fibo, a + fibo
n=mn-1
print("N-esimo termo da sequencia de Fibonacci: ", fibo)

main()



Observe:

ficou mais sintético mas de compreensao mais dificil no laco do while

Recordemos alguns do principios que norteiam a linguagem Python



Belo € melhor que feio

Explicito € melhor que implicito
Simples é melhor que complexo
Complexo € melhor que complicado

Legibilidade conta



Programa tipos.py

Agui constataremos mais uma sobrecarga e o cuidado que temos
gue ter ao especificarmos os conteudos das variaveis

Executemos o programa que se segue.

» Sugestao: tecle dois “numeros” de um algarismo



Programa tipos.py

def main():
a = input("”

b

inmput("”

print (a +
print (a *

a
b

int{a)
int(b)

print (a +
print (a *

main()

Entre com a:
Entre com b:

b)
3)

b)
3)

")
")



Saida com programa tipos.py

Python 3.5.2 (default, Mov 23 2817, 16:37:01)
[GCC 5.4.8 20160609] on linux
Type "copyright”, "credits” or "license(}" for more information.
e
RESTART: /home/otton/didatico/graduacao/prog/1l.2818/Aulas/exercicios Python/tipos.py
Entre com a: 3
Entre com b: 4
34
333
7
9

gl



Programa tipos.py

Observe que input() sem a moldagem por int() d4 como saida um tipo
str, cadeia de caracteres. Antes de ser um algarismo, o simbolo que
O representa € um caracter

Vemos aqui que + € também um operador que concatena 0s
caracteres de entrada, ou seja, hdo € aqui soma aritmeética

Agui temos tambéem o operador * repetindo o caracter um
determinado numero de vezes que foi especificado



Programa tipos.py

Agui observamos novamente o que é chamado sobrecarga de
operadores:

0S sinais + e * promovem resultados diferentes de quando operados
nao so6 com int e float como também com str!



O Python contem funcdes pré-definidas



O Python contem funcdes pré-definidas

Veremos mais tarde que o conceito de funcdes em linguagens de
programacao nao correspondem totalmente ao que é chamado de

funcao na matematica



O Python contem funcdes pré-definidas

Veremos mais tarde que o conceito de funcdes em linguagens de
programacao nao correspondem totalmente ao que é chamado de
funcao na matematica

Agqui também seremos imprecisos nao diferenciando funcoes de
métodos, como também estamos fazendo com o0s conceitos de
variaveis e objetos



Algumas da funcbes implicitas no Python

Nome

abs()
float()
int()
iter()
list()
max()
min()
len()

type()

Definicao
Valor absoluto
Converséo para tipo float
Converséo para tipo int
gera um iterador

Gera uma lista

*k*%
*k*

*kk

*k%k

Argumento

Int, float
namero, cadeia de caracteres
namero, cadeia de caracteres

“variado”

“variado*

“variado*

“variado*

“variado*

“variado*

saida

Tipo de entrada
float
int
Um iterador
Uma lista
valor maximo do argumento
Valor minimo do argumento
Tamanho do argumento

Devolve o tipo do argumento



Repare que fomos informalmente apresentados a algumas funcoes
como float(), int() e type()



Este € um pequeno conjunto funcdes pre-definidas de Python

Veremos mais tarde os modulos que podemos carregar contendo
funcoes mais especificas e abrangentes



Trés modulos importantes séo:

math, com funcGes matematicas
numpy, para processamento nuMerico

scipy, para calculos cientificos



Um aspecto importante de Python pode ser esclarecido pelo uso do
type()



Dentro do modo iterativo tecle

a=1
b=1.

c = “abc”
type(a)
type(b)
type(c)



Teremos 0 que se segue

Python 3.5.2 (default, Nov 23 2017, 16:37:81)
[GCC 5.4.08 281608609] on Llinux
Type "copyright”, "credits" or "license(}" for more information.

2> 3 = 1
==> b = 1.0
==»> ¢ = "abc"
=>=d = True

=== typela)
=class 'int'=>
»>»> typel(b)
=class 'float'=
=== typelc)
=class 'str'=
=== typel(d)
=class 'bool'=
== |



Observe que temos uma descricao do tipo do argumento e
descobrimos que o gue chamamos até agora de tipo de variaveis tem
em Python um outro nome: classe



Este &€ uma das facetas do Python, ou melhor, um dos paradigmas
de programacao que ele inclui: Orientacao a Objetos

No entanto, sigamos em frente e nao se preocupe com isto no
momento



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

