

PROGRAMMING LANGUAGE
DESIGN CONCEPTS

PROGRAMMING LANGUAGE
DESIGN CONCEPTS

David A. Watt, University of Glasgow

with contributions by

William Findlay, University of Glasgow

Copyright  2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed
on a computer system for exclusive use by the purchase of the publication. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

ADA is a registered trademark of the US Government Ada Joint Program Office.

JAVA is a registered trademark of Sun Microsystems Inc.

OCCAM is a registered trademark of the INMOS Group of Companies.

UNIX is a registered trademark of AT&T Bell Laboratories.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Watt, David A. (David Anthony)
Programming language design concepts / David A. Watt ; with

contributions by William Findlay.
p. cm.

Includes bibliographical references and index.
ISBN 0-470-85320-4 (pbk. : alk. paper)
1. Programming languages (Electronic computers) I. Findlay, William,

1947- II. Title.

QA76.7 .W388 2004
005.13 – dc22

2003026236

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85320-4

Typeset in 10/12pt TimesTen by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

To Carol

Contents

Preface xv

Part I: Introduction 1

1 Programming languages 3
1.1 Programming linguistics 3

1.1.1 Concepts and paradigms 3
1.1.2 Syntax, semantics, and pragmatics 5
1.1.3 Language processors 6

1.2 Historical development 6
Summary 10
Further reading 10
Exercises 10

Part II: Basic Concepts 13

2 Values and types 15
2.1 Types 15
2.2 Primitive types 16

2.2.1 Built-in primitive types 16
2.2.2 Defined primitive types 18
2.2.3 Discrete primitive types 19

2.3 Composite types 20
2.3.1 Cartesian products, structures, and records 21
2.3.2 Mappings, arrays, and functions 23
2.3.3 Disjoint unions, discriminated records, and objects 27

2.4 Recursive types 33
2.4.1 Lists 33
2.4.2 Strings 35
2.4.3 Recursive types in general 36

2.5 Type systems 37
2.5.1 Static vs dynamic typing 38
2.5.2 Type equivalence 40
2.5.3 The Type Completeness Principle 42

2.6 Expressions 43
2.6.1 Literals 43
2.6.2 Constructions 44
2.6.3 Function calls 46
2.6.4 Conditional expressions 47
2.6.5 Iterative expressions 48
2.6.6 Constant and variable accesses 49

vii

viii Contents

2.7 Implementation notes 49
2.7.1 Representation of primitive types 49
2.7.2 Representation of Cartesian products 50
2.7.3 Representation of arrays 50
2.7.4 Representation of disjoint unions 51
2.7.5 Representation of recursive types 51

Summary 52
Further reading 52
Exercises 52

3 Variables and storage 57
3.1 Variables and storage 57
3.2 Simple variables 58
3.3 Composite variables 59

3.3.1 Total vs selective update 60
3.3.2 Static vs dynamic vs flexible arrays 61

3.4 Copy semantics vs reference semantics 63
3.5 Lifetime 66

3.5.1 Global and local variables 66
3.5.2 Heap variables 68
3.5.3 Persistent variables 71

3.6 Pointers 73
3.6.1 Pointers and recursive types 74
3.6.2 Dangling pointers 75

3.7 Commands 77
3.7.1 Skips 77
3.7.2 Assignments 77
3.7.3 Proper procedure calls 78
3.7.4 Sequential commands 79
3.7.5 Collateral commands 79
3.7.6 Conditional commands 80
3.7.7 Iterative commands 82

3.8 Expressions with side effects 85
3.8.1 Command expressions 86
3.8.2 Expression-oriented languages 87

3.9 Implementation notes 87
3.9.1 Storage for global and local variables 88
3.9.2 Storage for heap variables 89
3.9.3 Representation of dynamic and flexible arrays 90

Summary 91
Further reading 91
Exercises 92

4 Bindings and scope 95
4.1 Bindings and environments 95
4.2 Scope 97

Contents ix

4.2.1 Block structure 97
4.2.2 Scope and visibility 99
4.2.3 Static vs dynamic scoping 100

4.3 Declarations 102
4.3.1 Type declarations 102
4.3.2 Constant declarations 104
4.3.3 Variable declarations 104
4.3.4 Procedure definitions 105
4.3.5 Collateral declarations 105
4.3.6 Sequential declarations 106
4.3.7 Recursive declarations 107
4.3.8 Scopes of declarations 108

4.4 Blocks 108
4.4.1 Block commands 109
4.4.2 Block expressions 110
4.4.3 The Qualification Principle 110

Summary 111
Further reading 112
Exercises 112

5 Procedural abstraction 115
5.1 Function procedures and proper procedures 115

5.1.1 Function procedures 116
5.1.2 Proper procedures 118
5.1.3 The Abstraction Principle 120

5.2 Parameters and arguments 122
5.2.1 Copy parameter mechanisms 124
5.2.2 Reference parameter mechanisms 125
5.2.3 The Correspondence Principle 128

5.3 Implementation notes 129
5.3.1 Implementation of procedure calls 130
5.3.2 Implementation of parameter mechanisms 130

Summary 131
Further reading 131
Exercises 131

Part III: Advanced Concepts 133

6 Data abstraction 135
6.1 Program units, packages, and encapsulation 135

6.1.1 Packages 136
6.1.2 Encapsulation 137

6.2 Abstract types 140
6.3 Objects and classes 145

6.3.1 Classes 146
6.3.2 Subclasses and inheritance 151

x Contents

6.3.3 Abstract classes 157
6.3.4 Single vs multiple inheritance 160
6.3.5 Interfaces 162

6.4 Implementation notes 164
6.4.1 Representation of objects 164
6.4.2 Implementation of method calls 165

Summary 166
Further reading 167
Exercises 167

7 Generic abstraction 171
7.1 Generic units and instantiation 171

7.1.1 Generic packages in ADA 172
7.1.2 Generic classes in C++ 174

7.2 Type and class parameters 176
7.2.1 Type parameters in ADA 176
7.2.2 Type parameters in C++ 180
7.2.3 Class parameters in JAVA 183

7.3 Implementation notes 186
7.3.1 Implementation of ADA generic units 186
7.3.2 Implementation of C++ generic units 187
7.3.3 Implementation of JAVA generic units 188

Summary 188
Further reading 189
Exercises 189

8 Type systems 191
8.1 Inclusion polymorphism 191

8.1.1 Types and subtypes 191
8.1.2 Classes and subclasses 195

8.2 Parametric polymorphism 198
8.2.1 Polymorphic procedures 198
8.2.2 Parameterized types 200
8.2.3 Type inference 202

8.3 Overloading 204
8.4 Type conversions 207
8.5 Implementation notes 208

8.5.1 Implementation of parametric polymorphism 208
Summary 210
Further reading 210
Exercises 211

9 Control flow 215
9.1 Sequencers 215
9.2 Jumps 216
9.3 Escapes 218

Contents xi

9.4 Exceptions 221
9.5 Implementation notes 226

9.5.1 Implementation of jumps and escapes 226
9.5.2 Implementation of exceptions 227

Summary 227
Further reading 228
Exercises 228

10 Concurrency 231
10.1 Why concurrency? 231
10.2 Programs and processes 233
10.3 Problems with concurrency 234

10.3.1 Nondeterminism 234
10.3.2 Speed dependence 234
10.3.3 Deadlock 236
10.3.4 Starvation 237

10.4 Process interactions 238
10.4.1 Independent processes 238
10.4.2 Competing processes 238
10.4.3 Communicating processes 239

10.5 Concurrency primitives 240
10.5.1 Process creation and control 241
10.5.2 Interrupts 243
10.5.3 Spin locks and wait-free algorithms 243
10.5.4 Events 248
10.5.5 Semaphores 249
10.5.6 Messages 251
10.5.7 Remote procedure calls 252

10.6 Concurrent control abstractions 253
10.6.1 Conditional critical regions 253
10.6.2 Monitors 255
10.6.3 Rendezvous 256

Summary 258
Further reading 258
Exercises 259

Part IV: Paradigms 263

11 Imperative programming 265
11.1 Key concepts 265
11.2 Pragmatics 266

11.2.1 A simple spellchecker 268
11.3 Case study: C 269

11.3.1 Values and types 269
11.3.2 Variables, storage, and control 272

xii Contents

11.3.3 Bindings and scope 274
11.3.4 Procedural abstraction 274
11.3.5 Independent compilation 275
11.3.6 Preprocessor directives 276
11.3.7 Function library 277
11.3.8 A simple spellchecker 278

11.4 Case study: ADA 281
11.4.1 Values and types 281
11.4.2 Variables, storage, and control 282
11.4.3 Bindings and scope 282
11.4.4 Procedural abstraction 283
11.4.5 Data abstraction 283
11.4.6 Generic abstraction 285
11.4.7 Separate compilation 288
11.4.8 Package library 289
11.4.9 A simple spellchecker 289

Summary 292
Further reading 293
Exercises 293

12 Object-oriented programming 297
12.1 Key concepts 297
12.2 Pragmatics 298
12.3 Case study: C++ 299

12.3.1 Values and types 300
12.3.2 Variables, storage, and control 300
12.3.3 Bindings and scope 300
12.3.4 Procedural abstraction 301
12.3.5 Data abstraction 302
12.3.6 Generic abstraction 306
12.3.7 Independent compilation and preprocessor directives 307
12.3.8 Class and template library 307
12.3.9 A simple spellchecker 308

12.4 Case study: JAVA 311
12.4.1 Values and types 312
12.4.2 Variables, storage, and control 313
12.4.3 Bindings and scope 314
12.4.4 Procedural abstraction 314
12.4.5 Data abstraction 315
12.4.6 Generic abstraction 317
12.4.7 Separate compilation and dynamic linking 318
12.4.8 Class library 319
12.4.9 A simple spellchecker 320

12.5 Case study: ADA95 322
12.5.1 Types 322
12.5.2 Data abstraction 325

Contents xiii

Summary 328
Further reading 328
Exercises 329

13 Concurrent programming 333
13.1 Key concepts 333
13.2 Pragmatics 334
13.3 Case study: ADA95 336

13.3.1 Process creation and termination 336
13.3.2 Mutual exclusion 338
13.3.3 Admission control 339
13.3.4 Scheduling away deadlock 347

13.4 Case study: JAVA 355
13.4.1 Process creation and termination 356
13.4.2 Mutual exclusion 358
13.4.3 Admission control 359

13.5 Implementation notes 361
Summary 363
Further reading 363
Exercises 363

14 Functional programming 367
14.1 Key concepts 367

14.1.1 Eager vs normal-order vs lazy evaluation 368
14.2 Pragmatics 370
14.3 Case study: HASKELL 370

14.3.1 Values and types 370
14.3.2 Bindings and scope 374
14.3.3 Procedural abstraction 376
14.3.4 Lazy evaluation 379
14.3.5 Data abstraction 381
14.3.6 Generic abstraction 382
14.3.7 Modeling state 384
14.3.8 A simple spellchecker 386

Summary 387
Further reading 388
Exercises 389

15 Logic programming 393
15.1 Key concepts 393
15.2 Pragmatics 396
15.3 Case study: PROLOG 396

15.3.1 Values, variables, and terms 396
15.3.2 Assertions and clauses 398
15.3.3 Relations 398
15.3.4 The closed-world assumption 402
15.3.5 Bindings and scope 403

xiv Contents

15.3.6 Control 404
15.3.7 Input/output 406
15.3.8 A simple spellchecker 407

Summary 409
Further reading 410
Exercises 410

16 Scripting 413
16.1 Pragmatics 413
16.2 Key concepts 414

16.2.1 Regular expressions 415
16.3 Case study: PYTHON 417

16.3.1 Values and types 418
16.3.2 Variables, storage, and control 419
16.3.3 Bindings and scope 421
16.3.4 Procedural abstraction 421
16.3.5 Data abstraction 422
16.3.6 Separate compilation 424
16.3.7 Module library 425

Summary 427
Further reading 427
Exercises 427

Part V: Conclusion 429

17 Language selection 431
17.1 Criteria 431
17.2 Evaluation 433
Summary 436
Exercises 436

18 Language design 437
18.1 Selection of concepts 437
18.2 Regularity 438
18.3 Simplicity 438
18.4 Efficiency 441
18.5 Syntax 442
18.6 Language life cycles 444
18.7 The future 445
Summary 446
Further reading 446
Exercises 447

Bibliography 449

Glossary 453

Index 465

Preface

The first programming language I ever learned was ALGOL60. This language was
notable for its elegance and its regularity; for all its imperfections, it stood head and
shoulders above its contemporaries. My interest in languages was awakened, and
I began to perceive the benefits of simplicity and consistency in language design.

Since then I have learned and programmed in about a dozen other languages,
and I have struck a nodding acquaintance with many more. Like many pro-
grammers, I have found that certain languages make programming distasteful, a
drudgery; others make programming enjoyable, even esthetically pleasing. A good
language, like a good mathematical notation, helps us to formulate and communi-
cate ideas clearly. My personal favorites have been PASCAL, ADA, ML, and JAVA.
Each of these languages has sharpened my understanding of what programming
is (or should be) all about. PASCAL taught me structured programming and data
types. ADA taught me data abstraction, exception handling, and large-scale pro-
gramming. ML taught me functional programming and parametric polymorphism.
JAVA taught me object-oriented programming and inclusion polymorphism. I had
previously met all of these concepts, and understood them in principle, but I did
not truly understand them until I had the opportunity to program in languages
that exposed them clearly.

Contents

This book consists of five parts.
Chapter 1 introduces the book with an overview of programming linguistics

(the study of programming languages) and a brief history of programming and
scripting languages.

Chapters 2–5 explain the basic concepts that underlie almost all programming
languages: values and types, variables and storage, bindings and scope, procedures
and parameters. The emphasis in these chapters is on identifying the basic
concepts and studying them individually. These basic concepts are found in almost
all languages.

Chapters 6–10 continue this theme by examining some more advanced con-
cepts: data abstraction (packages, abstract types, and classes), generic abstraction
(or templates), type systems (inclusion polymorphism, parametric polymor-
phism, overloading, and type conversions), sequencers (including exceptions), and
concurrency (primitives, conditional critical regions, monitors, and rendezvous).
These more advanced concepts are found in the more modern languages.

Chapters 11–16 survey the most important programming paradigms, compar-
ing and contrasting the long-established paradigm of imperative programming
with the increasingly important paradigms of object-oriented and concurrent pro-
gramming, the more specialized paradigms of functional and logic programming,
and the paradigm of scripting. These different paradigms are based on different

xv

xvi Preface

selections of key concepts, and give rise to sharply contrasting styles of language
and of programming. Each chapter identifies the key concepts of the subject
paradigm, and presents an overview of one or more major languages, showing
how concepts were selected and combined when the language was designed.
Several designs and implementations of a simple spellchecker are presented to
illustrate the pragmatics of programming in all of the major languages.

Chapters 17 and 18 conclude the book by looking at two issues: how to select
a suitable language for a software development project, and how to design a
new language.

The book need not be read sequentially. Chapters 1–5 should certainly be
read first, but the remaining chapters could be read in many different orders.
Chapters 11–15 are largely self-contained; my recommendation is to read at least
some of them after Chapters 1–5, in order to gain some insight into how major
languages have been designed. Figure P.1 summarizes the dependencies between
the chapters.

Examples and case studies

The concepts studied in Chapters 2–10 are freely illustrated by examples. These
examples are drawn primarily from C, C++, JAVA, and ADA. I have chosen these
languages because they are well known, they contrast well, and even their flaws
are instructive!

1
Introduction

2
Values and

Types

4
Bindings and

Scope

5
Procedural
Abstraction

6
Data

Abstraction

7
Generic

Abstraction

11
Imperative

Programming

12
OO

Programming

15
Logic

Programming

17
Language
Selection

18
Language

Design

3
Variables and

Storage

8
Type

Systems

14
Functional

Programming

9
Control
Flow

13
Concurrent

Programming

16
Scripting

10
Concurrency

Figure P.1 Dependencies between chapters of this book.

Preface xvii

The paradigms studied in Chapters 11–16 are illustrated by case studies of
major languages: ADA, C, C++, HASKELL, JAVA, PROLOG, and PYTHON. These
languages are studied only impressionistically. It would certainly be valuable for
readers to learn to program in all of these languages, in order to gain deeper insight,
but this book makes no attempt to teach programming per se. The bibliography
contains suggested reading on all of these languages.

Exercises

Each chapter is followed by a number of relevant exercises. These vary from
short exercises, through longer ones (marked *), up to truly demanding ones
(marked **) that could be treated as projects.

A typical exercise is to analyze some aspect of a favorite language, in the
same way that various languages are analyzed in the text. Exercises like this are
designed to deepen readers’ understanding of languages that they already know,
and to reinforce understanding of particular concepts by studying how they are
supported by different languages.

A typical project is to design some extension or modification to an existing
language. I should emphasize that language design should not be undertaken
lightly! These projects are aimed particularly at the most ambitious readers, but
all readers would benefit by at least thinking about the issues raised.

Readership

All programmers, not just language specialists, need a thorough understanding
of language concepts. This is because programming languages are our most
fundamental tools. They influence the very way we think about software design
and implementation, about algorithms and data structures.

This book is aimed at junior, senior, and graduate students of computer
science and information technology, all of whom need some understanding of
the fundamentals of programming languages. The book should also be of inter-
est to professional software engineers, especially project leaders responsible
for language evaluation and selection, designers and implementers of language
processors, and designers of new languages and of extensions to existing languages.

To derive maximum benefit from this book, the reader should be able to
program in at least two contrasting high-level languages. Language concepts can
best be understood by comparing how they are supported by different languages. A
reader who knows only a language like C, C++, or JAVA should learn a contrasting
language such as ADA (or vice versa) at the same time as studying this book.

The reader will also need to be comfortable with some elementary concepts
from discrete mathematics – sets, functions, relations, and predicate logic – as
these are used to explain a variety of language concepts. The relevant mathematical
concepts are briefly reviewed in Chapters 2 and 15, in order to keep this book
reasonably self-contained.

This book attempts to cover all the most important aspects of a large subject.
Where necessary, depth has been sacrificed for breadth. Thus the really serious

xviii Preface

student will need to follow up with more advanced studies. The book has an
extensive bibliography, and each chapter closes with suggestions for further
reading on the topics covered by the chapter.

Acknowledgments

Bob Tennent’s classic book Programming Language Principles has profoundly
influenced the way I have organized this book. Many books on programming
languages have tended to be syntax-oriented, examining several popular languages
feature by feature, without offering much insight into the underlying concepts
or how future languages might be designed. Some books are implementation-
oriented, attempting to explain concepts by showing how they are implemented
on computers. By contrast, Tennent’s book is semantics-oriented, first identifying
and explaining powerful and general semantic concepts, and only then analyzing
particular languages in terms of these concepts. In this book I have adopted Ten-
nent’s semantics-oriented approach, but placing far more emphasis on concepts
that have become more prominent in the intervening two decades.

I have also been strongly influenced, in many different ways, by the work
of Malcolm Atkinson, Peter Buneman, Luca Cardelli, Frank DeRemer, Edsger
Dijkstra, Tony Hoare, Jean Ichbiah, John Hughes, Mehdi Jazayeri, Bill Joy, Robin
Milner, Peter Mosses, Simon Peyton Jones, Phil Wadler, and Niklaus Wirth.

I wish to thank Bill Findlay for the two chapters (Chapters 10 and 13) he has
contributed to this book. His expertise on concurrent programming has made this
book broader in scope than I could have made it myself. His numerous suggestions
for my own chapters have been challenging and insightful.

Last but not least, I would like to thank the Wiley reviewers for their
constructive criticisms, and to acknowledge the assistance of the Wiley editorial
staff led by Gaynor Redvers-Mutton.

David A. Watt
Brisbane

March 2004

PART I

INTRODUCTION

Part I introduces the book with an overview of programming linguistics and a
brief history of programming and scripting languages.

1

Chapter 1

Programming languages

In this chapter we shall:

• outline the discipline of programming linguistics, which is the study of program-
ming languages, encompassing concepts and paradigms, syntax, semantics, and
pragmatics, and language processors such as compilers and interpreters;

• briefly survey the historical development of programming languages, covering the
major programming languages and paradigms.

1.1 Programming linguistics
The first high-level programming languages were designed during the 1950s. Ever
since then, programming languages have been a fascinating and productive area
of study. Programmers endlessly debate the relative merits of their favorite pro-
gramming languages, sometimes with almost religious zeal. On a more academic
level, computer scientists search for ways to design programming languages that
combine expressive power with simplicity and efficiency.

We sometimes use the term programming linguistics to mean the study of
programming languages. This is by analogy with the older discipline of linguistics,
which is the study of natural languages. Both programming languages and natural
languages have syntax (form) and semantics (meaning). However, we cannot take
the analogy too far. Natural languages are far broader, more expressive, and
subtler than programming languages. A natural language is just what a human
population speaks and writes, so linguists are restricted to analyzing existing (and
dead) natural languages. On the other hand, programming linguists can not only
analyze existing programming languages; they can also design and specify new
programming languages, and they can implement these languages on computers.

Programming linguistics therefore has several aspects, which we discuss briefly
in the following subsections.

1.1.1 Concepts and paradigms

Every programming language is an artifact, and as such has been consciously
designed. Some programming languages have been designed by a single person
(such as C++), others by small groups (such as C and JAVA), and still others by
large groups (such as ADA).

A programming language, to be worthy of the name, must satisfy certain
fundamental requirements.

3

4 Chapter 1 Programming languages

A programming language must be universal. That is to say, every problem
must have a solution that can be programmed in the language, if that problem can
be solved at all by a computer. This might seem to be a very strong requirement,
but even a very small programming language can meet it. Any language in which
we can define recursive functions is universal. On the other hand, a language with
neither recursion nor iteration cannot be universal. Certain application languages
are not universal, but we do not generally classify them as programming languages.

A programming language should also be reasonably natural for solving prob-
lems, at least problems within its intended application area. For example, a
programming language whose only data types are numbers and arrays might be
natural for solving numerical problems, but would be less natural for solving prob-
lems in commerce or artificial intelligence. Conversely, a programming language
whose only data types are strings and lists would be an unnatural choice for solving
numerical problems.

A programming language must also be implementable on a computer. That is
to say, it must be possible to execute every well-formed program in the language.
Mathematical notation (in its full generality) is not implementable, because in
this notation it is possible to formulate problems that cannot be solved by any
computer. Natural languages also are not implementable, because they are impre-
cise and ambiguous. Therefore, mathematical notation and natural languages, for
entirely different reasons, cannot be classified as programming languages.

In practice, a programming language should be capable of an acceptably
efficient implementation. There is plenty of room for debate over what is acceptably
efficient, especially as the efficiency of a programming language implementation
is strongly influenced by the computer architecture. FORTRAN, C, and PASCAL

programmers might expect their programs to be almost as efficient (within a factor
of 2–4) as the corresponding assembly-language programs. PROLOG programmers
have to accept an order of magnitude lower efficiency, but would justify this on
the grounds that the language is far more natural within its own application area;
besides, they hope that new computer architectures will eventually appear that
are more suited for executing PROLOG programs than conventional architectures.

In Parts II and III of this book we shall study the concepts that underlie
the design of programming languages: data and types, variables and storage,
bindings and scope, procedural abstraction, data abstraction, generic abstraction,
type systems, control, and concurrency. Although few of us will ever design a
programming language (which is extremely difficult to do well), as programmers
we can all benefit by studying these concepts. Programming languages are our
most basic tools, and we must thoroughly master them to use them effectively.
Whenever we have to learn a new programming language and discover how it
can be effectively exploited to construct reliable and maintainable programs, and
whenever we have to decide which programming language is most suitable for
solving a given problem, we find that a good understanding of programming
language concepts is indispensable. We can master a new programming language
most effectively if we understand the underlying concepts that it shares with other
programming languages.

1.1 Programming linguistics 5

Just as important as the individual concepts are the ways in which they may
be put together to design complete programming languages. Different selections
of key concepts support radically different styles of programming, which are
called paradigms. There are six major paradigms. Imperative programming is
characterized by the use of variables, commands, and procedures; object-oriented
programming by the use of objects, classes, and inheritance; concurrent pro-
gramming by the use of concurrent processes, and various control abstractions;
functional programming by the use of functions; logic programming by the use of
relations; and scripting languages by the presence of very high-level features. We
shall study all of these paradigms in Part IV of this book.

1.1.2 Syntax, semantics, and pragmatics

Every programming language has syntax, semantics, and pragmatics. We have
seen that natural languages also have syntax and semantics, but pragmatics is
unique to programming languages.

• A programming language’s syntax is concerned with the form of programs:
how expressions, commands, declarations, and other constructs must be
arranged to make a well-formed program.

• A programming language’s semantics is concerned with the meaning of
programs: how a well-formed program may be expected to behave when
executed on a computer.

• A programming language’s pragmatics is concerned with the way in which
the language is intended to be used in practice.

Syntax influences how programs are written by the programmer, read by
other programmers, and parsed by the computer. Semantics determines how
programs are composed by the programmer, understood by other programmers,
and interpreted by the computer. Pragmatics influences how programmers are
expected to design and implement programs in practice. Syntax is important, but
semantics and pragmatics are more important still.

To underline this point, consider how an expert programmer thinks, given a
programming problem to solve. Firstly, the programmer decomposes the prob-
lem, identifying suitable program units (procedures, packages, abstract types,
or classes). Secondly, the programmer conceives a suitable implementation of
each program unit, deploying language concepts such as types, control structures,
exceptions, and so on. Lastly, the programmer codes each program unit. Only at
this last stage does the programming language’s syntax become relevant.

In this book we shall pay most attention to semantic and pragmatic issues. A
given construct might be provided in several programming languages, with varia-
tions in syntax that are essentially superficial. Semantic issues are more important.
We need to appreciate subtle differences in meaning between apparently similar
constructs. We need to see whether a given programming language confuses dis-
tinct concepts, or supports an important concept inadequately, or fails to support
it at all. In this book we study those concepts that are so important that they are
supported by a variety of programming languages.

6 Chapter 1 Programming languages

In order to avoid distracting syntactic variations, wherever possible we shall
illustrate each concept using the following programming languages: C, C++, JAVA,
and ADA. C is now middle-aged, and its design defects are numerous; however, it is
very widely known and used, and even its defects are instructive. C++ and JAVA are
modern and popular object-oriented languages. ADA is a programming language
that supports imperative, object-oriented, and concurrent programming. None of
these programming languages is by any means perfect. The ideal programming
language has not yet been designed, and is never likely to be!

1.1.3 Language processors

This book is concerned only with high-level languages, i.e., programming languages
that are (more or less) independent of the machines on which programs are
executed. High-level languages are implemented by compiling programs into
machine language, by interpreting them directly, or by some combination of
compilation and interpretation.

Any system for processing programs – executing programs, or preparing them
for execution – is called a language processor. Language processors include com-
pilers, interpreters, and auxiliary tools like source-code editors and debuggers.

We have seen that a programming language must be implementable. However,
this does not mean that programmers need to know in detail how a programming
language is implemented in order to understand it thoroughly. Accordingly,
implementation issues will receive limited attention in this book, except for a
short section (‘‘Implementation notes’’) at the end of each chapter.

1.2 Historical development
Today’s programming languages are the product of developments that started in
the 1950s. Numerous concepts have been invented, tested, and improved by being
incorporated in successive programming languages. With very few exceptions, the
design of each programming language has been strongly influenced by experience
with earlier languages. The following brief historical survey summarizes the
ancestry of the major programming languages and sketches the development of
the concepts introduced in this book. It also reminds us that today’s programming
languages are not the end product of developments in programming language
design; exciting new concepts, languages, and paradigms are still being developed,
and the programming language scene ten years from now will probably be rather
different from today’s.

Figure 1.1 summarizes the dates and ancestry of several important program-
ming languages. This is not the place for a comprehensive survey, so only the
major programming languages are mentioned.

FORTRAN was the earliest major high-level language. It introduced symbolic
expressions and arrays, and also procedures (‘‘subroutines’’) with parameters. In
other respects FORTRAN (in its original form) was fairly low-level; for example, con-
trol flow was largely effected by conditional and unconditional jumps. FORTRAN has
developed a long way from its original design; the latest version was standardized
as recently as 1997.

1.2 Historical development 7

FORTRAN

ALGOL60

ALGOL68
SIMULA

SMALLTALK

PASCAL

ADA83

ADA95

COBOL

PL/I

C++

LISP

ML

HASKELL

PROLOG

object-oriented
languages

functional
languages

logic
languages

concurrent
languages

imperative
languages

1950

1960

1970

1980

1990

2000

C

minor
influence

major
influence

Key:

C#

JAVA

MODULA

Figure 1.1 Dates and ancestry of major programming languages.

COBOL was another early major high-level language. Its most important
contribution was the concept of data descriptions, a forerunner of today’s data
types. Like FORTRAN, COBOL’s control flow was fairly low-level. Also like FORTRAN,
COBOL has developed a long way from its original design, the latest version being
standardized in 2002.

ALGOL60 was the first major programming language to be designed for
communicating algorithms, not just for programming a computer. ALGOL60 intro-
duced the concept of block structure, whereby variables and procedures could
be declared wherever in the program they were needed. It was also the first
major programming language to support recursive procedures. ALGOL60 influ-
enced numerous successor languages so strongly that they are collectively called
ALGOL-like languages.

FORTRAN and ALGOL60 were most useful for numerical computation, and
COBOL for commercial data processing. PL/I was an attempt to design a
general-purpose programming language by merging features from all three. On

8 Chapter 1 Programming languages

top of these it introduced many new features, including low-level forms of excep-
tions and concurrency. The resulting language was huge, complex, incoherent,
and difficult to implement. The PL/I experience showed that simply piling feature
upon feature is a bad way to make a programming language more powerful and
general-purpose.

A better way to gain expressive power is to choose an adequate set of concepts
and allow them to be combined systematically. This was the design philosophy
of ALGOL68. For instance, starting with concepts such as integers, arrays, and
procedures, the ALGOL68 programmer can declare an array of integers, an array of
arrays, or an array of procedures; likewise, the programmer can define a procedure
whose parameter or result is an integer, an array, or another procedure.

PASCAL, however, turned out to be the most popular of the ALGOL-like
languages. It is simple, systematic, and efficiently implementable. PASCAL and
ALGOL68 were among the first major programming languages with both a rich
variety of control structures (conditional and iterative commands) and a rich
variety of data types (such as arrays, records, and recursive types).

C was originally designed to be the system programming language of the UNIX

operating system. The symbiotic relationship between C and UNIX has proved very
good for both of them. C is suitable for writing both low-level code (such as the
UNIX system kernel) and higher-level applications. However, its low-level features
are easily misused, resulting in code that is unportable and unmaintainable.

PASCAL’s powerful successor, ADA, introduced packages and generic units –
designed to aid the construction of large modular programs – as well as high-level
forms of exceptions and concurrency. Like PL/I, ADA was intended by its designers
to become the standard general-purpose programming language. Such a stated
ambition is perhaps very rash, and ADA also attracted a lot of criticism. (For
example, Tony Hoare quipped that PASCAL, like ALGOL60 before it, was a marked
advance on its successors!) The critics were wrong: ADA was very well designed,
is particularly suitable for developing high-quality (reliable, robust, maintainable,
efficient) software, and is the language of choice for mission-critical applications
in fields such as aerospace.

We can discern certain trends in the history of programming languages. One
has been a trend towards higher levels of abstraction. The mnemonics and symbolic
labels of assembly languages abstract away from operation codes and machine
addresses. Variables and assignment abstract away from inspection and updating
of storage locations. Data types abstract away from storage structures. Control
structures abstract away from jumps. Procedures abstract away from subroutines.
Packages achieve encapsulation, and thus improve modularity. Generic units
abstract procedures and packages away from the types of data on which they
operate, and thus improve reusability.

Another trend has been a proliferation of paradigms. Nearly all the languages
mentioned so far have supported imperative programming, which is characterized
by the use of commands and procedures that update variables. PL/I and ADA sup-
port concurrent programming, characterized by the use of concurrent processes.
However, other paradigms have also become popular and important.

1.2 Historical development 9

Object-oriented programming is based on classes of objects. An object has
variable components and is equipped with certain operations. Only these opera-
tions can access the object’s variable components. A class is a family of objects with
similar variable components and operations. Classes turn out to be convenient
reusable program units, and all the major object-oriented languages are equipped
with rich class libraries.

The concepts of object and class had their origins in SIMULA, yet another
ALGOL-like language. SMALLTALK was the earliest pure object-oriented language,
in which entire programs are constructed from classes.

C++ was designed by adding object-oriented concepts to C. C++ brought
together the C and object-oriented programming communities, and thus became
very popular. Nevertheless, its design is clumsy; it inherited all C’s shortcomings,
and it added some more of its own.

JAVA was designed by drastically simplifying C++, removing nearly all its
shortcomings. Although primarily a simple object-oriented language, JAVA can
also be used for distributed and concurrent programming. JAVA is well suited for
writing applets (small portable application programs embedded in Web pages), as
a consequence of a highly portable implementation (the Java Virtual Machine) that
has been incorporated into all the major Web browsers. Thus JAVA has enjoyed a
symbiotic relationship with the Web, and both have experienced enormous growth
in popularity. C# is very similar to JAVA, apart from some relatively minor design
improvements, but its more efficient implementation makes it more suitable for
ordinary application programming.

Functional programming is based on functions over types such as lists and
trees. The ancestral functional language was LISP, which demonstrated at a
remarkably early date that significant programs can be written without resorting
to variables and assignment.

ML and HASKELL are modern functional languages. They treat functions as
ordinary values, which can be passed as parameters and returned as results from
other functions. Moreover, they incorporate advanced type systems, allowing us to
write polymorphic functions (functions that operate on data of a variety of types).
ML (like LISP) is an impure functional language, since it does support variables
and assignment. HASKELL is a pure functional language.

As noted in Section 1.1.1, mathematical notation in its full generality is
not implementable. Nevertheless, many programming language designers have
sought to exploit subsets of mathematical notation in programming languages.
Logic programming is based on a subset of predicate logic. Logic programs infer
relationships between values, as opposed to computing output values from input
values. PROLOG was the ancestral logic language, and is still the most popular.
In its pure logical form, however, PROLOG is rather weak and inefficient, so
it has been extended with extra-logical features to make it more usable as a
programming language.

Programming languages are intended for writing application programs and
systems programs. However, there are other niches in the ecology of computing.
An operating system such as UNIX provides a language in which a user or system
administrator can issue commands from the keyboard, or store a command

10 Chapter 1 Programming languages

script that will later be called whenever required. An office system (such as a word
processor or spreadsheet system) might enable the user to store a script (‘‘macro’’)
embodying a common sequence of commands, typically written in VISUAL BASIC.
The Internet has created a variety of new niches for scripting. For example, the
results of a database query might be converted to a dynamic Web page by a script,
typically written in PERL. All these applications are examples of scripting. Scripts
(‘‘programs’’ written in scripting languages) typically are short and high-level, are
developed very quickly, and are used to glue together subsystems written in other
languages. So scripting languages, while having much in common with imperative
programming languages, have different design constraints. The most modern and
best-designed of these scripting languages is PYTHON.

Summary
In this introductory chapter:

• We have seen what is meant by programming linguistics, and the topics encompassed
by this term: concepts and paradigms; syntax, semantics, and pragmatics; and
language processors.

• We have briefly surveyed the history of programming languages. We saw how new
languages inherited successful concepts from their ancestors, and sometimes intro-
duced new concepts of their own. We also saw how the major paradigms evolved:
imperative programming, object-oriented programming, concurrent programming,
functional programming, logic programming, and scripting.

Further reading

Programming language concepts and paradigms are cov-
ered not only in this book, but also in TENNENT (1981),
GHEZZI and JAZAYERI (1997), SEBESTA (2001), and SETHI

(1996). Programming language syntax and semantics are
covered in WATT (1991). Programming language proces-
sors are covered in AHO et al. (1986), APPEL (1998), and
WATT and BROWN (2000).

The early history of programming languages (up to the
1970s) was the theme of a major conference, reported

in WEXELBLAT (1980). Comparative studies of program-
ming languages may be found in HOROWITZ (1995), PRATT

and ZELCOWITZ (2001), and SEBESTA (2001). A survey
of scripting languages may be found in BARRON

(2000).

More detailed information on the programming languages
mentioned in this chapter may be found in the references
cited in Table 1.1.

Exercises
Note: Harder exercises are marked *.

Exercises for Section 1.1

1.1.1 Here is a whimsical exercise to get you started. For each programming language
that you know, write down the shortest program that does nothing at all.
How long is this program? This is quite a good measure of the programming
language’s verbosity!

Exercises 11

Table 1.1 Descriptions of major programming and scripting languages.

Programming
language Description

ADA ISO/IEC (1995); www.ada-auth.org/∼acats/arm.html
ALGOL60 Naur (1963)
ALGOL68 van Wijngaarden et al. (1976)
C Kernighan and Ritchie (1989); ISO/IEC (1999)
C++ Stroustrup (1997); ISO/IEC (1998)
C# Drayton et al. (2002)
COBOL ISO/IEC (2002)
FORTRAN ISO/IEC (1997)
JAVA Joy et al. (2000); Flanagan (2002)
LISP McCarthy et al. (1965); ANSI (1994)
HASKELL Thompson (1999)
ML Milner et al. (1997)
MODULA Wirth (1977)
PASCAL ISO (1990)
PERL Wall et al. (2000)
PL/I ISO (1979)
PROLOG Bratko (1990)
PYTHON Beazley (2001); www.python.org/doc/current/ref/
SIMULA Birtwhistle et al. (1979)
SMALLTALK Goldberg and Robson (1989)

Exercises for Section 1.2
*1.2.1 The brief historical survey of Section 1.2 does not mention all major pro-

gramming languages (only those that have been particularly influential, in the
author’s opinion). If a favorite language of yours has been omitted, explain
why you think that it is important enough to be included, and show where your
language fits into Figure 1.1.

*1.2.2 FORTRAN and COBOL are very old programming languages, but still widely used
today. How would you explain this paradox?

*1.2.3 Imperative programming was the dominant paradigm from the dawn of com-
puting until about 1990, after which if was overtaken by object-oriented
programming. How would you explain this development? Why has functional
or logic programming never become dominant?

PART II

BASIC CONCEPTS

Part II explains the more elementary programming language concepts, which are
supported by almost all programming languages:

• values and types
• variables and storage
• bindings and scope
• procedural abstraction (procedures and parameters).

13

Chapter 2

Values and types

Data are the raw material of computation, and are just as important (and valuable) as the
programs that manipulate the data. In computer science, therefore, the study of data is
considered as an important topic in its own right.

In this chapter we shall study:

• types of values that may be used as data in programming languages;

• primitive, composite, and recursive types;

• type systems, which group values into types and constrain the operations that may
be performed on these values;

• expressions, which are program constructs that compute new values;

• how values of primitive, composite, and recursive types are represented.

(In Chapter 3 we shall go on to study how values may be stored, and in Chapter 4 how
values may be bound to identifiers.)

2.1 Types

A value is any entity that can be manipulated by a program. Values can be
evaluated, stored, passed as arguments, returned as function results, and so on.

Different programming languages support different types of values:

• C supports integers, real numbers, structures, arrays, unions, pointers to
variables, and pointers to functions. (Integers, real numbers, and pointers
are primitive values; structures, arrays, and unions are composite values.)

• C++, which is a superset of C, supports all the above types of values plus
objects. (Objects are composite values.)

• JAVA supports booleans, integers, real numbers, arrays, and objects.
(Booleans, integers, and real numbers are primitive values; arrays and
objects are composite values.)

• ADA supports booleans, characters, enumerands, integers, real numbers,
records, arrays, discriminated records, objects (tagged records), strings,
pointers to data, and pointers to procedures. (Booleans, characters, enu-
merands, integers, real numbers, and pointers are primitive values; records,
arrays, discriminated records, objects, and strings are composite values.)

Most programming languages group values into types. For instance, nearly
all languages make a clear distinction between integer and real numbers. Most

15

16 Chapter 2 Values and types

languages also make a clear distinction between booleans and integers: integers
can be added and multiplied, while booleans can be subjected to operations like
not, and, and or.

What exactly is a type? The most obvious answer, perhaps, is that a type is a
set of values. When we say that v is a value of type T, we mean simply that v ∈ T.
When we say that an expression E is of type T, we are asserting that the result of
evaluating E will be a value of type T.

However, not every set of values is suitable to be regarded as a type. We insist
that each operation associated with the type behaves uniformly when applied to all
values of the type. Thus {false, true} is a type because the operations not, and, and or
operate uniformly over the values false and true. Also, {. . . ,−2, −1, 0, +1, +2, . . .}
is a type because operations such as addition and multiplication operate uniformly
over all these values. But {13, true, Monday} is not a type, since there are no useful
operations over this set of values. Thus we see that a type is characterized not only
by its set of values, but also by the operations over that set of values.

Therefore we define a type to be a set of values, equipped with one or more
operations that can be applied uniformly to all these values.

Every programming language supports both primitive types, whose values are
primitive, and composite types, whose values are composed from simpler values.
Some languages also have recursive types, a recursive type being one whose
values are composed from other values of the same type. We examine primitive,
composite, and recursive types in the next three sections.

2.2 Primitive types

A primitive value is one that cannot be decomposed into simpler values. A
primitive type is one whose values are primitive.

Every programming language provides built-in primitive types. Some lan-
guages also allow programs to define new primitive types.

2.2.1 Built-in primitive types

One or more primitive types are built-in to every programming language. The
choice of built-in primitive types tells us much about the programming language’s
intended application area. Languages intended for commercial data processing
(such as COBOL) are likely to have primitive types whose values are fixed-length
strings and fixed-point numbers. Languages intended for numerical computation
(such as FORTRAN) are likely to have primitive types whose values are real
numbers (with a choice of precisions) and perhaps also complex numbers. A
language intended for string processing (such as SNOBOL) is likely to have a
primitive type whose values are strings of arbitrary length.

Nevertheless, certain primitive types crop up in a variety of languages, often
under different names. For example, JAVA has boolean, char, int, and float,
whereas ADA has Boolean, Character, Integer, and Float. These name
differences are of no significance. For the sake of consistency, we shall use Boolean,

2.2 Primitive types 17

Character, Integer, and Float as names for the most common primitive types:

Boolean = {false, true} (2.1)
Character = {. . . , ‘a’, . . . , ‘z’, . . . , ‘0’, . . . , ‘9’, . . . , ‘?’, . . .} (2.2)

Integer = {. . . ,−2, −1, 0, +1, +2, . . .} (2.3)
Float = {. . . ,−1.0, . . . , 0.0, . . . , +1.0, . . .} (2.4)

(Here we are focusing on the set of values of each type.)
The Boolean type has exactly two values, false and true. In some languages

these two values are denoted by the literals false and true, in others by
predefined identifiers false and true.

The Character type is a language-defined or implementation-defined set of
characters. The chosen character set is usually ASCII (128 characters), ISO LATIN

(256 characters), or UNICODE (65 536 characters).
The Integer type is a language-defined or implementation-defined range of

whole numbers. The range is influenced by the computer’s word size and integer
arithmetic. For instance, on a 32-bit computer with two’s complement arithmetic,
Integer will be {−2 147 483 648, . . . , +2 147 483 647}.

The Float type is a language-defined or implementation-defined subset of the
(rational) real numbers. The range and precision are determined by the computer’s
word size and floating-point arithmetic.

The Character, Integer, and Float types are usually implementation-defined,
i.e., the set of values is chosen by the compiler. Sometimes, however, these
types are language-defined, i.e., the set of values is defined by the programming
language. In particular, JAVA defines all its types precisely.

The cardinality of a type T, written #T, is the number of distinct values in T.
For example:

#Boolean = 2 (2.5)
#Character = 256 (ISO LATIN character set) (2.6a)
#Character = 65 536 (UNICODE character set) (2.6b)

Although nearly all programming languages support the Boolean, Character,
Integer, and Float types in one way or another, there are many complications:

• Not all languages have a distinct type corresponding to Boolean. For
example, C++ has a type named bool, but its values are just small integers;
there is a convention that zero represents false and any other integer
represents true. This convention originated in C.

• Not all languages have a distinct type corresponding to Character. For
example, C, C++, and JAVA all have a type char, but its values are just
small integers; no distinction is made between a character and its internal
representation.

• Some languages provide not one but several integer types.
For example, JAVA provides byte {−128, . . . , +127}, short
{−32 768, . . . , +32 767}, int {−2 147 483 648, . . . , +2 147 483 647}, and
long {−9 223 372 036 854 775 808, . . . , +9 223 372 036 854 775 807}. C and

18 Chapter 2 Values and types

C++ also provide a variety of integer types, but they are implementation-
defined.

• Some languages provide not one but several floating-point types. For
example, C, C++, and JAVA provide both float and double, of which the
latter provides greater range and precision.

EXAMPLE 2.1 JAVA and C++ integer types

Consider the following JAVA declarations:

int countryPop;
long worldPop;

The variable countryPop could be used to contain the current population of any country
(since no country yet has a population exceeding 2 billion). The variable worldPop could
be used to contain the world’s total population. But note that the program would fail if
worldPop’s type were int rather than long (since the world’s total population now
exceeds 6 billion).

A C++ program with the same declarations would be unportable: a C++ compiler may
choose {−65 536, . . . , +65 535} as the set of int values!

If some types are implementation-defined, the behavior of programs may vary
from one computer to another, even programs written in high-level languages.
This gives rise to portability problems: a program that works well on one computer
might fail when moved to a different computer.

One way to avoid such portability problems is for the programming language
to define all its primitive types precisely. As we have seen, this approach is taken
by JAVA.

2.2.2 Defined primitive types

Another way to avoid portability problems is to allow programs to define their
own integer and floating-point types, stating explicitly the desired range and/or
precision for each type. This approach is taken by ADA.

EXAMPLE 2.2 ADA integer types

Consider the following ADA declarations:

type Population is range 0 .. 1e10;

countryPop: Population;
worldPop: Population;

The integer type defined here has the following set of values:

Population = {0, . . . , 1010}

2.2 Primitive types 19

and its cardinality is:
#Population = 1010 + 1

This code is completely portable – provided only that the computer is capable of
supporting the specified range of integers.

In ADA we can define a completely new primitive type by enumerating its
values (more precisely, by enumerating identifiers that will denote its values).
Such a type is called an enumeration type, and its values are called enumerands.

C and C++ also support enumerations, but in these languages an enumeration
type is actually an integer type, and each enumerand denotes a small integer.

EXAMPLE 2.3 ADA and C++ enumeration types

The following ADA type definition:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

defines a completely new type, whose values are twelve enumerands:

Month = {jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec}
The cardinality of this type is:

#Month = 12

The enumerands of type Month are distinct from the values of any other type. Note
that we must carefully distinguish between these enumerands (which for convenience we
have written as jan, feb, etc.) and the identifiers that denote them in the program (jan,
feb, etc.). This distinction is necessary because the identifiers might later be redeclared.
(For example, we might later redeclare dec as a procedure that decrements an integer; but
the enumerand dec still exists and can be computed.)

By contrast, the C++ type definition:

enum Month {jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec};

defines Month to be an integer type, and binds jan to 0, feb to 1, and so on. Thus:

Month = {0, 1, 2, . . . , 11}

2.2.3 Discrete primitive types

A discrete primitive type is a primitive type whose values have a one-to-one
relationship with a range of integers.

This is an important concept in ADA, in which values of any discrete primitive
type may be used for array indexing, counting, and so on. The discrete primitive
types in ADA are Boolean, Character, integer types, and enumeration types.

20 Chapter 2 Values and types

EXAMPLE 2.4 ADA discrete primitive types

Consider the following ADA code:

freq: array (Character) of Natural;
. . .

for ch in Character loop
freq(ch) := 0;

end loop;

The indices of the array freq are values of type Character. Likewise, the loop control
variable ch takes a sequence of values of type Character.

Also consider the following ADA code:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

length: array (Month) of Natural :=
(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

. . .

for mth in Month loop
put(length(mth));

end loop;

The indices of the array length are values of type Month. Likewise, the loop control
variable mth takes a sequence of values of type Month.

Most programming languages allow only integers to be used for counting and
array indexing. C and C++ allow enumerands also to be used for counting and
array indexing, since they classify enumeration types as integer types.

2.3 Composite types

A composite value (or data structure) is a value that is composed from simpler
values. A composite type is a type whose values are composite.

Programming languages support a huge variety of composite values: tuples,
structures, records, arrays, algebraic types, discriminated records, objects, unions,
strings, lists, trees, sequential files, direct files, relations, etc. The variety might
seem bewildering, but in fact nearly all these composite values can be understood
in terms of a small number of structuring concepts, which are:

• Cartesian products (tuples, records)

• mappings (arrays)

• disjoint unions (algebraic types, discriminated records, objects)

• recursive types (lists, trees).

(For sequential files, direct files, and relations see Exercise 2.3.6.)
We discuss Cartesian products, mappings, and disjoint unions in this section,

and recursive types in Section 2.4. Each programming language provides its own
notation for describing composite types. Here we shall use mathematical notation

2.3 Composite types 21

that is concise, standard, and suitable for defining sets of values structured as
Cartesian products, mappings, and disjoint unions.

2.3.1 Cartesian products, structures, and records
In a Cartesian product, values of several (possibly different) types are grouped
into tuples.

We use the notation (x, y) to stand for the pair whose first component is x and
whose second component is y. We use the notation S × T to stand for the set of all
pairs (x, y) such that x is chosen from set S and y is chosen from set T. Formally:

S × T = {(x, y) | x ∈ S; y ∈ T} (2.7)

This is illustrated in Figure 2.1.
The basic operations on pairs are:

• construction of a pair from two component values;
• selection of the first or second component of a pair.

We can easily infer the cardinality of a Cartesian product:

#(S × T) = #S × #T (2.8)

This equation motivates the use of the notation ‘‘×’’ for Cartesian product.
We can extend the notion of Cartesian product from pairs to tuples with any

number of components. In general, the notation S1 × S2 × . . . × Sn stands for the
set of all n-tuples, such that the first component of each n-tuple is chosen from S1,
the second component from S2, . . . , and the nth component from Sn.

The structures of C and C++, and the records of ADA, can be understood in
terms of Cartesian products.

EXAMPLE 2.5 ADA records

Consider the following ADA definitions:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

type Day_Number is range 1 .. 31;
type Date is

record
m: Month;
d: Day_Number;

end record;

S × T
TS

u v a b c
(v, a) (v, b) (v, c)

(u, a) (u, b) (u, c)
× =

Figure 2.1 Cartesian product of
sets S and T.

22 Chapter 2 Values and types

This record type has the set of values:

Date = Month × Day-Number = {jan, feb, . . . , dec} × {1, . . . , 31}
This type’s cardinality is:

#Date = #Month × #Day-Number = 12 × 31 = 372

and its values are the following pairs:

(jan, 1) (jan, 2) (jan, 3) . . . (jan, 31)
(feb, 1) (feb, 2) (feb, 3) . . . (feb, 31)

.

(dec, 1) (dec, 2) (dec, 3) . . . (dec, 31)

Note that the Date type models real-world dates only approximately: some Date values,
such as (feb, 31), do not correspond to real-world dates. (This is a common problem in
data modeling. Some real-world data are too awkward to model exactly by programming
language types, so our data models have to be approximate.)

The following code illustrates record construction:

someday: Date := (m => jan, d => 1);

The following code illustrates record component selection:

put(someday.m + 1); put("/"); put(someday.d);
someday.d := 29; someday.m := feb;

Here someday.m selects the first component, and someday.d the second component,
of the record someday. Note that the use of component identifiers m and d in record
construction and selection enables us to write code that does not depend on the order of
the components.

EXAMPLE 2.6 C++ structures

Consider the following C++ definitions:

enum Month {jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec};

struct Date {
Month m;
byte d;

};

This structure type has the set of values:

Date = Month × Byte = {jan, feb, . . . , dec} × {0, . . . , 255}
This type models dates even more crudely than its ADA counterpart in Example 2.5.

The following code illustrates structure construction:

struct Date someday = {jan, 1};

The following code illustrates structure selection:

printf("%d/%d", someday.m + 1, someday.d);
someday.d = 29; someday.m = feb;

2.3 Composite types 23

A special case of a Cartesian product is one where all tuple components are
chosen from the same set. The tuples in this case are said to be homogeneous.
For example:

S2 = S × S (2.9)

means the set of homogeneous pairs whose components are both chosen from set
S. More generally we write:

Sn = S × . . . × S (2.10)

to mean the set of homogeneous n-tuples whose components are all chosen from
set S.

The cardinality of a set of homogeneous n-tuples is given by:

#(Sn) = (#S)n (2.11)

This motivates the superscript notation.
Finally, let us consider the special case where n = 0. Equation (2.11) tells us

that S0 should have exactly one value. This value is the empty tuple (), which is
the unique tuple with no components at all. We shall find it useful to define a type
that has the empty tuple as its only value:

Unit = {()} (2.12)

This type’s cardinality is:
#Unit = 1 (2.13)

Note that Unit is not the empty set (whose cardinality is 0).
Unit corresponds to the type named void in C, C++, and JAVA, and to the

type null record in ADA.

2.3.2 Mappings, arrays, and functions

The notion of a mapping from one set to another is extremely important in
programming languages. This notion in fact underlies two apparently different
language features: arrays and functions.

We write:
m : S → T

to state that m is a mapping from set S to set T. In other words, m maps every
value in S to a value in T. (Read the symbol ‘‘→’’ as ‘‘maps to’’.)

If m maps value x in set S to value y in set T, we write y = m(x). The value y
is called the image of x under m.

Two different mappings from S = {u, v} to T = {a, b, c} are illustrated in
Figure 2.2. We use notation such as {u → a, v → c} to denote the mapping that
maps u to a and v to c.

The notation S → T stands for the set of all mappings from S to T. Formally:

S → T = {m | x ∈ S ⇒ m(x) ∈ T} (2.14)

This is illustrated in Figure 2.3.
Let us deduce the cardinality of S → T. Each value in S has #T possible

images under a mapping in S → T. There are #S such values in S. Therefore there

24 Chapter 2 Values and types

S
u v

a b c
T

S
u v

a b c
T

{u → a, v → c} {u → c, v → c}
Figure 2.2 Two different mappings in
S → T.

{u → c, v → a}

S → T

TS

u v a b c
→ =

{u → c, v → b} {u → c, v → c}

{u → b, v → a} {u → b, v → b} {u → b, v → c}

{u → a, v → a} {u → a, v → b} {u → a, v → c}

Figure 2.3 Set of all mappings in S → T.

are #T × #T × . . . × #T possible mappings (#S copies of #T multiplied together).
In short:

#(S → T) = (#T)#S (2.15)

An array is an indexed sequence of components. An array has one component
of type T for each value in type S, so the array itself has type S → T. The length
of the array is its number of components, which is #S. Arrays are found in all
imperative and object-oriented languages.

The type S must be finite, so an array is a finite mapping. In practice, S is
always a range of consecutive values, which is called the array’s index range. The
limits of the index range are called its lower bound and upper bound.

The basic operations on arrays are:

• construction of an array from its components;
• indexing, i.e., selecting a particular component of an array, given its index.

The index used to select an array component is a computed value. Thus array index-
ing differs fundamentally from Cartesian-product selection (where the component
to be selected is always explicit).

C and C++ restrict an array’s index range to be a range of integers whose
lower bound is zero.

EXAMPLE 2.7 C++ arrays

Consider the C++ declaration:

bool p[3];

2.3 Composite types 25

The indices of this array range from the lower bound 0 to the upper bound 2. The set of
possible values of this array is therefore:

{0, 1, 2} → {false, true}
The cardinality of this set of values is 23, and the values are the following eight
finite mappings:

{0 → false, 1 → false, 2 → false} {0 → true, 1 → false, 2 → false}
{0 → false, 1 → false, 2 → true} {0 → true, 1 → false, 2 → true}
{0 → false, 1 → true, 2 → false} {0 → true, 1 → true, 2 → false}
{0 → false, 1 → true, 2 → true} {0 → true, 1 → true, 2 → true}

The following code illustrates array construction:

bool p[] = {true, false, true};

The following code illustrates array indexing (using an int variable c):

p[c] = !p[c];

JAVA also restricts an array’s index range to be a range of integers whose
lower bound is zero. JAVA arrays are similar to C and C++ arrays, but they are in
fact objects.

ADA allows an array’s index range to be chosen by the programmer, the only
restriction being that the index range must be a discrete primitive type.

EXAMPLE 2.8 ADA arrays

Consider the ADA type definitions:

type Color is (red, green, blue);
type Pixel is array (Color) of Boolean;

The set of values of this array type is:

Pixel = Color → Boolean = {red, green, blue} → {false, true}
This type’s cardinality is:

#Pixel = (#Boolean)#Color = 23 = 8

and its values are the following eight finite mappings:

{red → false, green → false, blue → false} {red → true, green → false, blue → false}
{red → false, green → false, blue → true} {red → true, green → false, blue → true}
{red → false, green → true, blue → false} {red → true, green → true, blue → false}
{red → false, green → true, blue → true} {red → true, green → true, blue → true}

The following code illustrates array construction:

p: Pixel :=
(red => true, green => false, blue => true);

26 Chapter 2 Values and types

or more concisely:

p: Pixel := (true, false, true);

The following code illustrates array indexing (using a Color variable c):

p(c) := not p(c);

Most programming languages support multidimensional arrays. A component
of an n-dimensional array is accessed using n index values. We can think of an
n-dimensional array as having a single index that happens to be an n-tuple.

EXAMPLE 2.9 ADA two-dimensional arrays

Consider the following ADA definitions:

type Xrange is range 0 .. 511;
type Yrange is range 0 .. 255;
type Window is array (YRange, XRange) of Pixel;

This two-dimensional array type has the following set of values:

Window = Yrange × Xrange → Pixel = {0, . . . , 255} × {0, . . . , 511} → Pixel

An array of this type is indexed by a pair of integers. Thus w(8,12) accesses that
component of w whose index is the pair (8, 12).

Mappings occur in programming languages, not only as arrays, but also as
function procedures (more usually called simply functions). We can implement a
mapping in S → T by means of a function procedure, which takes a value in S
(the argument) and computes its image in T (the result). Here the set S is not
necessarily finite.

EXAMPLE 2.10 Functions implementing mappings

Consider the following C++ function:

bool isEven (int n) {
return (n % 2 == 0);

}

This function implements one particular mapping in Integer → Boolean, namely:

{. . . , 0 → true, 1 → false, 2 → true, 3 → false, . . .}
We could employ a different algorithm:

bool isEven (int n) {
int m = (n < 0 ? -n : n);

2.3 Composite types 27

while (m > 1) m -= 2;
return (m == 0);

}

but the function still implements the same mapping.
We can also write other functions that implement different mappings in Integer →

Boolean, such as:

isOdd {. . . , 0 → false, 1 → true, 2 → false, 3 → true, . . .}
isPositive {. . . ,−2 → false,−1 → false, 0 → false, 1 → true, 2 → true, . . .}
isPrime {. . . , 0 → false, 1 → false, 2 → true, 3 → true, 4 → false, . . .}

In most programming languages, a function may have multiple parameters. A
function with n parameters will have n arguments passed to it when called. We can
view such a function as receiving a single argument that happens to be an n-tuple.

EXAMPLE 2.11 Functions with multiple parameters

The following C or C++ function:

float power (float b, int n) {
. . .

}

implements a particular mapping in Float × Integer → Float. Presumably, it maps the pair
(1.5, 2) to 2.25, the pair (4.0, −2) to 0.0625, and so on.

It is noteworthy that mappings can be implemented by either arrays or
functions in programming languages (and that mappings from n-tuples can be
implemented by either n-dimensional arrays or n-parameter functions). Indeed,
we can sometimes use arrays and functions interchangeably – see Exercise 2.3.5.

It is important not to confuse function procedures with mathematical func-
tions. A function procedure implements a mapping by means of a particular
algorithm, and thus has properties (such as efficiency) that are not shared by
mathematical functions. Furthermore, a function procedure that inspects or mod-
ifies global variables (for example a function procedure that returns the current
time of day, or one that computes and returns a random number) does not corre-
spond to any mathematical function. For these reasons, when using the unqualified
term function in the context of programming languages, we must be very clear
whether we mean a mathematical function (mapping) or a function procedure.

2.3.3 Disjoint unions, discriminated records, and objects

Another kind of composite value is the disjoint union, whereby a value is chosen
from one of several (usually different) sets.

28 Chapter 2 Values and types

We use the notation S + T to stand for a set of disjoint-union values, each of
which consists of a tag together with a variant chosen from either set S or set T.
The tag indicates the set from which the variant was chosen. Formally:

S + T = {left x | x ∈ S} ∪ {right y | y ∈ T} (2.16)

Here left x stands for a disjoint-union value with tag left and variant x chosen from
S, while right x stands for a disjoint-union value with tag right and variant y chosen
from T. This is illustrated in Figure 2.4.

When we wish to make the tags explicit, we will use the notation left S + right T:

left S + right T = {left x | x ∈ S} ∪ {right y | y ∈ T} (2.17)

When the tags are irrelevant, we will still use the simpler notation S + T.
Note that the tags serve only to distinguish the variants. They must be distinct,

but otherwise they may be chosen freely.
The basic operations on disjoint-union values in S + T are:

• construction of a disjoint-union value, by taking a value in either S or T and
tagging it accordingly;

• tag test, determining whether the variant was chosen from S or T;
• projection to recover the variant in S or the variant in T (as the case

may be).

For example, a tag test on the value right b determines that the variant was chosen
from T, so we can proceed to project it to recover the variant b.

We can easily infer the cardinality of a disjoint union:

#(S + T) = #S + #T (2.18)

This motivates the use of the notation ‘‘+’’ for disjoint union.
We can extend disjoint union to any number of sets. In general, the notation

S1 + S2 + . . . + Sn stands for the set in which each value is chosen from one of
S1, S2, . . . , or Sn.

The functional language HASKELL has algebraic types, which we can under-
stand in terms of disjoint unions. In fact, the HASKELL notation is very close to our
mathematical disjoint-union notation.

EXAMPLE 2.12 HASKELL algebraic types

Consider the HASKELL type definition:

data Number = Exact Int | Inexact Float

S + T (or left S + right T)
TS

u v a b c
right a

+ =

right b right c

left u left v

Figure 2.4 Disjoint union of sets
S and T.

2.3 Composite types 29

The set of values of this algebraic type is:

Number = Exact Integer + Inexact Float

The values of the type are therefore:

{. . . , Exact(−2), Exact(−1), Exact 0, Exact(+1), Exact(+2), . . .}
∪ {. . . , Inexact(−1.0), . . . , Inexact 0.0, . . . , Inexact(+1.0), . . .}

The following code illustrates construction of an algebraic value:

let pi = Inexact 3.1416
in . . .

The following function illustrates tag test and projection:

rounded num =
-- Return the result of rounding the number num to the nearest integer.

case num of
Exact i -> i
Inexact r -> round r

This uses pattern matching. If the value of num is Inexact 3.1416, the pattern ‘‘Inexact
r’’ matches it, r is bound to 3.1416, and the subexpression ‘‘round r’’ is evaluated,
yielding 3.

We can also understand the discriminated records of ADA in terms of
disjoint unions.

EXAMPLE 2.13 ADA discriminated records (1)

Consider the following ADA definitions:

type Accuracy is (exact, inexact);
type Number (acc: Accuracy := exact) is

record
case acc of

when exact =>
ival: Integer;

when inexact =>
rval: Float;

end case;
end record;

This discriminated record type has the following set of values:

Number = exact Integer + inexact Float

Note that the values of type Accuracy serve as tags.
The following code illustrates construction of a discriminated record:

pi: constant Number :=
(acc => inexact, rval => 3.1416);

30 Chapter 2 Values and types

The following function illustrates tag test and projection:

function rounded (num: Number) return Float is
-- Return the result of rounding the number num to the nearest integer.

case num.acc is
when exact =>

return num.ival;
when inexact =>

return Integer(num.rval);
end case;

end;

A discriminated record’s tag and variant components are selected in the same
way as ordinary record components. When a variant such as rval is selected,
a run-time check is needed to ensure that the tag is currently inexact. The
safest way to select from a discriminated record is by using a case command, as
illustrated in Example 2.13.

In general, discriminated records may be more complicated. A given variant
may have any number of components, not necessarily one. Moreover, there may
be some components that are common to all variants.

EXAMPLE 2.14 ADA discriminated records (2)

Consider the following ADA definitions:

type Form is (pointy, circular, rectangular);
type Figure (f: Form) is

record
x, y: Float;
case f is
when pointy =>
null;

when circular =>
r: Float;

when rectangular =>
w, h: Float;

end case;
end record;

This discriminated record type has the following set of values:

Figure = pointy(Float × Float)
+ circular(Float × Float × Float)
+ rectangular(Float × Float × Float × Float)

Here are a few of these values:

pointy(1.0, 2.0) – represents the point (1, 2)

circular(0.0, 0.0, 5.0) – represents a circle of radius 5 centered at (0, 0)

rectangular(1.5, 2.0, 3.0, 4.0) – represents a 3×4 box centered at (1.5, 2)

2.3 Composite types 31

Each value in Figure is a tagged tuple. The first and second components of each tuple
(named x and y) are common to all variants. The remaining components depend on the
tag. When the tag is pointy, there are no other components. When the tag is circular,
there is one other component (named r). When the tag is rectangular, there are two other
components (named w and h).

How should we understand objects? Simplistically we could view each object
of a particular class as a tuple of components. However, any object-oriented
language allows objects of different classes to be used interchangeably (to a
certain extent), and therefore provides an operation to test the class of a particular
object. Thus each object must have a tag that identifies its class. So we shall view
each object as a tagged tuple.

EXAMPLE 2.15 JAVA objects

Consider a JAVA program containing the following class declarations:

class Point {
private float x, y;

. . . // methods
}

class Circle extends Point {
private float r;

. . . // methods
}

class Rectangle extends Point {
private float w, h;

. . . // methods
}

Objects of these classes represent points, circles, and rectangles on the xy plane, respecti-
vely. The Circle class extends (is a subclass of) the Point class, so Circle objects
inherit components x and y from Point, as well as having their own component r.
The Rectangle class likewise extends the Point class, so Rectangle objects inherit
components x and y from Point, as well as having their own components w and h.

The set of objects of this program is:

Point(Float × Float)
+ Circle(Float × Float × Float)
+ Rectangle(Float × Float × Float × Float)
+ . . .

Here ‘‘+ . . .’’ reminds us that the set of objects is open-ended. The following class
declaration:

class Date {
private int m, d;

32 Chapter 2 Values and types

public Date (int month, int day) {
this.m = month; this.d = day;

}

. . . // methods
}

augments the set of objects in this program to:

Point(Float × Float)
+ Circle(Float × Float × Float)
+ Rectangle(Float × Float × Float × Float)
+ Date(Integer × Integer)
+ . . .

Compare Example 2.15 with Example 2.14. The important difference is that
the set of objects in a program is open-ended, and can be augmented at any time
simply by defining a new class (not necessarily related to existing classes). This
open-endedness helps to explain the power of object-oriented programming.

It is important not to confuse disjoint union with ordinary set union. The tags
in a disjoint union S + T allow us to test whether the variant was chosen from
S or T. This is not necessarily the case in the ordinary union S ∪ T. In fact, if
T = {a, b, c}, then:

T ∪ T = {a, b, c} = T
T + T = {left a, left b, left c, right a, right b, right c} �= T

The unions of C and C++ are not disjoint unions, since they have no tags. This
obviously makes tag test impossible, and makes projection unsafe. In practice,
therefore, C programmers enclose each union within a structure that also contains
a tag.

EXAMPLE 2.16 C unions

Consider the following C type definition:

union Untagged_Number {
int ival;
float rval;

};

The set of values of this union type is:

Untagged-Number = Integer ∪ Float

Such a union type is useless on its own. Lacking a tag, we cannot perform a tag test,
nor can we safely project a variant out of the union.

Now consider the following C type definitions:

enum Accuracy {exact, inexact};
struct Number{

2.4 Recursive types 33

Accuracy acc;
union {
int ival; /* used when acc contains exact */
float rval; /* used when acc contains inexact */

} content;
};

This structure crudely models a disjoint union, but it is very error-prone. The programmer’s
intentions are indicated by the comments, but only great care and self-discipline by the
programmer can ensure that the structure is used in the way intended.

2.4 Recursive types

A recursive type is one defined in terms of itself. In this section we discuss two
common recursive types, lists and strings, as well as recursive types in general.

2.4.1 Lists

A list is a sequence of values. A list may have any number of components,
including none. The number of components is called the length of the list. The
unique list with no components is called the empty list.

A list is homogeneous if all its components are of the same type; otherwise it
is heterogeneous. Here we shall consider only homogeneous lists.

Typical list operations are:

• length

• emptiness test

• head selection (i.e., selection of the list’s first component)

• tail selection (i.e., selection of the list consisting of all but the first
component)

• concatenation.

Suppose that we wish to define a type of integer-lists, whose values are lists
of integers. We may define an integer-list to be a value that is either empty or
a pair consisting of an integer (its head) and a further integer-list (its tail). This
definition is recursive. We may write this definition as a set equation:

Integer-List = nil Unit + cons(Integer × Integer-List) (2.19)

or, in other words:

Integer-List = {nil()} ∪ {cons(i, l) | i ∈ Integer; l ∈ Integer-List} (2.20)

where we have chosen the tags nil for an empty list and cons for a nonempty list.
Henceforth we shall abbreviate nil() to nil.

Equations (2.19) and (2.20) are recursive, like our informal definition of
integer-lists. But what exactly do these equations mean? Consider the following

34 Chapter 2 Values and types

set of values:

{nil}
∪ {cons(i, nil) | i ∈ Integer}
∪ {cons(i, cons(j, nil)) | i, j ∈ Integer}
∪ {cons(i, cons(j, cons(k, nil))) | i, j, k ∈ Integer}
∪ . . .

i.e., the set:

{cons(i1, cons(. . . , cons(in, nil) . . .)) | n ≥ 0; i1, . . . , in ∈ Integer} (2.21)

Set (2.21) corresponds to the set of all finite lists of integers, and is a solution
of (2.20).

Set (2.21) is not, however, the only solution of (2.20). Another solution is the
set of all finite and infinite lists of integers. This alternative solution is a superset
of (2.21). It seems reasonable to discount this alternative solution, however, since
we are really interested only in values that can be computed, and no infinite list
can be computed in a finite amount of time.

Let us now generalize. The recursive set equation:

L = Unit + (T × L) (2.22)

has a least solution for L that corresponds to the set of all finite lists of values
chosen from T. Every other solution is a superset of the least solution.

Lists (or sequences) are so ubiquitous that they deserve a notation of their
own: T∗ stands for the set of all finite lists of values chosen from T. Thus:

T∗ = Unit + (T × T∗) (2.23)

In imperative languages (such as C, C++, and ADA), recursive types must be
defined in terms of pointers, for reasons that will be explained in Section 3.6.1.
In functional languages (such as HASKELL) and in some object-oriented languages
(such as JAVA), recursive types can be defined directly.

EXAMPLE 2.17 JAVA lists

The following (unidiomatic) JAVA class declarations together define lists of integers:

class IntList {
public IntNode first;

public IntList (IntNode first) {
this.first = first;

}
}

class IntNode {
public int elem;
public IntNode succ;

public IntNode (int elem, IntNode succ) {

2.4 Recursive types 35

this.elem = elem; this.succ = succ;
}

}

The IntNode class is defined in terms of itself. So each IntNode object contains an
IntNode component named succ. This might seem to imply that an IntNode object
contains an IntNode object, which in turn contains another IntNode object, and so on
forever; but sooner or later one of these objects will have its component succ set to null.
The following code constructs an IntList object with four nodes:

IntList primes = new IntList(
new IntNode(2, new IntNode(3,
new IntNode(5, new IntNode(7, null)))));

EXAMPLE 2.18 HASKELL lists

We could define a type whose values are integer lists by writing the following HASKELL

declaration:

data IntList = Nil | Cons Int IntList

This corresponds to equation (2.19). The following expressions construct values of
type IntList:

Nil
Cons 13 Nil
Cons 2 (Cons 3 (Cons 5 (Cons 7 Nil)))

As it happens, HASKELL has built-in list types, such as:

[Int] (whose values are integer lists)

[String] (whose values are string lists)

[[Int]] (whose values are integer-list lists)

We can construct the above integer lists more concisely as follows:

[]
[13]
[2, 3, 5, 7]

2.4.2 Strings

A string is a sequence of characters. A string may have any number of characters,
including none. The number of characters is called the length of the string. The
unique string with no characters is called the empty string.

Strings are supported by all modern programming languages. Typical string
operations are:

• length

• equality comparison

• lexicographic comparison

• character selection

36 Chapter 2 Values and types

• substring selection
• concatenation.

How should we classify strings? No consensus has emerged among program-
ming language designers.

One approach is to classify strings as primitive values. The basic string
operations must then be built-in; they could not be defined in the language itself.
The strings themselves may be of any length. ML adopts this approach.

Another approach is to treat strings as arrays of characters. This approach
makes all the usual array operations automatically applicable to strings. In
particular, character selection is just array indexing. A consequence of this
approach is that a given string variable is restricted to strings of a fixed length.
(This is because the length of an array is fixed once it is constructed. We will study
the properties of array variables in Section 3.3.2.) Useful operations peculiar to
strings, such as lexicographic comparison, must be provided in addition to the
general array operations. ADA adopts this approach (but also supports bounded
and unbounded string types using standard packages).

A slightly different and more flexible approach is to treat strings as pointers to
arrays of characters. C and C++ adopt this approach.

In a programming language that supports lists, the most natural approach is to
treat strings as lists of characters. This approach makes all the usual list operations
automatically applicable to strings. In particular, the first character of a string can
be selected immediately (by head selection), but the nth character cannot. Useful
operations peculiar to strings must be provided in addition to the general list
operations. HASKELL and PROLOG adopt this approach.

In an object-oriented language, the most natural approach is to treat strings
as objects. This approach enables strings to be equipped with methods providing
all the desired operations, and avoids the disadvantages of treating strings just as
special cases of arrays or lists. JAVA adopts this approach.

2.4.3 Recursive types in general

As we have seen, a recursive type is one defined in terms of itself. Values of a
recursive type are composed from values of the same type. List types, discussed in
Section 2.4.1, are recursive types.

In general, the set of values of a recursive type, R, will be defined by a recursive
set equation of the form:

R = . . . + (. . . R . . . R . . .) (2.24)

A recursive set equation may have many solutions. Fortunately, a recursive set
equation always has a least solution that is a subset of every other solution. In
computation, the least solution is the one in which we are interested.

The least solution to equation (2.24) can be determined iteratively as follows.
Substitute the empty set for R in the right-hand side of (2.24), giving a first
approximation for R. Then substitute this first approximation for R in the right-
hand side of (2.24), giving a second and better approximation for R. Continue in
this way, at each step substituting the latest approximation for R in the right-hand

2.5 Type systems 37

side of (2.24). The successive approximations are larger and larger subsets of the
least solution.

The cardinality of a recursive type is infinite, even if every individual value of
the type is finite. For example, the set of lists (2.21) is infinitely large, although
every individual list in that set is finite.

EXAMPLE 2.19 HASKELL recursive types

The following HASKELL declaration defines a recursive type IntTree, whose values are
binary trees containing integers at their leaves:

data IntTree = Leaf Int | Branch IntTree IntTree

The following expressions construct some values of type IntTree:

Leaf 11

Branch(Leaf 11)(Leaf 5)

Branch(Branch(Leaf 5)(Leaf 7))
(Branch(Leaf 12)(Leaf 18))

The type definition corresponds to the following recursive set equation:

Int-Tree = Leaf Integer + Branch(Int-Tree × Int-Tree) (2.25)

Let us determine the least solution to (2.25) iteratively. Substituting the empty set for
Int-Tree in (2.25), we get our first approximation:

Leaf Integer (2.26)

which is in fact the set of all binary trees of depth 0. Substituting (2.26) for Int-Tree in
(2.25), we get our second approximation:

Leaf Integer
+ Branch(Leaf Integer × Leaf Integer) (2.27)

which is in fact the set of all binary trees of depth 0 or 1. Substituting (2.27) for Int-Tree in
(2.25), we get:

Leaf Integer
+ Branch(Leaf Integer × Leaf Integer)
+ Branch(Leaf Integer × Branch(Leaf Integer × Leaf Integer))
+ Branch(Branch(Leaf Integer × Leaf Integer) × Leaf Integer)
+ Branch(Branch(Leaf Integer × Leaf Integer)

× Branch(Leaf Integer × Leaf Integer)) (2.28)

which is in fact the set of all binary trees of depth 0–2. Continuing in this way, we get closer
and closer to the set of all finite binary trees.

2.5 Type systems
A programming language’s type system groups values into types. This allows
programmers to describe data effectively. It also helps prevent programs from

38 Chapter 2 Values and types

performing nonsensical operations, such as multiplying a string by a boolean.
Performing such a nonsensical operation is called a type error.

Possession of a type system is one of the most important ways in which high-
level languages differ from low-level languages. In a typical low-level language, the
only ‘‘types’’ are bytes and words, so nonsensical operations cannot be prevented.

In this section we introduce some basic concepts in type systems: static vs
dynamic typing, and type equivalence. In Chapter 8 we shall study more advanced
concepts in type systems.

2.5.1 Static vs dynamic typing
Before any operation is to be performed, the types of its operands must be checked
in order to prevent a type error. For example, before an integer multiplication
is performed, both operands must be checked to ensure that they are integers.
Similarly, before an and or or operation is performed, both operands must be
checked to ensure that they are booleans. Before an array indexing operation is
performed, the left operand must be checked to ensure that it is indeed an array
(and not a primitive value or record). Such checks are called type checks.

The type check must be performed before the operation itself is performed.
However, there may still be some freedom in the timing: the type check could
be performed either at compile-time or at run-time. This seemingly pragmatic
issue in fact underlies an important classification of programming languages, into
statically typed and dynamically typed languages.

In a statically typed language, each variable and each expression has a
fixed type (which is either explicitly stated by the programmer or inferred
by the compiler). Using this information, all operands can be type-checked at
compile-time.

In a dynamically typed language, values have fixed types, but variables and
expressions have no fixed types. Every time an operand is computed, it could
yield a value of a different type. So operands must be type-checked after they are
computed, but before performing the operation, at run-time.

Most high-level languages are statically typed. SMALLTALK, LISP, PROLOG,
PERL, and PYTHON are examples of dynamically typed languages.

EXAMPLE 2.20 C++ static typing
Consider the following C++ function definition:

bool even (int n) {
return (n % 2 == 0);

}

Although the compiler does not know the value of the parameter n, it does know that this
value must be of type int, since that is stated in the declaration of n. From that knowledge
the compiler can infer that both operands of ‘‘%’’ will be of type int, hence the result of
‘‘%’’ will also be of type int. Thus the compiler knows that both operands of ‘‘==’’ will be
of type int. Finally, the compiler can infer that the returned value will be of type bool,
which is consistent with the function’s stated result type.

2.5 Type systems 39

Now consider the function call ‘‘even(i+1)’’, where i is declared to be of type int.
The compiler knows that both operands of ‘‘+’’ will be of type int, so its result will be of
type int. Thus the type of the function’s argument is known to be consistent with the type
of the function’s parameter.

Thus, even without knowledge of any of the values involved (other than the literals),
the compiler can certify that no type errors are possible.

EXAMPLE 2.21 PYTHON dynamic typing
Now consider a function similar to that of Example 2.20, but this time expressed in the
dynamically typed language PYTHON:

def even (n):
return (n % 2 == 0)

Here the type of n’s value is not known in advance, so the operation ‘‘%’’ needs a run-time
type check to ensure that its left operand is an integer.

This function could be called with arguments of different types, as in ‘‘even(i+1)’’,
or ‘‘even("xyz")’’. However, no type error will be detected unless and until the left
operand of ‘‘%’’ turns out not to be an integer.

The following function, also in PYTHON, illustrates that dynamic typing is sometimes
genuinely useful:

def respond (prompt):
Print prompt and return the user’s response, as an integer if possible,
or as a string otherwise.
try:

response = raw_input(prompt)
return int(response)

except ValueError:
return response

The following commands might be used to read a date into two variables:

m = respond("Month? ")
d = respond("Day? ")

In the first command, the user’s response (presumably a month name or number) is
assigned to the variable m. In the second command, the user’s response (presumably a day
number) is assigned to the variable d.

The following commands might then be used to manipulate the date into a standard
form, in which the values of both m and d are integers:

if m == "Jan":
m = 1

. . .

elif m == "Dec":
m = 12

elif ! (isinstance(m, int) and 1 <= m <= 12):
raise DateError, \

"month is not a valid string or integer"
if ! (isinstance(d, int) and 1 <= d <= 31):

raise DateError, "day is not a valid integer"

40 Chapter 2 Values and types

The expression ‘‘m == "Jan"’’ will yield true only if m’s value is the string ‘‘Jan’’, false
if it is any other string, and false if it is not a string at all. Note how the type of m’s value
influences the flow of control.

This example would be awkward to program in a statically typed language, where the
type system tends to ‘‘get in the way’’.

The choice between static and dynamic typing is essentially pragmatic:

• Static typing is more efficient. Dynamic typing requires (possibly repeated)
run-time type checks, which slow down the program’s execution. Static
typing requires only compile-time type checks, whose cost is minimal (and
one-off). Moreover, dynamic typing forces all values to be tagged (in order
to make run-time type checks possible), and these tags take up storage
space. Static typing requires no such tagging.

• Static typing is more secure: the compiler can certify that the program
contains no type errors. Dynamic typing provides no such security. (This
point is important because type errors account for a significant proportion
of programming errors.)

• Dynamic typing provides greater flexibility, which is needed by some
applications where the types of the data are not known in advance.

In practice the greater security and efficiency of static typing outweigh the
greater flexibility of dynamic typing in the vast majority of applications. It is no
coincidence that most programming languages are statically typed.

2.5.2 Type equivalence
Consider some operation that expects an operand of type T1. Suppose that
it is given instead an operand whose type turns out to be T2. Then we must
check whether T1 is equivalent to T2, written T1 ≡ T2. What exactly this means
depends on the programming language. (The following discussion assumes that
the language is statically typed.)

One possible definition of type equivalence is structural equivalence: T1 ≡ T2
if and only if T1 and T2 have the same set of values.

Structural equivalence is so called because it may be checked by comparing
the structures of the types T1 and T2. (It is unnecessary, and in general even
impossible, to enumerate all values of these types.)

The following rules illustrate how we can decide whether types T1 and
T2, defined in terms of Cartesian products, disjoint unions, and mappings, are
structurally equivalent or not. (We could similarly phrase the rules in terms of the
types of a specific programming language.)

• If T1 and T2 are both primitive, then T1 ≡ T2 if and only if T1 and T2 are
identical. For example:

Integer ≡ Integer
but Integer /≡ Float

(The symbol ‘‘/≡’’ means ‘‘is not equivalent to’’.)

2.5 Type systems 41

• If T1 = A1 × B1 and T2 = A2 × B2, then T1 ≡ T2 if and only if A1 ≡ A2 and
B1 ≡ B2. For example:

Integer × Float ≡ Integer × Float
but Integer × Float /≡ Float × Integer

• If T = A1 → B1 and T2 = A2 → B2, then T1 ≡ T2 if and only if A1 ≡ A2
and B1 ≡ B2. For example:

Integer → Float ≡ Integer → Float
but Integer → Float /≡ Integer → Boolean

• If T1 = A1 + B1 and T2 = A2 + B2, then T1 ≡ T2 if and only if either
A1 ≡ A2 and B1 ≡ B2, or A1 ≡ B2 and B1 ≡ A2. For example:

Integer + Float ≡ Integer + Float
Integer + Float ≡ Float + Integer

but Integer + Float /≡ Integer + Boolean

• Otherwise, T1 /≡ T2.

Although these rules are simple, it is not easy to see whether two recursive
types are structurally equivalent. Consider the following:

T1 = Unit + (S × T1)

T2 = Unit + (S × T2)

T3 = Unit + (S × T2)

Intuitively, these three types are all structurally equivalent. However, the rea-
soning needed to decide whether two arbitrary recursive types are structurally
equivalent makes type checking uncomfortably hard.

Another possible definition of type equivalence is name equivalence: T1 ≡ T2
if and only if T1 and T2 were defined in the same place.

EXAMPLE 2.22 Structural vs name equivalence

Consider the following declarations in a hypothetical C-like language:

struct Position { int x, y; };
struct Position pos;
struct Date { int m, d; };
struct Date today;
void show (struct Date d);

Here the call ‘‘show(today);’’ would pass its type check, whether the language adopts
structural or name equivalence. On the other hand, the call ‘‘show(pos);’’ would pass
its type check only if the language adopts structural equivalence.

Now consider the following declarations (in a different part of the program):

struct OtherDate { int m, d; };
struct OtherDate tomorrow;

42 Chapter 2 Values and types

The call ‘‘show(tomorrow);’’ would pass its type check only if the language adopts
structural equivalence. It would fail its type check if the language adopts name equivalence,
since the type of tomorrow is not name-equivalent to the type of the parameter of show:
the two types were defined in different places.

The following summarizes the advantages and disadvantages of structural and
name equivalence:

• Name equivalence forces each distinct type to be defined in one and only
one place. This is sometimes inconvenient, but it helps to make the program
more maintainable. (If the same type is defined in several places, and
subsequently it has to be changed, the change must be made consistently in
several places.)

• Structural equivalence allows confusion between types that are only coinci-
dentally similar (such as Position and Date in Example 2.22).

Structural equivalence is adopted by ALGOL68. Name equivalence is adopted
by most programming languages, including C++ and ADA. Confusingly, name and
structural equivalence are used for different types in C: a type definition introduced
by enum, struct, or union defines a new type, while a type definition introduced
by typedef simply introduces a synonym for an existing type.

2.5.3 The Type Completeness Principle

In Section 2.1 we listed the various types of values supported by various languages.
Now consider PASCAL:

• PASCAL provides primitive values (booleans, characters, enumerands, inte-
gers, real numbers), composite values (records, arrays, sets, files), pointers,
and procedures.

PASCAL procedures count as values because they can be passed as arguments
to other procedures. However (unlike primitive and composite values), proce-
dures cannot be assigned, nor used as components of composite values. We say
that PASCAL procedures are second-class values, while PASCAL primitive values,
composite values, and pointers are first-class values.

Even among PASCAL’s first-class values there are finer class distinctions. For
example, a function result must be a primitive value or pointer, but not a composite
value. This restriction often makes coding awkward. For example, we might want
to write a function with a record as its result; instead we are forced to write a
proper procedure with a record variable parameter, which cannot be called from
within an expression.

PASCAL’s class distinctions are unusually fine, but class distinctions are found
in nearly all the major programming languages including C, C++, JAVA, and ADA.
On the other hand, the modern functional languages (such as ML and HASKELL)
manage to avoid such class distinctions altogether: they allow all values, including
functions, to be manipulated in similar ways.

2.6 Expressions 43

We can characterize a language’s class-consciousness in terms of its adherence
to the Type Completeness Principle:

No operation should be arbitrarily restricted in the types of its operands.

The word arbitrarily is important here. Insisting that the operands of the and
operation are booleans is not an arbitrary restriction, since it is inherent in the
nature of this operation. But insisting that only values of certain types can be
assigned is an arbitrary restriction, as is insisting that only values of certain types
can be passed as arguments or returned as function results.

The Type Completeness Principle is not meant to be dogma. It is merely
a principle that language designers ought to bear in mind, because arbitrary
restrictions tend to reduce the expressive power of a programming language.
Sometimes restrictions are justified by other, conflicting, design considerations.
For example, an imperative language’s treatment of procedures as second-class
values can be justified on the grounds that it avoids certain implementation
problems. However, there is very little justification for PASCAL’s restriction on
function result types; more modern languages allow function results to be of
any type.

2.6 Expressions
Having studied values and types, let us now examine the programming language
constructs that compute values. An expression is a construct that will be evaluated
to yield a value.

Expressions may be formed in various ways. In this section we shall survey
the fundamental forms of expression:

• literals
• constructions
• function calls
• conditional expressions
• iterative expressions
• constant and variable accesses.

We will consider two other forms of expression in later chapters: expressions with
side effects in Section 3.8, and block expressions in Section 4.4.2.

Here we are primarily interested in the concepts underlying expressions, not
in their syntactic details. From the point of view of programming language design,
what really matters is that the language provides all or most of the above forms
of expression. A language that omits (or arbitrarily restricts) too many of them is
likely to be impoverished. Conversely, a language that provides additional forms
of expression is likely to be bloated: the additional forms are probably unnecessary
accretions rather than genuine enhancements to the language’s expressive power.

2.6.1 Literals
The simplest kind of expression is a literal, which denotes a fixed value of
some type.

44 Chapter 2 Values and types

EXAMPLE 2.23 Literals

Here are some typical examples of literals in programming languages:

365 3.1416 false '%' "What?"

These denote an integer, a real number, a boolean, a character, and a string, respectively.

2.6.2 Constructions

A construction is an expression that constructs a composite value from its
component values. In some languages the component values must be literals; in
others, the component values are computed by evaluating subexpressions.

EXAMPLE 2.24 C or C++ structure constructions

The following C or C++ structure construction:

{jan, 1}

constructs a value of the type Date (Example 2.6). The component values must be literals.

EXAMPLE 2.25 ADA record constructions

The following ADA record construction:

(m => today.m, d => today.d + 1)

constructs a value of the type Date (Example 2.5). The component values are computed.
More concise notation is also supported, but only in a syntactic context where the type

is apparent:

tomorrow: Date := (today.m, today.d + 1);

EXAMPLE 2.26 C++ array constructions

In the following C++ code:

int size[] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

. . .

if (is_leap(this_year))
size[feb] = 29;

an array construction is used to initialize the variable size. The component values must
be literals.

2.6 Expressions 45

EXAMPLE 2.27 ADA array constructions
In the following ADA code:

size: array (Month) of Integer :=
(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

. . .

if is_leap(this_year) then
size(feb) := 29;

end if;

an array construction is used to initialize the variable size. In ADA constructions,
component values may be computed, but in this example they are literals. (It would be nice
to use a conditional expression to compute the feb component, instead of the literal 28,
but ADA does not provide conditional expressions.)

The above array construction could also be expressed as:

size: array (Month) of Integer :=
(feb => 28, apr|jun|sep|nov => 30, others => 31);

EXAMPLE 2.28 HASKELL list constructions
The following HASKELL list construction:

[31, if isLeap(thisYear) then 29 else 28,
31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

constructs a value of type [Int]. The component values are computed.

As illustrated by these examples, C++ and ADA provide constructions for
structures (records) and arrays. C++ constructions are very restricted: they may
occur only as initializers in variable declarations, and the component values must
be literals. To construct a new structure or array value, we must assign to its
components one by one. For example:

Date today, last_day;

today.m = . . .; today.d = . . .;
last_day.m = today.m; last_day.d = size(today.m);

which is both tedious and error-prone. In ADA we would write:

today := (m => . . ., d => . . .);
last_day := (m => today.m, d => size(today.m));

EXAMPLE 2.29 JAVA object constructions
The following JAVA object construction:

new Date(today.m, size(today.m))

46 Chapter 2 Values and types

constructs an object of class Date (Example 2.15). And the following:

new IntList(null)

constructs an object of class IntList (Example 2.17).

A JAVA construction is a call to an operation called a constructor. The effect of
a constructor call is to construct a new object of a particular class, the constructor
itself being defined as part of the class declaration. The constructor’s parameters
are typically used to initialize at least some of the new object’s components; other
components may be initialized to default values or computed in some way.

2.6.3 Function calls
A function call computes a result by applying a function procedure (or method) to
one or more arguments. The function call typically has the form ‘‘F(E)’’, where F
determines the function procedure to be applied, and the expression E is evaluated
to determine the argument.

In most programming languages, F is just the identifier of a specific function.
However, in those languages that treat functions as first-class values, F may be
any expression yielding a function. For example, the HASKELL function call:

(if . . . then sin else cos)(x)

applies either the sine function or the cosine function to the value of x.
In the case of a function of n parameters, the function call typically has

the form ‘‘F(E1, . . . , En)’’. We can view this function call as passing n distinct
arguments; or we can view it as passing a single argument that is an n-tuple. We
may adopt whichever view is more convenient.

We shall study function procedures in greater detail in Section 5.1.1, and
parameters in Section 5.2.

An operator may be thought of as denoting a function. Applying a unary or
binary operator to its operand(s) is essentially equivalent to a function call with
one or two argument(s):

⊕ E is essentially equivalent to ⊕(E) (where ⊕ is a unary operator)
E1 ⊗ E2 is essentially equivalent to ⊗(E1, E2) (where ⊗ is a binary operator)

For example, the conventional arithmetic expression:

a * b + c / d

is essentially equivalent to a composition of function calls:

+(*(a, b), /(c, d))

The convention whereby we write a binary operator between its two operands
is called the infix notation, which is adopted by nearly all programming languages.
The alternative convention whereby we write every operator before its operands
is called the prefix notation, which is adopted only by LISP among the major
programming languages.

2.6 Expressions 47

Here are some examples of JAVA operators:

• The unary operator ‘‘!’’ denotes the function {false → true, true → false} in
Boolean → Boolean.

• The binary operator ‘‘%’’ denotes the remainder function in Integer ×
Integer → Integer.

• The binary operator ‘‘+’’ denotes several functions at the same time: integer
addition in Integer × Integer → Integer, real addition in Float × Float →
Float, and concatenation in String × String → String. This is an example of
overloading (see Section 8.3).

Several modern programming languages (such as C++, ADA, and HASKELL)
explicitly recognize the analogy between operators and functions. ‘‘E1 ⊗ E2’’ is
then exactly equivalent to ‘‘⊗(E1, E2)’’, and operators may be defined in exactly
the same way as function procedures. Such languages are a bit easier to learn,
because they do not have separate type rules for operators and functions. At the
same time, such languages are notationally more convenient, since they allow us
to define or redefine operators.

In other languages there is only a rough analogy between operators and
functions. Each operator has its own type rules. For example, the JAVA binary
operator ‘‘+’’ allows its operands to be a mixture of integers, real numbers, and
strings. If one operand is a real number and the other is an integer, the integer
is converted to a real number and real addition is performed. If one operand
is a string and the other is a number, the number is converted to a string and
concatenation is performed.

2.6.4 Conditional expressions

A conditional expression computes a value that depends on a condition. It
has two or more subexpressions, from which exactly one is chosen to be
evaluated.

Choice is of course fundamental in computation. All programming languages
provide conditional expressions, or conditional commands, or both, and the
underlying concepts are similar. Conditional commands will be discussed in
Section 3.7.6.

C, C++, and JAVA provide if-expressions. HASKELL provides both if-expressions
and case expressions.

EXAMPLE 2.30 C if-expression

The following C (or C++ or JAVA) if-expression yields the maximum of the values of x
and y:

x>y ? x : y

The syntax is cryptic, but this expression may be read as ‘‘if x>y then x else y’’.

48 Chapter 2 Values and types

EXAMPLE 2.31 HASKELL conditional expressions

The following HASKELL case expression yields the number of days in thisMonth and
thisYear:

case thisMonth of
Feb -> if isLeap(thisYear) then 29 else 28
Apr -> 30
Jun -> 30
Sep -> 30
Nov -> 30
_ -> 31

If the value of thisMonth is Feb, this yields the value of the if-expression ‘‘if . . . then
29 else 28’’. If the value of thisMonth is Apr or Jun or Sep or Nov, this yields 30.
Otherwise this yields 31. (The pattern ‘‘_’’ matches any value not already matched.)

2.6.5 Iterative expressions

An iterative expression is one that performs a computation over a series of values
(typically the components of an array or list), yielding some result.

Iterative commands are commonplace in programming languages, and we
shall study them in Section 3.7.7. Iterative expressions are rather more unusual,
but they are a prominent feature of the functional language HASKELL, in the form
of list comprehensions.

EXAMPLE 2.32 HASKELL list comprehensions
Given a list of characters cs, the following HASKELL list comprehension converts any
lowercase letters to uppercase, yielding a modified list of characters:

[if isLowercase c then toUppercase c else c
| c <- cs]

The generator ‘‘c <- cs’’ binds c to each component of s in turn. If the value of s is
[‘C’, ‘a’, ‘r’, ‘o’, ‘l’], this list comprehension will yield [‘C’, ‘A’, ‘R’, ‘O’, ‘L’].

Given a list of integers ys, the following HASKELL list comprehension yields a list (in
the same order) of those integers in ys that are multiples of 100:

[y | y <- ys, y 'mod' 100 = 0]

The generator ‘‘y <- ys’’ binds y to each component of ys in turn. The filter ‘‘y 'mod'
100 = 0’’ rejects any such component that is not a multiple of 100. If the value of ys is
[1900, 1946, 2000, 2004], this list comprehension will yield [1900, 2000].

List comprehensions are inspired by the set comprehensions of mathematical
notation. For example, given a set of integers ys, the following set comprehension:

{y | y ∈ ys; y mod 100 = 0}
denotes the set of those integers in the set ys that are multiples of 100.

2.7 Implementation notes 49

2.6.6 Constant and variable accesses

A constant access is a reference to a named constant, and yields the value of that
constant. A variable access is a reference to a named variable, and yields the
current value of that variable.

EXAMPLE 2.33 ADA constant and variable accesses

Within the scope of the ADA declarations:

pi: constant Float := 3.1416;
r: Float;

consider the expression:

2.0 * pi * r

Here ‘‘pi’’ is a constant access, yielding the value 3.1416 to which pi is bound. On the
other hand, ‘‘r’’ is a variable access, yielding the value currently contained in the variable
named r.

The value of an expression containing constant and variable identifiers
depends on how these identifiers were declared. In other words, it depends
on the environment of the expression. (See Section 4.1.)

2.7 Implementation notes
In this section we briefly review how values of primitive, composite, and recursive
types are represented in a computer. The purpose of this section is to reinforce
conceptual understanding, so it ignores certain complications that arise in practice.

2.7.1 Representation of primitive types

The values of each primitive type T are typically represented by single or multiple
bytes: 8-bit, 16-bit, 32-bit, and 64-bit representations are the most common.

The choice of representation is constrained by the type’s cardinality #T. With
n bits we can represent at most 2n different values. Therefore the smallest possible
representation is log2(#T) bits.

In principle, we could represent a boolean value by a single bit (0 for false and
1 for true). In practice the compiler will usually choose a whole byte, since most
computers make access to individual bits awkward.

ASCII or ISO LATIN characters have 8-bit representations. UNICODE characters
have 16-bit representations.

The representation of integers is related to the desired range. Assuming
two’s complement representation, in n bits we can represent integers in the range
{−2n−1, . . . , 2n−1 − 1}. Typically it is the compiler that chooses n, and from that
we can deduce the range of integers. On the other hand, if the programmer is

50 Chapter 2 Values and types

able to define the range of integers, the compiler must use the defined range to
determine the minimum n. In Example 2.2, the programmer has defined the range
{0, . . . , 1010}; the two’s complement representation must therefore have at least
35 bits, but in practice the compiler is likely to choose 64 bits.

The representation of real numbers is related to the desired range and
precision. Nowadays most compilers adopt the IEEE floating-point standard
(either 32 or 64 bits).

Enumerands are typically represented by unsigned integers starting from 0. In
Example 2.3, the twelve enumerands of type Month would be represented by the
integers {0, . . . , 11}; the representation must have at least 4 bits, but in practice
the compiler will choose a whole byte.

2.7.2 Representation of Cartesian products

The values of a Cartesian product type are represented simply by juxtaposing the
components in a fixed order.

In Example 2.5, each value of the record type Date is represented by juxta-
posing a component of type Month with a component of type Day_Number, as
illustrated in Figure 2.5. The structure type of Example 2.6 is represented similarly.

Any record or structure component can be accessed efficiently, since the
compiler can determine its offset relative to the start of the record or structure.

2.7.3 Representation of arrays

The values of an array type are represented by juxtaposing the components in
ascending order of indices.

In Example 2.7, the variable p is an array of three boolean components, with
indices {0, 1, 2}. The array is represented by juxtaposing the three components in
ascending order of indices. This is illustrated in Figure 2.6(a), which also shows an
array of five boolean components.

m jan

1d
m dec

25d

Figure 2.5 Representation of ADA records of type Date
(Example 2.5), or C/C++ structures of type Date
(Example 2.6).

0 false
true
false

1

2

0 false
false

true
1

2
3 true

false4

(a)

red false
truegreen
falseblue

(b) red true
truegreen
trueblue

Figure 2.6 Representation of (a) C++ arrays of type
bool[] (Example 2.7); (b) ADA arrays of type Pixel
(Example 2.8).

2.7 Implementation notes 51

In Example 2.8, each value of type Pixel is an array of three boolean
components, with indices {red, green, blue}. Once again, the array is represented
by juxtaposing the three components in ascending order of indices, as illustrated
in Figure 2.6(b).

If a is an array, the component a[i] can be accessed by using i to compute
the component’s offset relative to the start of a, assuming that every component
of a occupies the same fixed amount of space, say s bytes. If the lower bound of
a is l, the component’s offset is s(i − l) bytes. If the lower bound l is 0 (as in C,
C++, and JAVA), this simplifies to si bytes. This offset computation must be done
at run-time, since the value of i is not known until run-time.

2.7.4 Representation of disjoint unions

Each value of a disjoint union type is represented by a tag field followed by one of
several possible variants. The type (and therefore representation) of the variant
depends on the current value of the tag field.

In Example 2.12, each value of the HASKELL algebraic type Number is repre-
sented by a tag field followed by either a variant of type Int (if the tag is exact) or
a variant of type Float (if the tag is inexact). This is illustrated in Figure 2.7(a).

In Example 2.13, each value of the ADA discriminated record type Number
is represented by a tag field of type Accuracy followed by either a component
ival of type Integer (if the tag is exact) or a component rval of type Float
(if the tag is inexact). This is illustrated in Figure 2.7(b). Note the similarity with
Figure 2.7(a).

Both the tag field and the variants of a disjoint union can be accessed
efficiently, since the compiler can determine their offsets relative to the start of
the disjoint union.

A C or C++ union is represented like a disjoint union, but with no tag field.
The representation of objects is complicated by the possible existence of

subclasses and superclasses. We defer discussion of that topic until Section 6.4.

2.7.5 Representation of recursive types

Consider the HASKELL recursive type definition of Example 2.18. An IntList
value is represented by a pointer to a tag field, which is followed by one of two
variants. If the tag is cons, the variant consists of an Int component and an
IntList component. If the tag is cons, the variant is empty. This is illustrated in
Figure 2.8.

tag Exact

2variant

Inexact

3.1416

acc exact

2ival
acc inexact

3.1416rval

tag

variant

(a)

(b)

Figure 2.7 Representation of (a) HASKELL values of
the algebraic type Number (Example 2.12); (b) ADA

discriminated records of type Number
(Example 2.13).

52 Chapter 2 Values and types

pointer
Key:

Cons
2

NilCons
3

Cons
5

Cons
7

Figure 2.8 Representation of HASKELL lists of type IntList (Example 2.18).

The JAVA recursively defined class of Example 2.17 would be represented
similarly. Recursively defined list types defined using explicit pointers in C++ or
ADA would also be represented similarly. (See Exercise 2.7.2.)

Summary
In this chapter:

• We have studied values of primitive, composite, and recursive types supported
by programming languages. In particular, we found that nearly all the composite
types of programming languages can be understood in terms of Cartesian products,
mappings, and disjoint unions.

• We have studied the basic concepts of type systems, in particular the distinction
between static and dynamic typing, the issue of type equivalence, and the Type
Completeness Principle.

• We have surveyed the forms of expressions found in programming languages:
literals, constructions, function calls, conditional and iterative expressions, constant
and variable accesses.

• We have seen how values of primitive, composite, and recursive types can be
represented in computers.

Further reading

HOARE (1972, 1975) produced the first comprehensive and
systematic treatment of composite types in terms of Carte-
sian products, disjoint unions, powersets, mappings, and
recursive types. Hoare’s treatment built on earlier work by
MCCARTHY (1965).

A detailed and technical treatment of types may be found
in TENNENT (1981). Tennent shows that a simple treat-
ment of types as sets of values needs to be refined when we
consider recursive definitions involving function
types.

Exercises

Exercises for Section 2.1
*2.1.1 Some programming languages have no concept of type. (a) Name at least

one such language. (b) What are the advantages of types? (c) What are the
disadvantages of types?

Exercises for Section 2.2
2.2.1 Write down the set of values of each primitive type in your favorite program-

ming language.

Exercises 53

2.2.2 Consider an application that processes amounts of money up to $100 000.00.
Which primitive type would you use to represent such amounts: (a) in C or C++;
(b) in JAVA; (c) in ADA?

2.2.3 Consider an application that processes certain economic data country by country.
Which primitive type would you use to represent countries: (a) in C or C++;
(b) in JAVA; (c) in ADA?

Exercises for Section 2.3
2.3.1 Using the notation of Cartesian products, mappings, and disjoint unions, write

down (a) the set of values of each of the following C++ types:

enum Suit {club, diamond, heart, spade};
struct Card {Suit s; byte r;};
typedef Card[] Hand;
struct Turn { bool pass; Card play; };

and (b) the set of values of each of the following ADA types:

type Suit is (club, diamond, heart, spade);
type Rank is range 2 .. 14;
type Card is

record
s: Suit;
r: Rank;

end record;
type Hand is array (1 .. 7) of Card;
type Turn (pass: Boolean) is

record
case pass is
when false => play: Card;
when true => null;

end case;
end record;

What is the cardinality of each type?

2.3.2 Explore the differences between C (or C++) arrays, JAVA arrays, and ADA arrays.
Supposing that a1 and a2 are arrays with bounds 0 and 9, what is the effect in
each language of (a) accessing a1[i] when i is out of range; (b) assigning a2
to a1?

2.3.3 JAVA arrays are classified as objects. How does this affect the use of arrays in
JAVA programs?

2.3.4 Explore the relationship between S → (T → U) and (S × T) → U. (Hint: Com-
pare the types ‘‘array (S) of array (T) of U’’ and ‘‘array (S, T) of U’’ in
ADA.)

2.3.5 Explore the relationship between arrays and function procedures. In your
favorite programming language, implement each of the following using both
an array and a function: (a) the mapping {false → true, true → false}; (b) the
factorial function over the integers 0 through 10. In what ways are arrays and
functions fundamentally different? Answer this question in terms of the essential
properties of arrays and functions, neglecting any peculiarities that arrays or
functions might have in your favorite language.

54 Chapter 2 Values and types

2.3.6 Using the notation of Cartesian products, mappings, disjoint unions, and
lists, analyze the following bulk data types: (a) sequential files; (b) direct files;
(c) relations (as in relational databases).

Exercises for Section 2.4

2.4.1 Write recursive types to represent integer lists of any length, (a) in C or C++,
and (b) in ADA. (See also Exercise 2.7.2.)

2.4.2 Choose (a) a programming language in which strings are primitive values (such
as ML); (b) a language in which strings are character arrays (such as C or ADA);
(c) a language in which strings are character lists (such as HASKELL or PROLOG);
and (d) a language in which strings are objects (such as JAVA). Make a table
showing the string operations provided by each language. In language (b), which
string operations are in fact available for all arrays? In language (c), which string
operations are in fact available for all lists? In each language, are any of the
operations identified in Section 2.4.2 missing, and could the missing operations
be defined in the language itself?

2.4.3 Use the iterative method of Section 2.4.3 to determine the first four approxima-
tions to the least solution of the recursive set equation (2.22).

Exercises for Section 2.5

*2.5.1 Systematically analyze the type system of your favorite programming language,
in the same way as various languages have been analyzed in this chapter.
(a) What composite types are supported, and how is the set of values of each
composite type defined in terms of its component types? (b) Can recursive
types be defined, and if so how? (c) Is your language statically or dynamically
typed? (d) How is type equivalence defined in your language?

*2.5.2 Which types of values in your favorite programming language may be
(a) constants; (b) operands of operators; (c) results of operators; (d) arguments;
(e) function results; (f) array/record/list components? How well does your
language comply with the Type Completeness Principle?

2.5.3 (a) Find a program you have written in a statically typed language that would
have been simpler to write in a dynamically typed language. (b) Find a program
you have written in a dynamically typed language that could equally well have
been written in a statically typed language.

*2.5.4 The experimental programming language AMBER (Cardelli 1986) is statically
typed, but it has a special feature that supports a controlled form of dynamic
typing. The type dynamic is equipped with the following operations: conver-
sion of a given value of any type to dynamic; testing of a given dynamic value
d to determine whether it was originally converted from type T; conversion of
that dynamic value d back to type T. Show that the type dynamic can be
understood in terms of disjoint unions.

2.5.5 Suppose that you are given a file of employee records (which has been
generated by someone else’s program). You are to write a program that reads
and processes these records. Show that run-time type checks are inevitable,
even if you choose to write your program in a statically typed language such as
C, C++, or ADA.

Exercises 55

Exercises for Section 2.6
2.6.1 Systematically analyze the forms of expression in your favorite programming

language, comparing them with the forms of expression surveyed in Section 2.6.
Are any relevant forms of expression missing? Are any exotic forms provided,
and are they essential?

*2.6.2 Choose a programming language (such as ADA) that does not support condi-
tional expressions. Design an extension to that language to allow conditional
expressions.

**2.6.3 Choose a programming language (such as almost any imperative or object-
oriented language) that does not support iterative expressions. Design an
extension to that language to allow iterative expressions.

**2.6.4 Choose a programming language (such as C, C++, or JAVA) that does not sup-
port unrestricted structure/record and array constructions. Design an extension
to that language to allow such constructions. Enable your constructions to have
arbitrary subexpressions (not just literals) of the appropriate types. Enable
your constructions to be used anywhere that expressions are allowed (not
just in variable declarations). Look out for possible interactions between your
extensions and other parts of the language.

Exercises for Section 2.7
2.7.1 Draw diagrams to show how the types of Exercise 2.3.1 would be represented

in a computer.

2.7.2 Consider the recursive types you defined in answer to Exercise 2.4.1. Draw
diagrams to show how these recursive types would be represented in a
computer. Compare your answers with Figure 2.8.

Chapter 3

Variables and storage

‘‘Once a programmer has understood the use of variables, he has understood the essence
of programming.’’ This remark of Edsger Dijkstra was actually about imperative pro-
gramming, which is characterized by the use of variables and assignment. The remark
might seem to be an exaggeration now that other programming paradigms have become
popular, but imperative programming remains important in its own right and also underlies
object-oriented and concurrent programming.

In this chapter we shall study:

• a simple model of storage that allows us to understand variables;

• simple and composite variables, and total and selective updating of composite
variables;

• static, dynamic, and flexible arrays;

• the difference between copy semantics and reference semantics;

• lifetimes of global, local, heap, and persistent variables;

• pointers, which are references to variables;

• commands, which are program constructs that update variables;

• expressions with side effects on variables;

• how storage is allocated for global, local, and heap variables.

3.1 Variables and storage

In imperative (and object-oriented and concurrent) programming languages, a
variable is a container for a value, and may be inspected and updated as often as
desired. Variables are used to model real-world objects whose state changes over
time, such as today’s date, the current weather, the population of the world, or a
country’s economic performance.

The variables of imperative programs do not behave like mathematical
variables. (A mathematical variable stands for a fixed but unknown value; there is
no implication of change over time. The variables of functional and logic programs
do behave like mathematical variables.)

To understand how the variables of imperative programs really do behave, we
need some notion of storage. Now, real storage media (such as RAMs and disks)
have many properties that are irrelevant for our purposes: word size, capacity,
speed, and so on. Instead we shall use an abstract model of storage that is simple
but adequate:

57

58 Chapter 3 Variables and storage

primitive variable: 7

composite variable:
?

true

‘%’
42

unallocated cell:

undefined

Figure 3.1 An abstract storage model.

• A store is a collection of storage cells, each of which has a unique address.

• Each storage cell has a current status, which is either allocated or unallocated.
Each allocated storage cell has a current content, which is either a storable
value or undefined.

We can picture each storage cell as a box, as shown in Figure 3.1.
In terms of this storage model, we can view a variable as a container consisting

of one or more storage cells. More precisely:

• A simple variable occupies a single allocated storage cell.

• A composite variable occupies a group of contiguous allocated storage cells.

A storable value is one that can be stored in a single storage cell. Each
programming language counts certain types of values as storable:

• C++’s storable values are primitive values and pointers. (Structures, arrays,
unions, and objects are not storable, since none of these can be stored in
a single storage cell. Functions also are not storable, since they cannot be
stored at all. However, pointers to all of these things are storable.)

• JAVA’s storable values are primitive values and pointers to objects. (Objects
themselves are not storable, but every object is implicitly accessed through
a pointer.)

• ADA’s storable values are primitive values and pointers. (Records and
arrays are not storable, since none of these can be stored in a single storage
cell. Procedures also are not storable, since they cannot be stored at all.
However, pointers to all of these things are storable.)

As a rule of thumb, most programming languages count primitive values and
pointers as storable, but not composite values.

3.2 Simple variables

A simple variable is a variable that may contain a storable value. Each simple
variable occupies a single storage cell.

The use of simple variables is such an elementary aspect of programming that
we tend to take them for granted. However, it is worthwhile to reflect on exactly
what happens when we declare, inspect, and update a simple variable.

3.3 Composite variables 59

n ?After ‘int n;’:

n 0After ‘n = 0’:

After ‘n = n+1’: n 1

At exit from block:

At entry to block:

Figure 3.2 Storage for a simple variable (Example 3.1).

EXAMPLE 3.1 C simple variable
Consider the simple variable declared in the following C block:

{ int n;
n = 0;
n = n+1;

}

(1) The variable declaration ‘‘int n;’’ changes the status of some unallocated
storage cell to allocated, but leaves its content undefined. Throughout the block,
n denotes that cell.

(2) The assignment ‘‘n = 0’’ changes the content of that cell to zero.
(3) The expression ‘‘n+1’’ takes the content of that cell, and adds one. The assignment

‘‘n = n+1’’ (or ‘‘n++’’) adds one to the content of that cell.
(4) At the end of the block, the status of that cell reverts to unallocated.

Figure 3.2 shows the status and content of that cell at each step.

Strictly speaking, we should always say ‘‘the content of the storage cell denoted
by n’’. We usually prefer to say more concisely ‘‘the value contained in n’’, or
even ‘‘the value of n’’.

3.3 Composite variables
A composite variable is a variable of a composite type. Each composite variable
occupies a group of contiguous storage cells.

A variable of a composite type has the same structure as a value of that type.
For instance, a record variable is a tuple of component variables; and an array
variable is a mapping from an index range to a group of component variables. The
component variables can be inspected and updated selectively.

EXAMPLE 3.2 C++ record and array variables

Consider the following C++ (or C) declarations:

struct Date {
int y, m, d;

};

Date today;

60 Chapter 3 Variables and storage

5
5

dates[0]

2
23

dates[1]

?
?

dates[2]

dates(b)

2004

2004

?

?
?

dates[3]
?

m 2
d 23

today(a)
y 2004

m
d

y

m
d

y

m
d

y

m
d

y

Figure 3.3 Storage for (a) a record variable, and (b) an array variable (Example 3.2).

Each Date value is a triple consisting of three int values. Correspondingly, a Date
variable is a triple consisting of three int variables. Figure 3.3(a) shows the structure of
the variable today, and the effect of the following assignments:

today.m = 2; today.d = 23; today.y = 2004;

Now consider the array variable declared as follows:

Date dates[4];

A value of this array type is a mapping from the index range 0–3 to four Date values.
Correspondingly, a variable of this array type, such as dates, is a mapping from the index
range 0–3 to four Date variables. Figure 3.3(b) shows the structure of the variable dates,
and the effect of the following assignments:

dates[0].y = 2004; dates[0].m = 5; dates[0].d = 5;
dates[1] = today;

The last assignment copies the entire value of today. In other words, it updates the three
storage cells of dates[1] with the contents of the three storage cells of today.

3.3.1 Total vs selective update
A composite variable may be updated either in a single step or in several steps,
one component at a time. Total update of a composite variable means updating
it with a new (composite) value in a single step. Selective update of a composite
variable means updating a single component.

EXAMPLE 3.3 C++ total and selective updates

Consider the following declarations:

struct Date {
int y, m, d;

};
Date today, tomorrow;

3.3 Composite variables 61

The following assignment:

tomorrow = today;

copies the entire value of today into the variable tomorrow. In other words, it copies
the contents of the three storage cells of today into the three storage cells of tomorrow.
This is an example of total update.

The following assignment:

tomorrow.d = today.d + 1;

updates a single component of tomorrow, leaving the other components undisturbed.
This is an example of selective update.

3.3.2 Static vs dynamic vs flexible arrays

We can view an array variable as a mapping from an index range to a group
of component variables. Let us examine how and when a given array variable’s
index range is determined. There are several possibilities: the index range might
be fixed at compile-time, or it might be fixed at run-time when the array variable
is created, or it might not be fixed at all.

A static array is an array variable whose index range is fixed at compile-time.
In other words, the program code determines the index range.

C and C++ global and local arrays are static. An array’s lower bound is always
zero, but its length (and hence its upper bound) is fixed by the program code.

EXAMPLE 3.4 C++ static arrays

Consider the following C++ (or C) declarations:

float v1[] = {2.0, 3.0, 5.0, 7.0};
float v2[10];

The array variable v1 has index range 0–3, which is determined by the array construction
used to initialize it. The array variable v2 has index range 0–9, which is determined by its
declared length of 10. Both v1 and v2 have type float[].

Now consider the following C++ function:

void print_vector (float v[], int n) {
// Print the array v[0], . . . ,v[n-1] in the form "[. . .]".

cout << '[' << v[0];
for (int i = 1; i < n; i++)
cout << ' ' << v[i];

cout << ']';
}

This function’s first parameter has type float[], so its first argument could be either v1
or v2:

print_vector(v1, 4); print_vector(v2, 10);

62 Chapter 3 Variables and storage

A deficiency of C++ is that an array does not ‘‘know’’ its own length, hence the need for
print_vector’s second parameter.

A dynamic array is an array variable whose index range is fixed at the time
when the array variable is created.

In ADA, the definition of an array type must fix the type of the index range,
but need not fix the lower and upper bounds. When an array variable is created,
however, its bounds must be fixed. ADA arrays are therefore dynamic.

EXAMPLE 3.5 ADA dynamic arrays

Consider the following ADA type declaration:

type Vector is array (Integer range <>) of Float;

This type definition states only that Vector’s index range will be of type Integer; ‘‘<>’’
signifies that the lower and upper bounds are left open.

A Vector variable’s bounds will be fixed only when the variable is created. Consider
the following variable declarations:

v1: Vector(1 .. 4) := (2.0, 3.0, 5.0, 7.0);
v2: Vector(0 .. m) := (0 .. m => 0.0);

where m is a variable. The array variable v1 has bounds 1–4, while the array variable v2
has bounds 0–2 if m’s current value happens to be 2.

A Vector value can be assigned to any Vector variable with the same length (not
necessarily the same bounds). For example, the assignment ‘‘v1 := v2;’’ would succeed
only if v2 happens to have exactly four components. An assignment to an ADA array
variable never changes the array variable’s index range.

Now consider the following ADA procedure:

procedure print_vector (v: in Vector) is
-- Print the array v in the form "[. . .]".
begin

put('['); put(v(v'first));
for i in v'first + 1 .. v'last loop
put(' '); put(v(i));

end loop;
put(']');

end;

This procedure can be called with any Vector argument, regardless of its index range:

print_vector(v1); print_vector(v2);

Within the body of print_vector, the lower and upper bounds of the parameter v
are taken from the corresponding argument array, and can be accessed using the notation
v'first and v'last (respectively).

3.4 Copy semantics vs reference semantics 63

A flexible array is an array variable whose index range is not fixed at all. A
flexible array’s index range may be changed when a new array value is assigned to it.

A JAVA array is actually a pointer to an object that contains the array’s length
as well as its components. When we assign an array object to a variable, the
variable is made to point to that array object, whose length might be different
from the previous array object. Thus JAVA arrays are flexible.

EXAMPLE 3.6 JAVA flexible arrays

Consider the following JAVA variable declarations:

float[] v1 = {2.0, 3.0, 5.0, 7.0};
float[] v2 = {0.0, 0.0, 0.0};

At this point the array variable v1 has index range 0–3, while v2 has index range 0–2.
However, after the following assignment:

v1 = v2;

v1 points to an array with index range 0–2. Thus v1’s index range may vary during
v1’s lifetime.

Now consider the following JAVA function:

static void printVector (float[] v) {
// Print the array v in the form "[. . .]".

System.out.print("[" + v[0]);
for (int i = 1; i < v.length; i++)
System.out.print(" " + v[i]);

System.out.print("]");
}

This function can be called with any float[] argument, regardless of its index range:

printVector(v2); printVector(v2);

Within the body of printVector, the length of the parameter v is taken from the
corresponding argument array, and can be accessed using the notation v.length.

3.4 Copy semantics vs reference semantics
When a program assigns a composite value to a variable of the same type, what
happens depends on the language. There are in fact two distinct possibilities:

• Copy semantics. The assignment copies all components of the composite
value into the corresponding components of the composite variable.

• Reference semantics. The assignment makes the composite variable contain
a pointer (or reference) to the composite value.

Copy semantics is adopted by C, C++, and ADA. However, programmers can
also achieve the effect of reference semantics by using explicit pointers.

64 Chapter 3 Variables and storage

12
25

dateA
2003

?
?

dateB
?

12
25

dateA
2003

12
25

dateB
2003

After ‘dateB = dateA’:

After ‘dateQ = dateP’:

12
25

dateP 2003

dateQ
?
?

?

12
25

dateP 2003

dateQ

(a)

(b)

Initially:

Initially:

?
?

?

Figure 3.4 Assignment in C++
(Example 3.7): (a) copy
semantics; (b) simulating
reference semantics
using pointers.

EXAMPLE 3.7 C++ copy semantics
The following C++ code illustrates copy semantics:

struct Date {
int y, m, d;

};
Date dateA = {2003, 12, 25};
Date dateB;
dateB = dateA;

Figure 3.4(a) shows the effect of this assignment: dateB now contains a complete copy of
dateA. Any subsequent update of dateA will have no effect on dateB, and vice versa.

This further C++ code achieves the effect of reference semantics:

Date* dateP = new Date;
Date* dateQ = new Date;
*dateP = dateA;
dateQ = dateP;

The variables dateP and dateQ contain pointers to Date variables. Figure 3.4(b) shows
the effect of the assignment ‘‘dateQ = dateP’’: dateP and dateQ now point to the
same variable. Any subsequent selective update of *dateP will also selectively update
*dateQ, and vice versa.

JAVA adopts copy semantics for primitive values, and reference semantics for
objects. However, programmers can achieve the effect of copy semantics even for
objects by using the clone method.

EXAMPLE 3.8 JAVA reference semantics
Consider the following JAVA class declaration:

class Date {
int y, m, d;

3.4 Copy semantics vs reference semantics 65

public Date (int y, int m, int d) { . . . }
}

The following JAVA code illustrates reference semantics:

Date dateR = new Date(2003, 12, 25);
Date dateS = new Date(2000, 1, 1);
dateS = dateR;

Figure 3.5(a) shows the effect of the assignment ‘‘dateS = dateR’’: dateR and dateS
now point to the same variable. Any subsequent selective update of dateR will also
selectively update dateS, and vice versa.

This further JAVA code achieves the effect of copy semantics:

Date dateT = new Date(2004, 1, 1);
dateT = dateR.clone();

Figure 3.5(b) shows the effect of the assignment ‘‘dateT = dateR.clone()’’. The
method call ‘‘dateR.clone()’’ returns a pointer to a newly allocated object whose
components are copies of dateR’s components. The assignment makes dateT point to
the newly allocated object.

The semantics of the equality test operation in any programming language
should be consistent with the semantics of assignment. This enables the program-
mer to assume that, immediately after an assignment of V1 to V2, V1 is equal to
V2, regardless of whether copy or reference semantics is used. It follows that the
equality test operation should behave as follows:

• Copy semantics. The equality test operation should test whether corre-
sponding components of the two composite values are equal.

After ‘dateS = dateR’:(a) Initially:

12
25

dateR 2003

1
1

dateS 2000

12
25

dateR 2003

dateS
1
1

2000

After ‘dateT = dateR.clone()’:Initially:

12
25

dateR 2003

1
1

dateT 2004

12
25

dateR 2003

dateT
12
25

2003

(b)

Figure 3.5 Assignment in JAVA (Example 3.8): (a) reference semantics; (b) effect
of cloning. (Objects’ tag fields are omitted here.)

66 Chapter 3 Variables and storage

• Reference semantics. The equality test operation should test whether the
pointers to the two composite values are equal (i.e., whether they point to
the same variable).

3.5 Lifetime
Every variable is created (or allocated) at some definite time, and destroyed (or
deallocated) at some later time when it is no longer needed. The interval between
creation and destruction of a variable is called its lifetime.

The concept of lifetime is pragmatically important. A variable needs to occupy
storage cells only during its lifetime. When the variable is destroyed, the storage
cells that it occupied may be deallocated, and may be subsequently allocated for
some other purpose. Thus storage can be used economically.

We can classify variables according to their lifetimes:

• A global variable’s lifetime is the program’s run-time.
• A local variable’s lifetime is an activation of a block.
• A heap variable’s lifetime is arbitrary, but is bounded by the program’s

run-time.
• A persistent variable’s lifetime is arbitrary, and may transcend the run-time

of any particular program.

3.5.1 Global and local variables
A global variable is one that is declared for use throughout the program. A global
variable’s lifetime is the program’s entire run-time: the variable is created when
the program starts, and is destroyed when the program stops.

A local variable is one that is declared within a block, for use only within
that block. A lifetime of a local variable is an activation of the block containing
that variable’s declaration: the variable is created on entry to the block, and is
destroyed on exit from the block.

As we shall see in Section 4.4, a block is a program construct that includes
local declarations. In all programming languages, the body of a procedure is a
block. Some languages also have block commands, such as ‘‘{ . . . }’’ in C, C++,
or JAVA, or ‘‘declare . . . begin . . . end;’’ in ADA. An activation of a block
is the time interval during which that block is being executed. In particular, an
activation of a procedure is the time interval between call and return. During a
single run of the program a block may be activated several times, and so a local
variable may have several lifetimes.

EXAMPLE 3.9 Lifetimes of C++ global and local variables

Consider the following C++ (or C) program outline:

int g;

void main () {

3.5 Lifetime 67

start call P call Q
return
from Q

return
from P call Q

return
from Q stop

lifetime of y1, y2 lifetime of z
lifetime of x1, x2

lifetime of z

lifetime of g

time

Figure 3.6 Lifetimes of local and global variables (Example 3.9).

int x1; float x2;
. . . P(); . . . Q(); . . .

}

void P () {
float y1; int y2;
. . . Q(); . . .

}

void Q () {
int z;
. . .

}

The blocks in this program are the bodies of procedures main, P, and Q. There is one
global variable, g. There are several local variables: x1 and x2 (in main), y1 and y2 (in
P), and z (in Q).

Notice that main calls P, which in turn calls Q; later main calls Q directly. Figure 3.6
shows the lifetimes of the global variable and local variables.

EXAMPLE 3.10 Lifetimes of C++ local variables of a recursive function

Consider the following C++ (or C) program outline:

void main () {
int x;
. . . R(); . . .

}

void R () {
int w;
. . . R(); . . .

}

Notice that main calls R, which in turn calls itself recursively. Figure 3.7 shows the lifetimes
of the global variable g and the local variable w, on the assumption that R calls itself three
times before the recursion unwinds.

These examples illustrate the general fact that the lifetimes of local variables
are always nested, since the activations of blocks are themselves always nested. In

68 Chapter 3 Variables and storage

start stop

time

lifetime of w

return
from Rcall R call R

return
from R

return
from Rcall R

lifetime of w
lifetime of w

lifetime of x

Figure 3.7 Lifetimes of a local variable of a recursive procedure (Example 3.10).

Figure 3.6, once P has called Q, the activation of Q must end before the activation
of P can end.

A local variable will have several lifetimes if the block in which it is declared
is activated several times. In Figure 3.6, since Q is activated on two separate
occasions, the two lifetimes of z are disjoint.

In Figure 3.7, since R is called recursively, the lifetimes of w are nested. This
makes sense only if we understand that each lifetime of w is really a lifetime of
a distinct variable, which is created when R is called (more precisely, when the
declaration of w is elaborated), and destroyed when R returns.

It follows that a local variable cannot retain its content over successive
activations of the block in which it is declared. In some programming languages,
a variable may be initialized as part of its declaration. But if a variable is not
initialized, its content is undefined, not the value it might have contained in a
previous activation of the block.

Some programming languages (such as C) allow a variable to be declared
as a static variable, which defines its lifetime to be the program’s entire run-
time (even if the variable is declared inside a block). Thus static variables have
the same lifetime as global variables. Although this feature addresses a genuine
need, there are better ways to achieve the same effect, such as class variables in
object-oriented languages.

3.5.2 Heap variables

The pattern of nested lifetimes characteristic of local and global variables is
adequate for many purposes, but not all. We often need to create and destroy
variables at will.

A heap variable is one that can be created, and destroyed, at any time during
the program’s run-time. A heap variable is created by an expression or command.
It is anonymous, and is accessed through a pointer. (By contrast, a global or local
variable is created by a declaration, and has an identifier.)

Pointers are first-class values, and thus may be stored, used as components of
composite values, and so on. A program can build a complicated data structure
(an arbitrary directed graph, in fact) in which connections between nodes are
represented by pointers stored in the nodes. Such a structure can be selectively
updated – to add a node, to remove a node, or to change a connection between

3.5 Lifetime 69

nodes – by manipulation of pointers. This is more radical than selective update of
a record or array variable, which affects the variable’s content but not its structure.

EXAMPLE 3.11 ADA heap variables

The ADA program outlined here creates and manipulates lists whose elements are integers:

procedure main is

type IntNode;
type IntList is access IntNode;
type IntNode is

record
elem: Integer;
succ: IntList;

end record;
odds, primes: IntList := null;

function cons (h: Integer; t: IntList)
return IntList is

-- Return a pointer to the list formed by prefixing element h to list t.
begin

return new IntNode'(h, t);
end;

procedure P is
begin

odds := cons(3, cons(5, cons(7, null)));
primes := cons(2, odds);

end;

procedure Q is
begin

odds.succ := odds.succ.succ;
end;

begin
. . . P; . . . Q; . . .

end;

Each value of type IntList is either a pointer to an IntNode record or the null
pointer. We use a null pointer to represent the empty list or the end of a list.

Whenever the cons function is called, the expression ‘‘new IntNode'(h, t)’’
creates a heap variable of type IntNode, initializes it to contain the integer h and the
pointer t, and yields a pointer to the newly created heap variable. The cons function
simply returns that pointer.

The code in procedure Pmakes the variable odds contain a pointer to a list containing
the integers 3, 5, and 7 (in that order), and makes the variable odds point to a list
containing the integer 2 followed by the above three integers. Figure 3.8(a) shows the heap
variables created by this code, together with the global variables odds and primes.

The code in procedure Q updates the pointer component of the first node of the odds
list to point to the third node, in effect removing the second node from that list. This also
removes the same node from the primes list. Figure 3.8(b) shows the new situation. The
node containing 5 is now unreachable, so its lifetime is ended.

70 Chapter 3 Variables and storage

odds

primes

odds

primes 2 3 5 7

pointer
null pointer

Key:

Before removing the 5-node:

2 3 5 7

After removing the 5-node: (b)

(a)

Figure 3.8 Heap variables and pointers (Example 3.11).

lifetime of 7-node

lifetime of primes

start stop

lifetime of odds

lifetime of 5-node

lifetime of 2-node
lifetime of 3-node

time

call Q
return
from Qcall P

return
from P

Figure 3.9 Lifetimes of
global and heap variables
(Example 3.11).

Figure 3.9 shows the lifetimes of the global and heap variables in this program.
But suppose, instead, that the assignment in procedure Q were ‘‘odds :=

odds.succ;’’, in effect removing the first node from the odds list. That node would still
remain reachable in the primes list, so its lifetime would continue.

This example illustrates the general fact that the lifetimes of heap variables
follow no particular pattern.

An allocator is an operation that creates a heap variable, yielding a pointer to
that heap variable. In ADA, C++, and JAVA, an expression of the form ‘‘new . . .’’
is an allocator.

A deallocator is an operation that destroys a given heap variable. ADA’s
deallocator is a library procedure. C++’s deallocator is a command of the form
‘‘delete . . .’’. JAVA has no deallocator at all. Deallocators are unsafe, since any
remaining pointers to a destroyed heap variable become dangling pointers (see
Section 3.6.2).

A heap variable remains reachable as long as it can be accessed by following
pointers from a global or local variable. A heap variable’s lifetime extends from
its creation until it is destroyed or it becomes unreachable.

3.5 Lifetime 71

3.5.3 Persistent variables

Files may be seen as composite variables. In particular, a sequential file is a
sequence of components, and a direct file is (in effect) an array of components. A
sequential file is read or written one component at a time, in serial order. A direct
file is also read or written one component at a time, but in an arbitrary order,
using each component’s unique position number.

Usually files contain large bodies of long-lived data: they are persistent. A
persistent variable is one whose lifetime transcends an activation of any particular
program. By contrast, a transient variable is one whose lifetime is bounded by
the activation of the program that created it. Global, local, and heap variables
are transient.

Most programming languages including C, C++, JAVA, and ADA provide
library procedures to create and destroy files. This allows a file to be created by
a program at any time. It also allows the file to be destroyed at any later time,
either during the same program activation or during a future activation of the
same program or a different program.

There are certain analogies between persistent variables and transient vari-
ables. Persistent variables usually have arbitrary lifetimes, like heap variables; but
some systems also allow persistent variables to have nested lifetimes, like local
variables. Just as transient variables occupy primary storage, persistent variables
occupy secondary storage. (Secondary storage has the same abstract properties as
primary storage, see Section 3.1.)

Despite these analogies, most programming languages provide distinct types
for persistent variables and transient variables. For example, ADA provides one
family of types for sequential files, and another family of types for direct files,
which are distinct from ordinary composite types.

Why not allow a persistent variable to be of any type? For instance, a persistent
list variable would be a sequential file, and a persistent array variable would be a
direct file.

The Type Completeness Principle suggests that all the types of the program-
ming language should be available for both transient and persistent variables. A
language applying this principle would be simplified by having no special file types,
and no special commands or procedures for reading/writing data from/to files. The
programmer would be spared the unprofitable effort of converting data from a
persistent data type to a transient data type on input, and vice versa on output.

EXAMPLE 3.12 Persistent variable

Consider the following ADA type declarations:

type Country is (AT, BE, DE, DK, ES, FI, FR, GR,
IE, IT, LU, NL, PT, SE, UK);

type Statistics is
record

population: Integer;
area: Float;

72 Chapter 3 Variables and storage

. . .

end record;
type StatsTable is array (Country) of Statistics;

Let us suppose that a sequential file named stats.dat has components of type
Statistics, one component for each value of type Country.

The following declaration instantiates the generic package Ada.Sequential_IO:

package Stats_IO is new Ada.Sequential_IO(
Element_Type => Statistics);

The resulting package Stats_IO provides a type File_Type, whose values are sequen-
tial files with Statistics components, together with procedures for opening, closing,
reading, and writing such files.

The following application code calls these procedures. First it opens the file named
stats.dat, placing a pointer to that file in statsFile. Then it reads the file’s
components and stores them in the transient array stats. Finally it closes the file.

procedure loadStats (stats: out StatsTable) is
-- Read into stats the contents of the file named stats.dat.

statsFile: Stats_IO.File_Type;
begin

Stats_IO.open(statsFile, in_file, "stats.dat");
for cy in Country loop
Stats_IO.read(statsFile, stats(cy));

end loop;
Stats_IO.close(statsFile);

end;

The following application code illustrates how the data stored in the transient array might
be used:

procedure analyzeStats (stats: in out StatsTable) is
-- Print the population density of each country using the data in stats.
begin

for cy in Country loop
put(Float(stats(cy).population)/stats(cy).area);

end loop;
end;

procedure main is
stats: StatsTable;

begin
loadStats(stats);
analyzeStats(stats);

end;

Now suppose, hypothetically, that ADA were extended with a new generic pack-
age, Ada.Persistence, that supports persistent variables of any type. The following
declaration would instantiate this generic package:

package Persistent_Stats is new Persistence(
Data_Type => StatsTable);

The resulting package Persistent_Stats might provide a function procedure
connect that enables a named file to be viewed as a persistent variable of type
StatsTable.

3.6 Pointers 73

The following hypothetical application code illustrates how the file namedstats.dat
would be viewed as a persistent variable, and how the data stored in it might be used:

procedure analyzeStats (stats: in out StatsTable) is
-- Print the population density of each country using the data in stats.
begin

for cy in Country loop
put(Float(stats(cy).population)/stats(cy).area);

end loop;
end;

procedure main is
begin

analyzeStats(
Persistent_Stats.connect("stats.dat"));

end;

The program would no longer need to read data from the file into a transient variable, and
consequently would be much more concise.

3.6 Pointers
A pointer is a reference to a particular variable. In fact, pointers are sometimes
called references. The variable to which a pointer refers is called the pointer’s
referent.

A null pointer is a special pointer value that has no referent.
In terms of our abstract storage model (Section 3.1), a pointer is essentially

the address of its referent in the store. However, each pointer also has a type, and
the type of a pointer allows us to infer the type of its referent.

EXAMPLE 3.13 C++ pointers

In C++, each value of type ‘‘T*’’ is either a pointer to a variable of type T or a null pointer.
Consider the following declarations:

struct IntNode {
int elem;
IntNode* succ;

}
IntNode* p;

Each value of type ‘‘IntNode*’’ is a pointer to a variable of type IntNode. If p is a
pointer (but not null), the variable access ‘‘*p’’ yields the structure variable to which p
points, and ‘‘(*p).elem’’ (or more concisely ‘‘p->elem’’) selects the component elem
of that structure variable.

EXAMPLE 3.14 ADA pointers

In ADA, each value of type ‘‘access T’’ is either a pointer to a variable of type T or a
null pointer.

74 Chapter 3 Variables and storage

Consider the following declarations:

type IntPointer is access IntNode;
type IntNode is

record
elem: Integer;
succ: IntPointer;

end record;
p: IntPointer;

Each value of type ‘‘access IntNode’’ is a pointer to a variable of type IntNode. If p is
a pointer (but not null), the variable access ‘‘p.all’’ yields the record variable to which p
points, and ‘‘p.all.elem’’ (or more concisely ‘‘p.elem’’) selects the component elem
of that record variable.

3.6.1 Pointers and recursive types

Pointers and heap variables can be used to represent recursive values such as lists
and trees, but the pointer itself is a low-level concept. Manipulation of pointers
is notoriously error-prone and obscure in its effects, unless performed with care
and discipline. For example, consider the C++ assignment ‘‘p->succ = q’’, in
the context of the declarations of Example 3.13. Simple inspection of this pointer
assignment suggests that a list is being manipulated, but we cannot tell which list
is being manipulated. We cannot even tell whether the assignment deletes nodes
from the list (q points to a later node of the same list), or stitches together parts
of two different lists (q points to a node of a different list), or even introduces a
cycle which changes the entire data structure (q points to an earlier node of the
same list)!

Nevertheless, nearly all imperative languages provide pointers rather than
supporting recursive types directly. The reasons for this lie in the semantics and
implementation of assignment.

Given the C++ declarations:

IntNode* listA; IntNode* listB;

the assignment ‘‘listA = listB’’ updates listA to contain the same pointer
value as listB. In other words, listA now points to the same list as listB; the
list is shared by the two pointer variables. Any selective update of the list pointed
to by listA also selectively updates the list pointed to by listB, and vice versa,
because they are one and the same list.

Suppose that C++ were extended to support list types directly, e.g.:

int list listA; int list listB;

Now how should we expect the assignment ‘‘listA = listB’’ to be interpreted?
There are two possible interpretations:

• Copy semantics. Store in listA a complete copy of the list contained in
listB. Any subsequent update of either listA or listB would have no
effect on the other. This would be consistent with assignment of structures

3.6 Pointers 75

in C++, and is arguably the most natural interpretation. However, copying
of lists is expensive.

• Reference semantics. Store in listA a pointer to the list referred to by
listB. This interpretation would involve sharing, and would amount to
using pointers in disguise. It would be consistent with the assignment of
arrays in C++. Another advantage of this interpretation would be ease of
implementation.

A possible compromise would be to prohibit selective update of lists. Then
assignment could be implemented by sharing. In the absence of selective updates,
we cannot tell the difference between copy and reference semantics.

Similar points apply to other recursive types in imperative languages.

3.6.2 Dangling pointers

A dangling pointer is a pointer to a variable that has been destroyed. Dangling
pointers arise from the following situations:

• A pointer to a heap variable still exists after the heap variable is destroyed.

• A pointer to a local variable still exists (e.g., it is stored in a global variable)
at exit from the block in which the local variable was declared.

We have seen that some programming languages provide deallocators. Using
a deallocator immediately destroys a heap variable; all existing pointers to that
heap variable then become dangling pointers.

EXAMPLE 3.15 C++ dangling pointers to a heap variable

Consider the following C++ code:

struct Date {
int y, m, d;

};
Date* dateP = new Date;
dateP->y = 2000; dateP->m = 1; dateP->d = 1;
Date* dateQ = dateP;

Both dateP and dateQ contain pointers to the same heap variable.
Now the following deallocator:

delete dateQ;

destroys that heap variable. The two pointers still exist, but they point to unallocated
storage cells. Any attempt to inspect or update the dead heap variable:

cout << dateP->y;
dateP->y = 2003;

will then have unpredictable consequences.

76 Chapter 3 Variables and storage

Some programming languages, notably C and C++, allow us to obtain a pointer
to a local variable. Such a pointer could still be in existence at exit from the block
in which the local variable is declared.

EXAMPLE 3.16 C++ dangling pointer to a local variable

In C++ (or C), a pointer to a local variable can be obtained by using the ‘‘&’’ (address of)
operator. The following function f returns a pointer to the local variable fv:

int* f () {
int fv = 42;
return &fv;

}

The following code calls f, which returns a pointer, and then attempts to update the
pointer’s referent:

int* p = f();
*p = 0;

But the pointer’s referent is fv, and fv’s lifetime ended on return from f! Once again,
this code will have unpredictable consequences.

Attempting to access a destroyed variable is a serious fault, and one that is
difficult to debug. Inspecting a destroyed variable has an unpredictable effect:
it might simply inspect unallocated storage cells, or it might inspect storage
cells that have since been reallocated to some new variable. (If that new vari-
able has a different type from the destroyed variable, a type error then arises,
even if the programming language is otherwise safe from run-time type errors.)
Similarly, updating a destroyed variable has an unpredictable, possibly disas-
trous, effect.

Programming languages like C and C++ accept the risk of such faults as an
occupational hazard, and the onus is on programmers to avoid them. Languages
like ADA and JAVA, which are intended for highly robust applications, must
eliminate or at least minimize the risk of such faults.

JAVA provides no deallocator, so the lifetime of a heap variable continues as
long as it is reachable. Moreover, JAVA provides no means to obtain the address
of a local variable. So dangling pointers cannot arise in JAVA.

ADA does provide a deallocator, which is a library procedure named
Ada.Unchecked_Deallocation. Any compilation unit that uses the
deallocator must be prefixed by the clause:

with Ada.Unchecked_Deallocation;

so at least the unsafe code is prominently flagged. ADA also provides means
to obtain a pointer to a local variable, but such a pointer cannot be assigned
to a variable with a longer lifetime, so this feature never gives rise to a dan-
gling pointer.

3.7 Commands 77

3.7 Commands
Having considered variables and storage, let us now examine commands. A
command is a program construct that will be executed in order to update variables.

Commands are a characteristic feature of imperative, object-oriented, and
concurrent languages. Commands are often called statements, but we shall avoid
using that term in this book because it means something entirely different in logic
(and in English).

Commands may be formed in various ways. In this section we shall survey the
following fundamental forms of commands. Some commands are primitive:

• skips
• assignments
• proper procedure calls.

Others are composed from simpler commands:

• sequential commands
• collateral commands
• conditional commands
• iterative commands.

We will also consider block commands in Section 4.4.1, and exception-handling
commands in Section 9.4.

Here we are primarily interested in the concepts underlying commands, not
in their syntactic details. A well-designed imperative, object-oriented, or concur-
rent language should provide all or most of the above forms of command; it is
impoverished if it omits (or arbitrarily restricts) any important forms. Conversely, a
language that provides additional forms of command is probably bloated; the addi-
tional ones are likely to be unnecessary accretions rather than genuine enhance-
ments to the language’s expressive power. For instance, special input/output
commands (found in COBOL, FORTRAN, and PL/I) are unnecessary; input/output is
better provided by library procedures (as in C, C++, JAVA, and ADA).

All the above commands exhibit single-entry single-exit control flow. This
pattern of control flow is adequate for most practical purposes. But sometimes it is
too restrictive, so modern imperative and object-oriented languages also provide
sequencers (such as exits and exceptions) that allow us to program single-entry
multi-exit control flows. We shall study sequencers in Chapter 9.

3.7.1 Skips
The simplest possible kind of command is the skip command, which has no effect
whatsoever. In C, C++, and JAVA, the skip command is written simply ‘‘;’’.

Skips are useful mainly within conditional commands (Section 3.7.6).

3.7.2 Assignments
We have already encountered the concept of assignment in Sections 3.1–3.4.
The assignment command typically has the form ‘‘V = E;’’ (or ‘‘V := E;’’ in

78 Chapter 3 Variables and storage

ADA). Here E is an expression which yields a value, and V is a variable access
(Section 2.6.6) which yields a reference to a variable (i.e., its storage address).
The variable is updated to contain the value. (If the variable is a component of a
composite variable, the effect is selective update of that composite variable.)

More general kinds of assignment are possible. A multiple assignment,
typically written in the form ‘‘V1 = . . . = Vn = E;’’, causes the same value to
be assigned to several variables. For example, the following multiple assignment
assigns zero to two variables, m and n:

m = n = 0;

Some programming languages (including C, C++, and JAVA) allow binary
operators such as ‘‘+’’ to be combined with assignment. For example, the follow-
ing command:

n += 1;

(which is equivalent to ‘‘n = n+1;’’) increments the value of the variable n. This
kind of command can be traced back as far as COBOL, in which it is written less
concisely as ‘‘ADD 1 TO n’’.

Before we leave assignments, let us study variable accesses in a little more
detail. The following ADA commands contain four occurrences of the variable
access n:

get(n); n := n + 1; put(n);

Two of these occurrences (underlined) yield the current content of the variable.
The other two occurrences yield a reference to the variable, not the value contained
in it.

What is the ‘‘meaning’’ of a variable access? We could think of a variable
access as yielding a reference to a variable in some contexts, and the current
content of that variable in other contexts. Alternatively, we could think of a
variable access as always yielding a reference to a variable, but in certain contexts
there is an implicit dereferencing operation that takes a reference to a variable and
yields the current content of that variable. In the above commands, underlining
shows where dereferencing takes place.

3.7.3 Proper procedure calls

A proper procedure call is a command that achieves its effect by applying a
proper procedure (or method) to some arguments. The call typically has the
form ‘‘P(E1, . . . , En);’’, where P determines the procedure to be applied, and the
expressions E1, . . . , En are evaluated to determine the arguments. Each argument
may be a value or (if the corresponding expression is a variable access) a reference
to a variable.

The net effect of a proper procedure call, like any command, is to update
variables. The procedure can achieve this effect by updating variables passed as
arguments, and/or by updating global variables. (Updating the procedure’s local
variables will have no net effect, because the lifetime of these variables is just the
procedure’s activation.)

3.7 Commands 79

Proper procedures and parameters will be discussed in greater detail in
Sections 5.1.2 and 5.2, respectively.

3.7.4 Sequential commands

Since commands update variables, the order in which commands are executed
is important. Much of the programming effort in an imperative language is
concerned with control flow, i.e., ensuring that the commands will be executed
in a suitable order. This and the following three subsections are concerned with
ways of composing commands to achieve different control flows.

Sequential control flow is the most common. A sequential command specifies
that two (or more) commands are to be executed in sequence. A sequential
command might be written in the form:

C1 ; C2

meaning that command C1 is executed before command C2. Sequential control
flow is available in every imperative language, and is so familiar that it needs no
further discussion here.

3.7.5 Collateral commands

Less common is collateral control flow. A collateral command specifies that two
(or more) commands may be executed in any order. A collateral command might
be written in the form:

C1 , C2

where both C1 and C2 are to be executed, but in no particular order.
In the following collateral command:

m = 7 , n = n + 1;

the variables m and n are updated independently, and the order of execution
is irrelevant.

An unwise collateral command would be:

n = 7 , n = n + 1;

The net effect of this collateral command depends on the order of execution. Let
us suppose that n initially contains 0.

• If ‘‘n = 7’’ is executed first, n will end up containing 8.

• If ‘‘n = 7’’ is executed last, n will end up containing 7.

• If ‘‘n = 7’’ is executed between evaluation of ‘‘n + 1’’ and assignment of
its value to n, n will end up containing 1.

Collateral commands are said to be nondeterministic. A computation is
deterministic if the sequence of steps it will perform is entirely predictable;
otherwise the computation is nondeterministic. If we perform a deterministic
computation over and over again, with the same input, it will always produce

80 Chapter 3 Variables and storage

the same output. (This is significant in software testing.) But if we perform a
nondeterministic computation over and over again, with the same input, it might
produce different output every time.

Although the sequence of steps performed by a nondeterministic computation
is unpredictable, its output might happen to be predictable. We call such a compu-
tation effectively deterministic. A collateral command is effectively deterministic
if no subcommand inspects a variable updated by another subcommand.

3.7.6 Conditional commands

A conditional command has two or more subcommands, of which exactly one is
chosen to be executed.

The most elementary form of conditional command is the if-command,
in which a choice between two subcommands is based on a boolean value.
The if-command is found in every imperative language, and typically looks
like this:

if (E) C1

else C2

If the boolean expression E yields true, C1 is chosen; if it yields false, C2 is chosen.
The if-command is typically abbreviated when the second subcommand is

a skip:

if (E) C ≡ if (E) C
else ;

The if-command can be generalized to allow choice among several subcom-
mands:

if (E1) C1

else if (E2) C2

. . .

else if (En) Cn
else C0

Here the boolean expressions E1, E2, . . . , En are evaluated sequentially, and the
first Ei that yields true causes the corresponding subcommand Ci to be chosen. If
no Ei yields true, C0 is chosen instead.

The above conditional commands are deterministic: in each case we can predict
which subcommand will be chosen. A nondeterministic conditional command is
also sometimes useful, and might be written in the following notation:

if (E1) C1

or if (E2) C2

. . .

or if (En) Cn

Here the boolean expressions E1, E2, . . . , En would be evaluated collaterally, and
any Ei that yields true would cause the corresponding subcommand Ci to be
chosen. If no Ei yields true, the command would fail.

3.7 Commands 81

EXAMPLE 3.17 Nondeterministic if-command

Compare the following JAVA (or C or C++) if-command:

if (x >= y) max = x;
else max = y;

with the following hypothetical nondeterministic conditional command:

if (x >= y) max = x;
or if (x <= y) max = y;

The latter has the advantage of making explicit the condition under which ‘‘max = y;’’
may be executed; it also emphasizes that it does not matter which subcommand is chosen
in the case that x and y have equal values. So this particular command is effectively
deterministic.

Nondeterministic conditional commands tend to be available only in concur-
rent languages, where nondeterminism is present anyway, but their advantages
are not restricted to such languages.

A more general form of conditional command is the case command, in
which a choice between several subcommands is typically based on an integer (or
other) value.

ADA’s case command, in its simplest form, looks like this:

case E is
when v1 => C1

. . .

when vn => Cn
when others => C0

end case;

The expression E must yield a value of a discrete primitive type, such as a character,
enumerand, or integer. If that value equals one of the values vi, the corresponding
subcommand Ci is chosen. If not, C0 is chosen. (If ‘‘when others’’ is omitted,
the compiler checks that {v1, . . . , vn} are all the possible values of E.) The values
v1, . . . , vn must all be distinct, so the choice is deterministic.

EXAMPLE 3.18 ADA case command

In the following ADA case command, choice is based on a value of the enumeration type
Month (Example 3.2):

today: Date;
name: String(1 .. 3);
. . .

case today.m is
when jan => name := "JAN";
when feb => name := "FEB";
when mar => name := "MAR";

82 Chapter 3 Variables and storage

. . .

when dec => name := "DEC";
end case;

The nearest equivalent to a case command in C, C++, and JAVA is the switch
command. However, it has strange features, so we shall defer discussion until
Section 11.3.2.

Programming languages vary in the types of values that may be used to control
a case (or switch) command. C, C++, and JAVA allow integers only. ADA allows
characters, enumerands, integers, or indeed values of any discrete primitive type.
In principle, values of any type equipped with an equality test could be allowed.
HASKELL does have this generality, allowing primitive values, strings, tuples, or
disjoint unions (in fact any values except functions) to be used in case expressions.

3.7.7 Iterative commands

An iterative command (commonly known as a loop) has a subcommand that
is executed repeatedly. The latter subcommand is called the loop body. Each
execution of the loop body is called an iteration.

We can classify iterative commands according to when the number of iterations
is fixed:

• Indefinite iteration: the number of iterations is not fixed in advance.

• Definite iteration: the number of iterations is fixed in advance.

Indefinite iteration is typically provided by the while-command, which consists
of a loop body C and a boolean expression E (the loop condition) that controls
whether iteration is to continue. The while-command typically looks like this:

while (E) C

The meaning of the while-command can be defined by the following equivalence:

while (E) C ≡ if (E) {
C
while (E) C

}

This definition makes clear that the loop condition in a while-command is tested
before each iteration of the loop body.

Note that this definition of the while-command is recursive. In fact, iteration
is just a special form of recursion.

C, C++, and JAVA also have a do-while-command, in which the loop condition
is tested after each iteration:

do C while (E); ≡ C
while (E) C

A form of loop that allows us to test the loop condition in the middle of an
iteration has often been advocated. This might hypothetically be written:

3.7 Commands 83

do C1 while (E) C2 ≡ C1

while (E) {
C2

C1

}

This form subsumes both the while-command (if C1 is a skip) and the do-while-
command (if C2 is a skip). The argument for including this form of loop in a
programming language is undermined by experience, which suggests that this
form is still not general enough! In practice, the while-command is perfectly
adequate in the great majority of cases, but occasionally we need to write loops
with several loop conditions in different parts of the loop body. That need is best
served by some kind of escape sequencer (see Section 9.3).

EXAMPLE 3.19 Indefinite iteration

The following C while-command reads and prints all the characters in a file f (using a
hypothetical function eof(f) that tests whether any characters remain to be read from
file f):

char ch;
while (! eof(f)) {

ch = getchar(f);
putchar(ch);

}

The following code does the same thing, except that it assumes that getchar(f)
returns NUL when no more characters remain to be read from f:

char ch = getchar(f);
while (ch != NUL) {

putchar(ch);
ch = getchar(f);

}

Note the duplication of the call ‘‘getchar(f)’’.
Hypothetically, we could avoid this duplication by testing the loop condition in

the middle:

char ch;
do

ch = getchar(f);
while (ch != NUL)

putchar(ch);

Of course, every C programmer knows how to solve this problem concisely using an
ordinary while-command:

while ((ch = getchar(f)) != NUL)
putchar(ch);

However, this code uses a trick (incorporating the assignment into the loop condition) that
is not available for arbitrary commands.

84 Chapter 3 Variables and storage

Now let us consider definite iteration, which concerns loops where the number
of iterations is fixed in advance. Definite iteration is characterized by a control
sequence, a predetermined sequence of values that are successively assigned (or
bound) to a control variable.

The ADA for-command illustrates definite iteration. Its simplest form is:

for V in T loop
C

end loop;

The control variable is V, and the control sequence consists of all the values of
the type (or subtype) T, in ascending order. In the more explicit form:

for V in T range E1 .. E2 loop
C

end loop;

the control sequence consists of consecutive values of type T from v1 through v2,
where v1 and v2 are the values yielded by E1 and E2, respectively. In either form,
T may be any discrete primitive type.

Some programming languages allow the control sequence to be an arbitrary
arithmetic progression. This possibility is illustrated by ALGOL68:

for V := E1 to E2 by E3 do C

Here the control sequence is the longest sequence v1, v1 + v3, v1 + 2v3, . . . that
does not properly encompass v2, where v1, v2, and v3 are the values yielded by
E1, E2, and E3, respectively.

The control sequence need not be restricted to an arithmetic progression, nor
need it consist of primitive values. For instance, the control sequence could be the
components of an array. This is now supported by JAVA.

EXAMPLE 3.20 Definite iteration over an array

Suppose that dates is an array of dates. The following JAVA for-command prints all these
dates in order:

for (Date date : dates)
System.out.println(date);

This is much more concise, more readable, and less error-prone than the old-style coding:

for (int i = 0; i < dates.length; i++)
System.out.println(dates[i]);

In fact, JAVA now supports iteration over an arbitrary collection, such as an
array, list, or set. This form of for-command is:

for (T V : E) C

3.8 Expressions with side effects 85

Here V is the control variable, T is its type, and E yields a collection (whose
components must be of type T). The control sequence consists of all components of
the collection. Iteration over an array or list is deterministic, since the components
are visited in order. Iteration over a set is nondeterministic, since the components
are visited in no particular order.

The status of the control variable varies between programming languages. In
some older languages (such as FORTRAN and PASCAL), it is an ordinary variable
that must be declared in the usual way. This interpretation of a for-command with
control variable V and loop body C is as follows:

determine the control sequence �v1, . . . , vn
;
V = v1; C
. . .

V = vn; C

But this interpretation leads to such awkward questions as the following:

(a) What is V’s value after termination of the loop?
(b) What is V’s value after a jump or escape out of the loop?
(c) What happens if C itself attempts to assign to V?

In other languages (such as ADA), the for-command itself constitutes a
declaration of the control variable; moreover, its value is constant within the loop
body. This interpretation of a for-command with control variable V and loop body
C is as follows:

determine the control sequence �v1, . . . , vn
;
{ constant V = v1; C }

. . .

{ constant V = vn; C }

This makes the for-command completely self-contained, and neatly answers all
the questions posed above:

(a) V has no value outside the loop: the scope of its declaration is the loop
body only.

(b) Ditto.
(c) C cannot assign to V, since V is in fact a constant!

Finally, note that the for-command of C and C++ (and the old-style for-
command of JAVA) is nothing more than syntactic shorthand for a while-command,
and thus supports indefinite iteration:

for (C1 E1; E2) ≡ C1

C2 while (E1) {
C2

E2;
}

3.8 Expressions with side effects
The primary purpose of evaluating an expression is to yield a value. In some
imperative and object-oriented languages, however, it is possible that evaluating

86 Chapter 3 Variables and storage

an expression has the side effect of updating variables. Let us now consider
expressions that have side effects.

3.8.1 Command expressions
Suppose that we are required to write an expression to evaluate the polynomial:

cnxn + . . . + c2x2 + c1x + c0

given x, n, and an array of coefficients ci. Any solution must be either recursive
or iterative. A recursive solution would imply defining and calling a recursive
function, which we might prefer to avoid. An iterative solution meets the problem
that, while iterative commands are common, iterative expressions are not. So we
need some kind of expression that contains a command: a command expression.

EXAMPLE 3.21 Command expression
The following hypothetical command expression would evaluate our polynomial:

{
float p = c[n];
for (int i = n-1; n >= 0; n--) p = p*x + c[i];
p

}

Here we are assuming C-like notation. After elaborating the declarations and executing the
commands after ‘‘{’’, the subexpression just before ‘‘}’’ would be evaluated to determine
the value yielded by the command expression.

In ADA, the body of a function procedure is, in effect, a command expression.
This allows assignments and iteration to be used in computing function results, but
also makes it possible for a function call to have side effects (perhaps unintended).

In fact, any kind of command expression makes side effects possible. As
it happens, the command expression of Example 3.21 updated only the local
variablesp andi, so it had no side effects. But now consider the following example.

EXAMPLE 3.22 Expressions with side effects
Consider the C function call ‘‘getchar(f)’’, which reads a character from file f and
returns that character. This function call has a side effect on the file variable f. Conse-
quently, the following code:

enum Gender {female, male};
Gender g;
if (getchar(f) == 'F') g = female;
else if (getchar(f) == 'M') g = male;
else . . .

is misleading: two different characters are read and compared with ‘F’ and ‘M’.

3.9 Implementation notes 87

Side effects may introduce nondeterminism into expression evaluation. Con-
sider any expression of the form ‘‘E1 ⊗ E2’’, where ⊗ is a binary operator, and
where E1 has a side effect that affects the evaluation of E2, or vice versa; the result
of evaluating this expression depends on the order in which the subexpressions
E1 and E2 are evaluated. Some programming languages allow subexpressions to
be evaluated in any order, giving rise to nondeterminism. Other languages avoid
such nondeterminism by insisting that subexpressions are evaluated from left
to right.

In summary, side effects in expressions tend to make programs hard to
understand. Undisciplined use of side effects is bad programming practice.

3.8.2 Expression-oriented languages

An expression-oriented language is an imperative or object-oriented language in
which no distinction is made between expressions and commands. Evaluating any
expression yields a value and may also have side effects. ALGOL68 and ML (and
C-like languages, to some extent) are examples of expression-oriented languages.

One benefit of this design is to avoid duplication between expressions and
commands. An expression-oriented language does not need both function proce-
dures and proper procedures. Nor does it need both conditional expressions and
conditional commands.

In an expression-oriented language the assignment ‘‘V = E’’ could be defined
to yield the value of E, together with the side effect of storing that value in the
variable yielded by V. Since the assignment is itself an expression, we can also write
‘‘V1 =(V2 = E)’’; in other words, we get multiple assignment free. (However, some
expression-oriented languages define their assignments differently. For example,
an ML assignment expression actually yields the 0-tuple ().)

There is no obvious result for a skip or loop. Typically an expression-oriented
language defines a skip or loop to yield a neutral value such as 0 or ().

Thus expression-oriented languages achieve a certain simplicity and unifor-
mity by eliminating the distinction between expressions and commands. So why
do conventional imperative languages still retain this distinction? The justification
is an issue of programming style. Although expressions may have side effects
in conventional languages, the use of side effects by programmers is informally
deprecated. (Indeed the designers of ADA initially attempted, unsuccessfully, to
prohibit side effects.) On the other hand, expression-oriented languages positively
encourage the use of side effects, leading to a cryptic programming style that is
well exemplified by the C-like languages:

while ((ch = getchar(f)) != NUL)
putchar(ch);

3.9 Implementation notes

In this section we briefly examine how compilers allocate storage for global, local,
and heap variables.

88 Chapter 3 Variables and storage

Each variable occupies storage space throughout its lifetime. That storage
space must be allocated at the start of the variable’s lifetime. The storage space
may be deallocated at the end of the variable’s lifetime, or at any time thereafter.

The amount of storage space occupied by each variable depends on its type
(see Section 2.7). For this reason the compiler must know the type of each
variable, because the compiler cannot predict the actual values it will contain. In
most programming languages, each variable’s type must be declared explicitly, or
the compiler must be able to infer its type.

3.9.1 Storage for global and local variables

A global variable’s lifetime is the program’s entire run-time. A fixed storage space
can therefore be allocated to each global variable.

A local variable’s lifetime is an activation of the block in which the variable
is declared. The lifetimes of local variables are nested, so storage space can be
allocated to them in a stack, as we shall see shortly.

Recall the program outlined in Example 3.9. The variables x1 and x2 are
local to main, so their lifetime is the program’s entire run-time; in other words,
x1 and x2 occupy storage throughout the program’s run-time. The variables y1
and y2 are local to procedure P, so their lifetime is an activation of P; thus storage
must be allocated for y1 and y2 when P is called, and deallocated when P returns.
Similarly, storage must be allocated for the local variable z when procedure Q is
called, and deallocated when Q returns. The net effect of all this is that storage
space allocated to local variables expands and contracts stack-fashion. This is
illustrated in Figure 3.10.

In general, storage for local variables is allocated on a stack of activation
frames. Each activation frame contains enough space for the local variables of
a particular procedure. An activation frame is pushed on to the stack when a
procedure is called, and popped off the stack when the procedure returns.

x1
?x2

x1
x2

x1
x2

x1
x2

y1

y2

z

activation
frame

Key:

x1
?x2

?

y1

y2

x1
x2

y1

y2

z

call P return from Qcall Q call Qreturn from P

house-
keeping
data

local
variables

? ?

?

?

?
?

?

?

?
?

?

?

?
?

?
?

?

Figure 3.10 Storage for local variables (Example 3.9).

3.9 Implementation notes 89

x x

w

x

w

x

w

x

w

x

w

w

w

ww

return from Rcall R call R call R return from R

? ?

?

?

?

?

?

?

?

?

?

?

?

??

Figure 3.11 Storage for local variables of a recursive procedure (Example 3.10).

Storage allocation on a stack is economical: at any time, storage is allocated
only to variables local to currently-active procedures. Moreover, storage can be
allocated to local variables of recursive procedures in exactly the same way; this is
illustrated in Figure 3.11 for the program outlined in Example 3.10.

3.9.2 Storage for heap variables

A heap variable’s lifetime starts when the heap variable is created and ends when
it is destroyed or becomes unreachable. Since heap variables can be created and
destroyed at arbitrary times, there is no pattern in their lifetimes analogous to the
nested lifetimes of local variables.

Heap variables occupy a storage region called the heap. At any given time, the
heap contains all currently-live heap variables (in no particular order) interspersed
with unallocated storage space. When a new heap variable is to be created, some
unallocated storage space is allocated to it. When a heap variable is to be destroyed,
the storage space occupied by that heap variable reverts to being unallocated; in
other words, that storage space is recycled. To keep track of the allocated and
unallocated storage space we need a heap manager, part of the run-time system.

If the programming language has no deallocator, the heap manager must
additionally be capable of finding and recycling unreachable heap variables.
(Otherwise heap storage would eventually be exhausted.) This process is called
garbage collection.

The effect of garbage collection is illustrated in Figure 3.12 for the program of
Example 3.11. After the node containing 5 is removed from the odds and primes
lists, the garbage collection algorithm will eventually discover that that node is
unreachable, and will then recycle it as unallocated space.

The garbage collector must visit all heap variables in order to find all those
that have become unreachable. In real applications there might be thousands or
even millions of heap variables. Garbage collection is therefore time-consuming.
However, garbage collection is far more reliable in practice than placing the onus
on programmers to destroy their own unreachable heap variables. Programmers
often forget to do so, resulting in uneconomical use of heap storage. Worse

90 Chapter 3 Variables and storage

7

5

2

7

5

2

odds
primes

odds
primes

odds
primes

odds
primes

3 3

heap

Key:
unallocated space

heap variables

call and return
from Q

call and return
from P

do garbage
collection

7

2

3

Figure 3.12 Storage for heap variables (Example 3.11).

still, programmers sometimes inadvertently destroy heap variables that are still
reachable, a logical error that gives rise to dangling pointers.

3.9.3 Representation of dynamic and flexible arrays
An array indexing operation will have unpredictable consequences if the value
used to index the array is out-of-range. To avoid this, in general, we need a
run-time range check on the indexing value.

A static array’s index range is known at compile-time, so the compiler can
easily generate object code to perform the necessary range check.

However, a dynamic or flexible array’s index range is known only at run-
time. The array’s index range must therefore be stored as part of the array’s
representation.

This is illustrated in Figure 3.13(a) for the ADA Vector type of Example 3.5.
Each Vector array’s representation includes its lower and upper bounds as well
as its components.

If the programming language fixes all arrays’ lower bounds at zero, it is
sufficient for each array’s representation to include its length as well as its
components. This is illustrated in Figure 3.13(b) for the JAVA float[] type of
Example 3.6.

Further reading 91

1 2.0

3.0

5.0

2

3

0 0.0

0.0

0.0

1

2

(a)

(b)

4 7.0

low 1
4high

low 0
2high

1

2.0

3.0

5.02

3

0 0.0

0.0

0.0

1

2

0

7.0

4length 3length

Figure 3.13 Representation of (a) ADA arrays of type
Vector (Example 3.5); (b) JAVA arrays of type
float[] (Example 3.6) (with tag fields omitted).

Summary
In this chapter:

• We have introduced a simple storage model that allows us to understand the
behavior of variables.

• We have explored the behavior of simple and composite variables, in particular
the difference between total and selective update of a composite variable, and the
distinction between copy semantics and reference semantics.

• We have compared and contrasted the lifetimes of global, local, heap, and persis-
tent variables.

• We have studied pointers, their use in representing recursive types, and the danger
of dangling pointers.

• We have surveyed the forms of command found in programming languages, focusing
on conceptual issues rather than syntactic differences.

• We have seen sources and consequences of side effects in expressions, and looked
at expression-oriented languages that make no distinction between expressions
and commands.

• We have seen how storage is allocated for global, local, and heap variables, and how
dynamic and flexible arrays are represented.

Further reading

The notion that distinctions between persistent and tran-
sient data types should be avoided received much attention
in the 1980s. For a survey of research on this topic, see
ATKINSON and BUNEMAN (1987).

The nondeterministic conditional command discussed in
Section 3.7.6, and a corresponding nondeterministic

iterative command, were designed by DIJKSTRA (1976)
to support the particular programming discipline that he
advocated.

The design of loops with multiple exits attracted much
attention in the 1970s. See, for example, ZAHN (1974).

92 Chapter 3 Variables and storage

Exercises
Exercises for Section 3.1

3.1.1 Which types of values are storable values in your favorite programming lan-
guage?

Exercises for Section 3.2
3.2.1 Which types of variables are simple variables in your favorite program-

ming language?

Exercises for Section 3.3
3.3.1 Systematically analyze the composite variables of your favorite programming

language. Which types of variables are composite variables? How are they
selectively updated? Can they also be totally updated? Are static, dynamic,
and/or flexible arrays supported?

*3.3.2 In some programming languages (such as C, C++, and ADA), strings are treated
as arrays of characters. Compare the consequences of this decision when a
string variable is: (a) a static array; (b) a dynamic array; (c) a flexible array.
In each case, can string operations such as comparison and concatenation be
defined in the language itself?

Exercises for Section 3.4
3.4.1 Does your favorite programming language adopt copy semantics or reference

semantics? If it adopts copy semantics, does it allow you to achieve the effect
of reference semantics? If it adopts reference semantics, does it allow you to
achieve the effect of copy semantics?

Exercises for Section 3.5
3.5.1 Systematically analyze the lifetimes of variables of your favorite programming

language. Are global, local, and/or heap variables supported? What determines
the lifetime of each variable?

3.5.2 Consider the following C program:

void main () {
int f;
f = fac(3);

}

int factorial (int n) {
int p, i;
p = 1;
for (i = 2; i <= n; i++)
p *= i;

return p;
}

(a) Make a diagram, similar to Figure 3.6, showing the lifetimes of the local
variables in this program. (Note that the formal parameter n is, in effect,
a local variable of the factorial function.)

Exercises 93

(b) Repeat with the above version of the factorial function replaced by
the following recursive version:

int factorial (int n) {
if (n > 1) return n * factorial(n-1);
else return 1;

}

3.5.3 Complete the following ADA program (or rewrite it in your own favorite
programming language):

procedure main is

type IntNode;
type IntList is access IntNode;
type IntNode is

record
elem: Integer;
succ: IntList;

end record;

IntList ints := null;

procedure add (i: Integer) is
-- Insert a node containing i into ints, keeping it sorted.
begin

. . .

end;

procedure remove (i: Integer) is
-- Remove the first node containing i from ints, or do nothing
-- if there is no such node.
begin

. . .

end;

begin
add(6); add(2); add(9); add(5);
remove(9); remove(6);

end;

Make a diagram showing the lifetimes of the heap variables and of ints.

3.5.4 Summarize your favorite programming language’s transient data types and
persistent data types. Is there any overlap between them?

**3.5.5 Redesign your favorite programming language to eliminate all specific input/
output features. Instead, allow the programmer to create persistent variables
(of any type) in much the same way as heap variables. What types would
be suitable replacements for your language’s existing persistent data types?
Choose an existing program that contains a lot of (binary) input/output code,
and rewrite it in your redesigned language.

Exercises for Section 3.6

3.6.1 Does your favorite programming language support pointers, either explicitly
or implicitly? Can dangling pointers arise, and (if so) how?

94 Chapter 3 Variables and storage

**3.6.2 Choose an imperative language (such as C, C++, or ADA) that provides pointer
types. Redesign that language to abolish pointer types, instead allowing
programmers to define recursive types directly. Consider carefully the issue of
copy semantics vs reference semantics.

Exercises for Section 3.7
3.7.1 Systematically analyze the forms of commands of your favorite programming

language. Compare these with the forms discussed in Section 3.7. Are any
relevant forms missing in your language? Are any exotic forms provided, and
are they essential?

**3.7.2 Design an extension to your favorite programming language that would add
list types (allowing declarations such as ‘‘odds: list of Integer;’’).
Lists are not to be selectively updatable. Provide suitable list constructions,
including one for generating arithmetic progressions. Replace the existing
for-command by one where the control sequence is specified by a list.

*3.7.3 We can gain insight into the nature of commands by stating equivalences
between different commands. For example, if ‘‘C1 ; C2’’ is a sequential
command and ‘‘C1 , C2’’ is a collateral command, we can state:

C ; skip ≡ C
C1 , C2 ≡ C2, C1

State as many other equivalences as you can discover. (Of course, ‘‘C1 ; C2’’
is not equivalent to ‘‘C2 ; C1’’.)

3.7.4 Recursively define the C command ‘‘do C while (E)’’, similarly to the way
in which the while-command is recursively defined in Section 3.7.7.

*3.7.5 Consider the questions (a), (b), and (c), posed at the end of Section 3.7.7,
concerning the interpretation of a for-command with control variable V
and loop body C. How does your favorite programming language answer
these questions?

Exercises for Section 3.8
*3.8.1 Some programmers assert that side effects in expressions are a useful feature of a

programming language. Develop arguments both for and against this assertion.

*3.8.2 Non-void functions in C and C++, and ADA function procedures, not only return
results but also may have side effects. Formulate restrictions on such functions
that would eliminate side effects. Bear in mind that any such restrictions should,
ideally, be enforceable by the compiler. Do your restrictions significantly reduce
the language’s expressive power?

Exercises for Section 3.9
3.9.1 Using diagrams similar to Figures 3.10 and 3.11, show the allocation of storage

to the local variables of the programs in Exercise 3.5.2(a) and (b).

3.9.2 Using diagrams similar to Figures 3.10–3.12, show the allocation of storage to
the local and heap variables of the program in Exercise 3.5.3.

Chapter 4

Bindings and scope

Every programming language enables programmers to write declarations that bind identi-
fiers to entities such as values (constants), variables, and procedures. This concept is both
fundamental and pragmatically important. Well-chosen identifiers help to make a program
easy to understand. More importantly, binding an identifier to an entity in one place, and
using that identifier to denote the entity in many other places, helps to make the program
easy to modify: if the entity is to be changed, only its declaration must be modified, not the
many parts of the code where the entity is used.

In this chapter we shall study:

• bindings and environments, which capture the associations between identifiers and
the entities they denote;

• scope, block structure, and visibility, which are concerned with which parts of the
program are affected by each declaration;

• declarations, which are program constructs that bind identifiers to entities;

• blocks, which are program constructs that delimit the scopes of declarations.

4.1 Bindings and environments
The expression ‘‘n+1’’ uses the identifier n; the expression ‘‘f(n)’’ uses the
identifiers f and n. If identifiers occur in an expression, the expression cannot
be understood in isolation; its meaning depends on the declarations of these
identifiers elsewhere in the program. Similarly, the meaning of a command such
as ‘‘m = n + 1;’’ or ‘‘print(m/2);’’ depends on the declarations of identifiers
that occur in that command.

Many programming languages allow the same identifier to be declared in
several parts of the program. The interpretation of an expression or command
using that identifier then depends on where the expression or command appears
in the program.

EXAMPLE 4.1 Effects of declarations

Consider the ADA expression ‘‘n+1’’, which uses the identifier n.

• If n is declared as follows:

n: constant Integer := 7;

95

96 Chapter 4 Bindings and scope

then n denotes the integer seven, so the expression ‘‘n+1’’ is evaluated by adding
one to seven.

• If n is declared as follows:

n: Integer;

then n denotes an integer variable, so the expression ‘‘n+1’’ is evaluated by adding
one to the current value of that variable.

We can understand the effects of declarations by invoking the concepts of
bindings, environments (explained in this section), and scope (explained in the
next section).

A binding is a fixed association between an identifier and an entity such as
a value, variable, or procedure. A declaration produces one or more bindings.
The constant declaration in Example 4.1 binds n to the value 7. The variable
declaration in Example 4.1 binds n to a newly created variable.

An environment (or name space) is a set of bindings. Each expression or
command is interpreted in a particular environment, and all identifiers used in the
expression or command must have bindings in that environment. It is possible that
expressions and commands in different parts of the program will be interpreted in
different environments.

Usually at most one binding per identifier is allowed in any environment. An
environment is then a partial mapping from identifiers to entities.

EXAMPLE 4.2 Environments

Consider the following ADA program skeleton:

procedure p is

z: constant Integer := 0;
c: Character;

procedure q is
c: constant Float := 3.0e6;
b: Boolean;

begin
(2) . . .

end q;

begin
(1) . . .

end p;

The environment at point (1) is:

{ c→ a character variable,
p→ a proper procedure,
q→ another proper procedure,
z→ the integer 0 }

4.2 Scope 97

The environment at point (2) is:

{ b→ a boolean variable,
c→ the real number 3.0×106,
p→ a proper procedure,
q→ another proper procedure,
z→ the integer 0 }

A bindable entity is one that may be bound to an identifier. Programming
languages vary in the kinds of entity that are bindable:

• C’s bindable entities are types, variables, and function procedures.
• JAVA’s bindable entities are values, local variables, instance and class

variables, methods, classes, and packages.
• ADA’s bindable entities include types, values, variables, procedures, excep-

tions, packages, and tasks.

4.2 Scope
The scope of a declaration is the portion of the program text over which the
declaration is effective. Similarly, the scope of a binding is the portion of the
program text over which the binding applies.

In some early programming languages, the scope of each declaration was the
whole program. In modern languages, the scope of each declaration is influenced
by the program’s syntactic structure, in particular the arrangement of blocks.

4.2.1 Block structure
A block is a program construct that delimits the scope of any declarations within
it. Each programming language has its own forms of blocks:

• The blocks of a C program are block commands ({ . . . }), function bodies,
compilation units (source files), and the program as a whole.

• The blocks of a JAVA program are block commands ({ . . . }), method
bodies, class declarations, packages, and the program as a whole.

• The blocks of an ADA program are block commands (declare . . . begin
. . . end;), procedure bodies, packages, tasks, protected objects, and the
program as a whole.

In Section 4.4 we shall look at the syntactic aspects of blocks. In this section we
are concerned only with the language’s block structure, which is the arrangement
of blocks in the program text. In particular, we are interested in whether blocks
can be nested within one another.

Figures 4.1, 4.2, and 4.3 contrast three kinds of block structure. Each box
represents a block. The scopes of some declarations are indicated by shading.

In a language with monolithic block structure (Figure 4.1), the only block is
the whole program, so the scope of every declaration is the whole program. In
other words, all declarations are global. This is exemplified by older versions of
COBOL.

98 Chapter 4 Bindings and scope

declaration of x

declaration of y scope of declarations of x, y, z
declaration of z

Figure 4.1 Monolithic
block structure.

declaration of x

declaration of y

scope of declaration of x
(including all inner blocks)

declaration of z
scope of declaration of z

scope of declaration of y

Figure 4.2 Flat
block structure.

declaration of x

declaration of y

scope of declaration of y
(including the inner block)

scope of declaration of zdeclaration of z

scope of declaration of x
(including all inner blocks)

Figure 4.3 Nested
block structure.

Monolithic block structure is the simplest possible block structure, but it is far
too crude, particularly for writing large programs. Programmers must take care
to ensure that all declarations have distinct identifiers. This is very awkward for
large programs being developed by a team of programmers.

In a language with flat block structure (Figure 4.2), the program is partitioned
into several non-overlapping blocks. This is exemplified by FORTRAN, in which
procedure bodies may not overlap, but each procedure body acts as a block.
A variable can be declared inside a particular procedure body, and its scope is
that procedure body. The scope of each global variable (and the scope of each
procedure itself) is the whole program.

4.2 Scope 99

Although flat block structure is an improvement on monolithic block structure,
it still has disadvantages. One is that every procedure and every global variable
must have a distinct identifier. Another is that any variable that cannot be local to
a particular procedure is forced to be global, and thus have the whole program as
its scope, even if it is accessed by only a couple of procedures.

In a language with nested block structure (Figure 4.3), blocks may be nested
within other blocks. This is exemplified by the many ALGOL-like languages. C has
a restrictive nested block structure, in which function bodies may not overlap,
but block commands may be nested freely within function bodies. JAVA has a less
restrictive nested block structure, in which method bodies and inner classes may
be nested within a class. ADA has an unrestricted nested block structure, in which
block commands, procedure bodies, packages, and so on may be freely nested one
within another.

The advantage of nested block structure is that a block can be located
anywhere an identifier has to be declared.

4.2.2 Scope and visibility

Consider all the occurrences of identifiers in a program. We must distinguish two
different kinds of identifier occurrences:

• A binding occurrence of identifier I is an occurrence where I is bound to
some entity X.

• An applied occurrence of I is an occurrence where use is made of the entity
X to which I has been bound. At each such applied occurrence we say that
I denotes X.

In a well-formed program, each applied occurrence of I corresponds to exactly
one binding occurrence of I.

For example, the occurrence of the identifier n in the ADA declaration ‘‘n:
constant Integer := 7;’’ is a binding occurrence, where n is bound to 7;
thereafter, the two occurrences of n in the expression ‘‘n*(n-1)’’ are applied
occurrences, at which n denotes 7.

When a program contains more than one block, it is possible for the same
identifier I to be declared in different blocks. In general, I will denote a different
entity in each block. This allows programmers to choose freely which identi-
fiers to declare and use within a given block, without worrying about whether
(by coincidence) the same identifiers might have been declared and used in
other blocks.

But what happens if the same identifier is declared in two nested blocks?
This possibility, which is illustrated in Figure 4.4, is a consequence of nested
block structure.

Consider two nested blocks, such that the inner block lies within the scope of
a declaration of identifier I in the outer block:

• If the inner block does not contain a declaration of I, then applied occur-
rences of I both inside and outside the inner block correspond to the same

100 Chapter 4 Bindings and scope

declaration of x

declaration of x
scope of inner declaration of x

scope of outer declaration of x
(excluding the inner block)

Figure 4.4 Hiding.

declaration of I. The declaration of I is then said to be visible throughout
the outer and inner blocks.

• If the inner block does contain a declaration of I (as in Figure 4.4), then
all applied occurrences of I inside the inner block correspond to the inner,
not the outer, declaration of I. The outer declaration of I is then said to be
hidden by the inner declaration of I.

Recall Example 4.2. The constant declaration of c inside procedure q hides
the variable declaration of c inside procedure p. All the other declarations in the
main program, however, are visible inside the procedure.

In this subsection we have made certain simplifying assumptions, which we
shall later examine in detail:

• that the programming language is statically scoped (see Section 4.2.3);

• that the scope of each declaration is the entire enclosing block (see
Section 4.3.8);

• that there is no overloading (see Section 8.3).

4.2.3 Static vs dynamic scoping

So far we have assumed that the programming language is statically scoped. In this
subsection we explain what that means, and what is the alternative.

EXAMPLE 4.3 Static vs dynamic scoping

Consider the following outline of a program in a C-like language:

const int s = 2;

int f (int x) {
(1) return s * x;

}

void p (int y) {
(2) print(f(y));

}

4.2 Scope 101

void q (int z) {
const int s = 3;

(3) print(f(z));
}

The result of the function call ‘‘f(. . .)’’ depends on how the language interprets the applied
occurrence of s at point (1) in the body of function f:

• The body of function f could be executed in the environment of the function
definition. In that environment s would denote 2, so ‘‘f(. . .)’’ would multiply the
value of its argument by 2, regardless of where the function is called.

• The body of function f could be executed in the environment of the function call.
Then the function call ‘‘f(y)’’ at point (2) would multiply the value of y by 2, since
at that point s denotes 2. On the other hand, the function call ‘‘f(z)’’ at point
(3) would multiply the value of z by 3, since at that point s denotes 3.

A language is statically scoped if the body of a procedure is executed in
the environment of the procedure’s definition. Thus we can decide at compile-
time which binding occurrence of an identifier corresponds to a given applied
occurrence.

A language is dynamically scoped if the body of a procedure is executed
in the environment of the procedure call. That environment varies from one
procedure call to another, so we cannot decide until run-time which binding
occurrence of an identifier corresponds to a given applied occurrence.

With static scoping, we can determine the binding occurrence that corresponds
to a given applied occurrence of identifier I, just by examining the program text.
We find the smallest block containing the applied occurrence of I that also
contains a binding occurrence of I; the latter is the binding occurrence we seek.
The association between applied occurrences and binding occurrences is fixed. In
Example 4.3, therefore, we could safely replace the applied occurrence of s in the
body of function f by the literal 2.

With dynamic scoping, on the other hand, the binding occurrence that cor-
responds to a given applied occurrence of identifier I depends on the program’s
dynamic flow of control. Whenever the entity denoted by I is needed, we find the
most recently elaborated declaration of I that is inside a currently active block.

There is a conflict between dynamic scoping and static typing. In Example 4.3,
suppose that the global declaration of swere replaced by ‘‘char[] s = ". . .";’’.
With static scoping, the type error in ‘‘return s*x;’’ would be detected by
compile-time type checks. With dynamic scoping, the function call ‘‘f(z)’’ at
point (3) would be unaffected, but the function call ‘‘f(y)’’ at point (2) would
result in a type error. The compiler could predict that type error only if the
program’s flow of control were predictable – which is not the case, in general.

For this reason, dynamically scoped languages (such as SMALLTALK and early
versions of LISP) are also dynamically typed. The conflict between dynamic scoping
and static typing illustrates a more general problem with dynamic scoping, namely
the fact that it tends to make code harder to understand. If a procedure P accesses
a nonlocal constant or variable, or calls a nonlocal procedure, the effect will

102 Chapter 4 Bindings and scope

depend on where P was called. Indeed, P might be used in ways never anticipated
by its programmer.

Nearly all programming languages (including C, C++, JAVA, and ADA) are
statically scoped. In this book we shall generally assume static scoping, except in
a few places where dynamic scoping is explicitly mentioned.

Let X be a program construct such as a command or expression. An applied
occurrence of an identifier I is said to be free in X if there is no corresponding
binding occurrence of I in X. In Example 4.3, the applied occurrences of s and
x are free in ‘‘return s*x;’’; but only the applied occurrence of s is free in
the function definition as a whole, since the function definition contains a binding
occurrence of x (as a formal parameter).

4.3 Declarations

Having considered bindings, environments, and scope, let us now examine the
program constructs that produce bindings. A declaration is a construct that will
be elaborated to produce bindings.

All declarations produce bindings; some have side effects such as creating
variables. We shall use the term definition for a declaration whose only effect is
to produce bindings.

Each programming language has several forms of simple declarations, covering
all kinds of entities that are bindable in the language. Nearly all languages support
the following:

• type declarations

• constant declarations

• variable declarations

• procedure definitions.

Some languages additionally support exception declarations, package declarations,
class declarations, and so on.

Declarations may also be composed from simpler declarations:

• collateral declarations

• sequential declarations

• recursive declarations.

4.3.1 Type declarations

A type declaration binds an identifier to a type. We can distinguish two kinds
of type declaration. A type definition binds an identifier to an existing type. A
new-type declaration binds an identifier to a new type that is not equivalent to
any existing type.

Type definitions fit with structural equivalence of types, while new-type
declarations fit with name equivalence of types. (See Section 2.5.2.)

4.3 Declarations 103

Some languages, such as C, C++, and HASKELL, support both type definitions
and new-type declarations. These languages also adopt a mixture of structural and
name equivalence.

EXAMPLE 4.4 C++ type declarations
In C++ (and C),typedef introduces a type definition that binds an identifier to an existing
type. The following type definition:

typedef char* Alpha;

binds Alpha to the existing type whose values are pointers to characters. Thereafter
Alpha is structurally equivalent to ‘‘char*’’, so the types of the following variables
are equivalent:

Alpha s1;
char* s2;

Thus we may assign s1 to s2, or vice versa.
On the other hand, the keywords enum, struct, and union all introduce type

declarations that bind identifiers to new types. The following type declarations:

struct Book {Alpha title, int edn};
struct Author {Alpha name, int age};

bind Book and Author to two types that are not equivalent to each other (although their
values happen to be structurally similar). Thus we may not assign a Book value to an
Author variable, or vice versa.

ADA consistently adopts name equivalence, and every type declaration creates
a new type.

EXAMPLE 4.5 ADA type declarations
The following ADA type declaration:

type Alpha is array (1 .. 32) of Character;

binds Alpha to a new array type. The following type declarations:

type Book is
record

title: Alpha;
edn: Integer;

end record;

type Author is
record

name: Alpha;
age: Integer;

end record;

bind Book and Author to two non-equivalent record types. Thus we may not assign a
Book value to an Author variable, or vice versa.

104 Chapter 4 Bindings and scope

4.3.2 Constant declarations
A constant declaration binds an identifier to a constant value.

A constant declaration typically has the form ‘‘const I = E;’’, and binds
the identifier I to the value of the expression E; the constant’s type is determined
by the type of E. An alternative form is ‘‘const T I = E;’’, which states
explicitly that the constant’s type is T.

In some programming languages E must be an expression that can be evaluated
at compile-time. E may be expressed in terms of literals, other constants, operators,
and so on.

In the more modern languages (including C++, JAVA, and ADA), E is an
arbitrary expression. In particular, E may access variables or parameters, in which
case it must be evaluated at run-time.

EXAMPLE 4.6 ADA constant declarations

Consider the following ADA constant declarations:

pi: constant Float := 3.1416;
twice_pi: constant Float := 2.0 * pi;

The value bound to pi is given by a literal. The value bound to twice_pi is given by an
expression that is evaluated at compile-time.

But now consider the constant declaration in the following function body:

function area (x, y, z: Float) return Float is
s: constant Float := (x + y + z)/2.0;

begin
return sqrt(s*(s-x)*(s-y)*(s-z));

end;

The value bound to s is given by an expression that can be evaluated only at run-time,
since the values of the parameters x, y, and z are known only when the procedure is called.

4.3.3 Variable declarations
A variable declaration, in its simplest form, creates a single variable and binds
an identifier to that variable. Most programming languages also allow a variable
declaration to create several variables and bind them to different identifiers.

A variable renaming definition binds an identifier to an existing variable. In
other words, it creates an alias. ADA supports variable renaming definitions, but
few other languages do so.

EXAMPLE 4.7 ADA variable declarations

The following ADA variable declaration:

count: Integer;

4.3 Declarations 105

creates an integer variable, and binds the identifier count to that variable. The following
variable declaration:

count: Integer := 0;

does likewise, but also initializes the variable to zero.
The following ADA variable renaming definition:

pop: Integer renames population(state);

binds the identifier pop to an existing integer variable, namely a component of the array
variable population. In other words, pop is now an alias for the component variable
population(state). Subsequently, whenever desired, pop can be used to access this
component variable concisely and efficiently:

pop := pop + 1;

4.3.4 Procedure definitions

A procedure definition binds an identifier to a procedure. In most program-
ming languages, we can bind an identifier to either a function procedure or a
proper procedure.

EXAMPLE 4.8 C++ procedure definitions

The following C++ procedure definition:

bool even (int n) {
return (n % 2 == 0);

}

binds the identifier even to a function procedure that tests whether its integer argument
is even.

The following C++ procedure definition:

void double (int& n) {
n *= 2;

}

binds the identifier double to a proper procedure that doubles its argument, an inte-
ger variable.

4.3.5 Collateral declarations

We now consider how declarations may be composed. The choice is between
collateral composition, sequential composition, and recursive composition. Each
of these has a different impact on the scope of bindings. We shall look at these
forms of composition in this and the following two subsections.

A collateral declaration composes subdeclarations that are to be elaborated
independently of each other. These subdeclarations may not use bindings produced

106 Chapter 4 Bindings and scope

by each other. The collateral declaration merges the bindings produced by its
subdeclarations. Collateral declarations are uncommon in imperative and object-
oriented languages, but they are common in functional and logic languages.

EXAMPLE 4.9 ML collateral declarations

The following ML collateral value definition:

val e = 2.7183
and pi = 3.1416

combines independent subdeclarations of the identifiers e and pi. This collateral declara-
tion produces the following bindings:

{ e→ the real number 2.7183,
pi→ the real number 3.1416 }

The scope of these bindings starts at the end of the collateral declaration. Thus we
could not extend the collateral declaration as follows:

val e = 2.7183
and pi = 3.1416
and twicepi = 2 * pi (* illegal! *)

Instead we would employ a sequential declaration:

val e = 2.7183
and pi = 3.1416;
val twicepi = 2 * pi

4.3.6 Sequential declarations

A sequential declaration composes subdeclarations that are to be elaborated
one after another. Each subdeclaration can use bindings produced by any pre-
vious subdeclarations, but not those produced by any following subdeclarations.
The sequential declaration merges the bindings produced by its subdeclara-
tions. Sequential declarations are supported by most imperative and object-
oriented languages.

EXAMPLE 4.10 ADA sequential declarations

In the following ADA sequential declaration:

count: Integer := 0;

procedure bump is
begin

count := count + 1;
end;

4.3 Declarations 107

the identifier count is declared in the first subdeclaration and used in the second. The
sequential declaration produces the following bindings:

{ count→ a character variable,
bump→ a proper procedure }

ML has sequential declarations too. The problem noted in Example 4.9 was
easily solved by a sequential declaration in which the collateral declaration of e
and pi is followed by a declaration of twicepi.

4.3.7 Recursive declarations

A recursive declaration is one that uses the bindings that it produces itself.
Such a construct is important because it enables us to define recursive types
and procedures.

Some older languages (such as FORTRAN and COBOL) did not support recursion
at all, seriously reducing their expressiveness. It was once commonly argued that
recursion is inherently inefficient. This argument is no longer valid, since modern
computer architectures support recursion easily. All modern programming lan-
guages do support recursion, although they usually restrict it to type and procedure
definitions.

C, C++, and ADA are broadly similar in this respect. A single procedure
definition may be recursive. A sequence of procedure definitions can be made
mutually recursive, but this requires special means since a sequential declaration
forces every identifier to be declared before it is used. Likewise, a single type
declaration may be recursive, and a sequence of type declarations can be made
mutually recursive.

EXAMPLE 4.11 ADA recursive type declarations
Consider the following ADA sequence of type declarations:

(1) type Int_Node;
(2) type Int_List is access Int_Node;
(3) type Int_Node is

record
elem: Integer;
succ: Int_List;

end record;

Declaration (1) is an incomplete type declaration: it binds Int_Node to an unknown type.
Declaration (2) binds Int_List to a type whose values will be pointers to Int_Node
variables. Declaration (3) completes the binding of Int_Node, here to a record type with
an Int_List component. Thus the two types are mutually recursive.

An incompletely-declared type identifier such as Int_Node may be used only to
declare a pointer type as in (2). This guarantees that every recursive type in ADA is defined
in terms of pointers.

108 Chapter 4 Bindings and scope

EXAMPLE 4.12 C recursive function definitions
The following C (or C++) function definition is recursive:

void print_decimal (int n) {
if (n < 0) {
print('-');
print_decimal(-n);

} else if (n >= 10) {
print_decimal(n/10);
print(n % 10 + '0');

} else
print(n + '0');

}

Now consider the following C (or C++) function definitions:

(1) void parse_expression ();

(2) void parse_primary () {
if (acceptable('(')) {
parse_expression();
accept(')');

} else
parse_variable();

}

(3) void parse_expression () {
parse_primary();
while (acceptable('+'))

parse_primary();
}

Declaration (1) binds parse_expression to an unknown function. Declaration
(2) binds parse_primary to a function that calls parse_expression. Declara-
tion (3) completes the binding of parse_expression, here to a function that calls
parse_primary. Thus the two functions are mutually recursive.

4.3.8 Scopes of declarations
Collateral, sequential, and recursive declarations differ in their influence on scope:

• In a collateral declaration, the scope of each subdeclaration extends from
the end of the collateral declaration to the end of the enclosing block.

• In a sequential declaration, the scope of each subdeclaration extends from
the end of that subdeclaration to the end of the enclosing block.

• In a recursive declaration, the scope of every subdeclaration extends from
the start of the recursive declaration to the end of the enclosing block.

These rules are illustrated most clearly by ML value declarations, which come
in all these forms: see Figure 4.5.

4.4 Blocks
In Section 4.2.1 we defined a block to be a program construct that delimits the
scope of any declarations within it. Let us now examine blocks in more detail.

4.4 Blocks 109

Collateral
declaration:

Sequential
declaration:

Recursive
declaration:

scope of declaration of f

scope of declaration of v1

scope of declaration of v2

scope of declaration of v2

scope of declaration of v1

val rec f =
fn x =>

… f(…) …

val v1 = …
and v2 = …

val v1 = …;
val v2 = … v1…

… v1 … v2 …

… f(…) …

… v1 … v2 …

Figure 4.5 Scopes of ML collateral, sequential, and recursive declarations.

If we allow a command to contain a local declaration, we have a block
command. If we allow an expression to contain a local declaration, we have a
block expression. As we shall see, blocks can appear in other forms too.

4.4.1 Block commands
A block command is a form of command that contains a local declaration (or
group of declarations) D and a subcommand C. The bindings produced by D are
used only for executing C.

In C, C++, and JAVA, a block command has the form ‘‘{ D C }’’. In ADA, a
block command has the form ‘‘declare D begin C end’’. In each case, the
subcommand C is executed in an environment in which the bindings produced by
D override the outside environment.

EXAMPLE 4.13 JAVA block command
Suppose that x and y are integer variables, and their contents are to be sorted such that
x contains the smaller integer. We can easily implement this using an auxiliary variable,
declared locally to a block command. In JAVA:

if (x > y) {
int z = x;
x = y;
y = z;

}

The scope of z is just the block command, and the lifetime of the variable denoted by z is
the activation of the block command.

110 Chapter 4 Bindings and scope

4.4.2 Block expressions

A block expression is a form of expression that contains a local declaration (or
group of declarations) D and a subexpression C. The bindings produced by D are
used only for evaluating E.

In C, C++, and ADA, the body of a function procedure is, in effect, a block
expression. The net effects of executing the function body are to yield a value (the
function result), and possibly to cause side effects. This is just like evaluating an
ordinary expression.

HASKELL has a block expression, of the form ‘‘let D in E’’, that may be
placed wherever any other expression may be placed. The subexpression E is
evaluated in an environment in which the bindings produced by D override the
outside environment.

EXAMPLE 4.14 HASKELL and C++ block expressions

Suppose that variables a, b, and c contain the lengths of a triangle’s three sides. The
following HASKELL block expression yields the area of that triangle:

let
s = (a + b + c)/2.0

in
sqrt(s*(s-a)*(s-b)*(s-c))

To achieve the same effect in C++ (or ADA), we must first declare a function somewhere
in the program:

float area (float x, y, z) {
float s = (x + y + z)/2.0;
return sqrt(s*(s-x)*(s-y)*(s-z));

}

and then call that function:

. . . area(a, b, c) . . .

4.4.3 The Qualification Principle

We may summarize the preceding subsections as follows:

• A block command is a command containing a local declaration D and a
subcommand C, the bindings produced by D being used only for executing C.

• A block expression is an expression containing a local declaration D and a
subexpression E, the bindings produced by D being used only for evaluat-
ing E.

Note the analogy between block expressions and block commands. In
principle, we can take this analogy further, by adding blocks to syntactic cat-
egories other than expressions and commands. The Qualification Principle
states:

Summary 111

It is possible to include a block in any syntactic category, provided that the constructs in
that syntactic category specify some kind of computation.

One very useful example of the Qualification Principle is this:

• A block declaration is a declaration containing a local declaration D and
a subdeclaration D′, the bindings produced by D being used only for
elaborating D′.

Block declarations as such are unusual in programming languages. However, they
do appear, in a disguised form, as packages and classes (Chapter 6). The essence
of a block declaration is that it distinguishes between private (local) and public
subdeclarations.

EXAMPLE 4.15 JAVA classes and ADA packages viewed as block declarations

Consider a large module that declares numerous entities (say A, B, C, X, Y, Z), but only
a few of them (say A, B, C) are to be public, i.e., made visible outside the module, the
remaining entities being auxiliary. Use of a block declaration allows the module’s interface
to be kept narrow by limiting the number of bindings visible outside the module.

This module could be implemented as a JAVA class:

class . . . {
. . . // public declarations of A, B, C
. . . // private declarations of X, Y, Z

}

or as an ADA package:

package . . . is
. . . -- public declarations of A, B, C

end;

package body . . . is
. . . -- private declarations of X, Y, Z

end;

In each case, the bindings produced by the private declarations are used only for
elaborating the public declarations. Only the bindings produced by the latter are available
outside the class or package.

Summary
In this chapter:

• We have studied the concepts of bindings and environments.

• We have studied block structure, scope and visibility of bindings, and the difference
between static and dynamic binding.

• We have surveyed various forms of declarations found in programming languages,
and the scope of the bindings that they produce.

112 Chapter 4 Bindings and scope

• We have surveyed various forms of blocks found in programming languages, in
particular block expressions and block commands, and we have formulated the
Qualification Principle.

Further reading

The Qualification Principle is stated and explained in
TENNENT (1981).

Exercises

Exercises for Section 4.1
4.1.1 What is the environment at each numbered point in the following C (or

C++) program?

int n;

(1) void zero () {
(2) n = 0;

}

(3) void inc (int d) {
(4) n += d;

}

(5) void main (int argc, char** argv) {
(6) . . .

}

4.1.2 What is the environment at each numbered point in the following ADA program?

procedure main is

max: constant Integer := 999;

(1) type Nat is range 0 .. max;

(2) m, n: Nat;

(3) function func (n: Nat) return Nat is
begin

(4) . . .

end func;

(5) procedure proc (m: Nat) is
(6) n: constant Integer := 6;

begin
(7) . . .

end proc;

begin
(8) . . .

end main;

Exercises 113

declaration of a
declaration of b
… a … b … c …

… a … b … c … d … e …

… a … b … c …

… a … b … c …

…a … b … c …

declaration of b
declaration of c

… a … b … c … d … e …

… a … b … c … d … e …

declaration of c
declaration of d

declaration of a
declaration of e

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

Figure 4.6 Program outline (Exercise 4.2.1).

Exercises for Section 4.2
4.2.1 Consider the program outline of Figure 4.6, which shows binding occurrences

(‘‘declaration of I’’) and applied occurrences (‘‘. . . I . . .’’) of some identifiers.
What is the exact scope of each declaration? For each applied occurrence,
state whether it is legal, and if so identify its associated binding occurrence.
Assume that the programming language is: (a) ADA; (b) C (or C++); (c) your
favorite language.

4.2.2 Consider the following outline of a program in a C-like language:

int add (int i) {
return i + d;

}

void p () {
const int d = 1;

(1) print(add(20));
}

void q () {
const int d = 2;

(2) print(add(20));
}

(a) If the language is dynamically scoped, what would be printed at points
(1) and (2)?

(b) If the language is statically scoped, what would happen?

Exercises for Section 4.3
4.3.1 In some languages all variables must be initialized in their declarations, perhaps

using a default initial value for each type (such as false for booleans, 0 for integers,

114 Chapter 4 Bindings and scope

null for pointers). What are the advantages and disadvantages of compulsory
initialization of variables?

4.3.2 List all the forms of type definition in C. Redesign this part of C’s syntax so that
there is only one form of type definition, say ‘‘type I = T;’’.

4.3.3 In HASKELL not only can we define a new function, such as:

cosine x = . . .

we can also define a synonym for an existing function:

cos = cosine

How can we define a synonym for an existing function (a) in C (or C++); (b) in
ADA? If necessary, suggest an extension to each language to make such synonyms
easier to define.

Exercises for Section 4.4
*4.4.1 Systematically analyze the declarations and blocks of your favorite program-

ming language. (a) What is the language’s block structure? (b) Which entities
are bindable? (c) What forms of declaration does the language provide? Com-
pare these with the forms discussed in Section 4.3: are any relevant kinds
missing? are any exotic kinds provided, and are they essential? (d) What
are the language’s scope and visibility rules? (e) What forms of blocks does
it provide?

Chapter 5

Procedural abstraction

Abstraction is a mode of thought by which we concentrate on general ideas rather than
on specific manifestations of these ideas. Abstraction is the whole basis of philosophy and
mathematics, and is also fruitful in many other disciplines, including computer science.

In systems analysis, abstraction is the discipline by which we concentrate on essential
aspects of the problem at hand, and ignore all inessential aspects. For example, in designing
an air traffic control system we concentrate on details that are relevant to the working of
the system (such as the aircraft’s type and call sign), and ignore the numerous irrelevant
details (such as the aircraft’s color and external markings, the crew’s names, and the
passengers’ names).

In programming, abstraction alludes to the distinction we make between what a
program unit does and how that program unit works. This enables a separation of concerns
between the programmers who use the program unit and the programmer who implements
it. Furthermore, we can use low-level program units to implement higher-level program
units, and in turn use these to implement still higher-level program units. In fact, we can
introduce as many levels of abstraction as desired. Separation of concerns and multiple
levels of abstraction are essential tools in building large software systems.

Procedural abstraction is concerned with the simplest program units, namely proce-
dures. In this chapter we shall study:

• proper procedures and function procedures;

• parameters and arguments;

• how procedure calls and parameters are implemented.

In Chapter 6 we shall study methods, which are the counterparts of procedures in object-
oriented languages.

5.1 Function procedures and proper procedures

A procedure is an entity that embodies a computation. In particular, a function
procedure embodies an expression to be evaluated, and a proper procedure
embodies a command to be executed. The embodied computation is to be
performed whenever the procedure is called.

A procedure is often defined by one programmer (the implementer) and
called by other programmers (the application programmers). These programmers
have different viewpoints. The application programmers are concerned only with
the procedure’s observable behavior, in other words the outcome of calling the
procedure. The implementer is concerned with how that outcome is to be achieved,
in other words the choice of algorithm.

115

116 Chapter 5 Procedural abstraction

The effectiveness of procedural abstraction is enhanced by parameterization.
We shall study parameter passing in detail in Section 5.2.

Note that the methods of object-oriented languages are essentially procedures
by another name. The only difference is that every method is associated with
a class or with a particular object. We shall consider methods in detail in
Chapter 6.

5.1.1 Function procedures

A function procedure (or simply function) embodies an expression to be evaluated.
When called, the function procedure will yield a value known as its result. The
application programmer observes only this result, not the steps by which it
was computed.

A C or C++ function definition has the form:

T I (FPD1, . . . , FPDn) B

where I is the function’s identifier, the FPDi are formal parameter declarations, T
is the result type, and B is a block command called the function’s body. B must
contain at least one return of the form ‘‘return E;’’, where E is an expression
of type T. The function procedure will be called by an expression of the form
‘‘I(AP1, . . . , APn)’’, where the APi are actual parameters. This function call causes
B to be executed, and the first return to be executed within B determines the
result.

EXAMPLE 5.1 C++ function definition

The following C++ function definition:

float power (float x, int n) {
float p = 1.0;
for (int i = 1; i <= n; i++)

p *= x;
return p;

}

binds power to a function procedure with two formal parameters (x and n) and result
type float. This computes the nth power of x, assuming that n is nonnegative. Note the
use of local variables and iteration to compute the function’s result.

The following C++ function definition uses recursion instead:

float power (float x, int n) {
if (n == 0)
return 1.0;

else
return x * power(x, n-1);

}

5.1 Function procedures and proper procedures 117

An ADA function definition has a slightly different form:

function I (FPD1; . . .; FPDn) return T is
D

begin
C

end;

The function’s body consists of the local declaration(s) D and the sequential
command C. In effect, the function’s body is a block command.

C, C++, and ADA function definitions are clumsy. The function’s body is a
block command, so programmers are almost encouraged to define functions with
side effects. The function’s result is determined by executing a return, but the end
of the function’s body could be reached without executing any return, in which
case the function would fail. The fundamental problem is that the function’s body
must yield a value, like an expression, but syntactically it is a command.

A more natural design is for the function’s body to be syntactically an
expression. This is the case in functional languages such as ML and HASKELL.

EXAMPLE 5.2 HASKELL function definition

The following HASKELL function definition:

power (x: Float, n: Int) =
if n = 0
then 1.0
else x * power(x, n-1)

binds power to a function procedure.
This HASKELL function returns the same result as the C++ functions of Example 5.1.

However, its body is an expression.

Function definitions are easier to understand when the function’s body is an
expression. However, this benefit might be gained at the expense of efficiency or
expressiveness. The first C++ function of Example 5.1 uses local variables and an
iterative command; the second function instead uses recursion, but it might be less
efficient in terms of storage space. For the HASKELL function of Example 5.2 there
is no alternative to using recursion. (See Exercise 5.1.2.)

In general, a function call can be understood from two different points of view:

• The application programmer’s view of the function call is that it will map
the arguments to a result of the appropriate type. Only this mapping is of
concern to the application programmer.

• The implementer’s view of the function call is that it will evaluate or execute
the function’s body, using the function’s formal parameters to access the
corresponding arguments, and thus compute the function’s result. Only the
algorithm encoded in the function’s body is the implementer’s concern.

118 Chapter 5 Procedural abstraction

For example, consider the two C++ functions of Example 5.1. The application
programmer’s view of the first function is that it will map each pair (x, n) to the
result xn; the implementer’s view is that it will compute its result by iteration. The
application programmer’s view of the second function is that it will map each pair
(x, n) to the result xn; the implementer’s view is that it will compute its result by
recursion. The application programmer’s views of the two functions are the same;
the implementer’s views are different.

Function procedures are most commonly constructed in function definitions;
indeed in most programming languages this is the only way to construct them.
However, the functional languages such as ML and HASKELL separate the distinct
concepts of function construction and binding. For instance, in HASKELL:

\(I: T) -> E

is an expression that yields a function procedure. Its formal parameter is I (of type
T), and its body is E.

EXAMPLE 5.3 HASKELL function construction

The following HASKELL expression:

\(x: Float) -> x^3

yields a function that implements the cube function. The conventional function definition:

cube (x: Float) = x^3

is just an abbreviation for the value definition:

cube =
\(x: Float) -> x^3

in which the value bound to cube happens to be a function.
Consider the following integration function, whose formal parameter f is the function

to be integrated:

integral (a: Float, b: Float, f: Float->Float) = . . .

This is supposed to compute the direct integral of f (x) over the interval [a..b]. When we
call integral, the actual parameter corresponding to f can be any expression of type
Float->Float, as in the following:

. . . integral(0.0, 1.0, cube) . . .

. . . integral(0.0, 1.0, \(x:Float)->x*x) . . .

5.1.2 Proper procedures

A proper procedure embodies a command to be executed, and when called will
update variables. The application programmer observes only these updates, not
the steps by which they were effected.

5.1 Function procedures and proper procedures 119

A C or C++ proper procedure definition has the form:

void I (FPD1, . . ., FPDn) B

where I is the function’s identifier, the FPDi are the formal parameter declarations,
and B is a block command called the procedure’s body. The procedure will be
called by a command of the form ‘‘I(AP1, . . . , APn);’’, where the APi are actual
parameters. This procedure call causes B to be executed.

Note that a C or C++ proper procedure definition is just a special case of a
function definition, distinguished only by the fact that the result type is void.

EXAMPLE 5.4 C++ proper procedure definition
Consider the following C++ procedure definition:

void sort (int a[], int l, int r) {
int minpos; int min;
for (int i = l; i < r; i++) {
minpos = i; min = a[minpos];
for (int j = i+1; j <= r; j++) {
if (a[j] < a[i]) {
minpos = j; min = a[minpos];

}
if (minpos != i) {
a[minpos] = a[i]; a[i] = min;

}
}

}

This binds the identifier sort to a proper procedure. The application programmer’s view
is that the outcome of a procedure call like ‘‘sort(nums, 0, n-1);’’ will be to sort
the values in nums[0], . . . , nums[n-1] into ascending order. The implementer’s view is
that the procedure’s body employs the selection-sort algorithm.

The implementer might later substitute a more efficient algorithm, such as Quicksort:

void sort (int a[], int l, int r) {
int p;
if (r > l) {
partition(a, l, r, p);
sort(a, l, p-1);
sort(a, p+1, r);

}
}

However, the application programmer’s view would be unchanged.

An ADA proper procedure definition has the form:

procedure I (FPD1; . . .; FPDn) is
D

begin
C

end;

120 Chapter 5 Procedural abstraction

The procedure’s body consists of the local declaration(s) D and the sequential
command C. In effect, the procedure’s body is a block command.

EXAMPLE 5.5 ADA proper procedure definition

Consider the following ADA procedure definition:

procedure sort (a: in out Int_Array;
l, r: in Integer) is

p: Integer;
begin

if r > l then
partition(a, l, r, p);
sort(a, l, p-1);
sort(a, p+1, r);

end if;
end;

In general, a procedure call can be understood from two different points
of view:

• The application programmer’s view of the procedure call is its final outcome,
which is that certain variables are updated. Only this outcome is of concern
to the application programmer.

• The implementer’s view of the procedure call is that it will execute the
procedure’s body, using the procedure’s formal parameters to access the
corresponding arguments. Only the algorithm encoded in the procedure’s
body is the implementer’s concern.

5.1.3 The Abstraction Principle

We may summarize the preceding subsections as follows:

• A function procedure abstracts over an expression. That is to say, a function
procedure has a body that is an expression (at least in effect), and a function
call is an expression that will yield a result by evaluating the function
procedure’s body.

• A proper procedure abstracts over a command. That is to say, a proper
procedure has a body that is a command, and a procedure call is a command
that will update variables by executing the proper procedure’s body.

Thus there is a clear analogy between function and proper procedures. We
can extend this analogy to construct other types of procedures. The Abstraction
Principle states:

It is possible to design procedures that abstract over any syntactic category, provided
only that the constructs in that syntactic category specify some kind of computation.

5.1 Function procedures and proper procedures 121

For instance, a variable access refers to a variable. We could imagine designing
a new type of procedure that abstracts over variable accesses. Such a procedure,
when called, would yield a variable. In fact, such procedures do exist, and are
called selector procedures:

• A selector procedure abstracts over a variable access. That is to say, a
selector procedure has a body that is a variable access (in effect), and a
selector call is a variable access that will yield a variable by evaluating the
selector procedure’s body.

Selector procedures are uncommon in programming languages, but they are
supported by C++.

EXAMPLE 5.6 C++ selector procedure

Consider the following C++ function procedure:

typedef . . . Queue; // queues of integers

int first (Queue q);
// Return the first element of q.

Using this function procedure, we can fetch the first element of a given queue, but we
cannot update the first element:

int i = first(qA); // fetches the first element of qA
first(qA) = 0; // illegal!

Instead, we could make first a selector procedure:

int& first (Queue q);
// Return a reference to the first element of q.

Now we could call this selector procedure as follows:

int i = first(qA); // fetches the first element of qA
first(qA) = 0; // updates the first element of qA

Because a selector call’s result is a variable (as opposed to the variable’s current value),
the result variable can be either inspected or updated, as illustrated above.

Suppose that the implementer chooses to represent each queue by an array:

struct Queue {
int elems[10];
int front, rear, length;

};

Then the selector procedure would be implemented as follows:

int& first (Queue q) {
return q.elems[q.front];

}

Here the variable access ‘‘q.elems[q.front]’’ determines the result variable. The
selector call ‘‘first(qA)’’ therefore yields the variable qA.elems[qA.front].

122 Chapter 5 Procedural abstraction

Suppose instead that the implementer chooses to represent queues by linked lists:

struct QNode {
int elem;
struct QNode * succ;

};
struct Queue {

struct QNode * front;
int length;

};

the selector procedure would be implemented as follows:

int& first (Queue q) {
return q.front->elem;

}

Here the variable access ‘‘q.front->elem’’ determines the result variable. The selector
call ‘‘first(qA)’’ therefore yields the variable qA.front->elem.

All programming languages provide not only a repertoire of built-in operators
(such as ‘‘+’’ and ‘‘*’’), but also a means (function definitions) to extend that
repertoire. On the other hand, most programming languages provide only a fixed
repertoire of built-in selectors (such as ‘‘V.I’’ for records and ‘‘V[E]’’ for arrays),
with no means to extend that repertoire. This is an anomaly. The Abstraction
Principle helps us to design programming languages that are both more regular
and more expressive.

Another direction in which we might push the Abstraction Principle is to
consider whether we can abstract over declarations. This is a much more radical
idea, but it has been adopted in some modern languages such as C++, JAVA, and
ADA. We get a construct called a generic unit:

• A generic unit abstracts over a declaration. That is to say, a generic unit has
a body that is a declaration, and a generic instantiation is a declaration that
will produce bindings by elaborating the generic unit’s body.

This is a very powerful concept, which we shall study in Chapter 7.

5.2 Parameters and arguments
If we simply make an expression into a function procedure, or make a command
into a proper procedure, we generally end up with a procedure that will always
perform the same computation whenever called. (But see Exercise 5.2.1.)

To realize the full power of the procedure concept, we need to parameterize
procedures with respect to entities on which they operate.

EXAMPLE 5.7 Parameterizing a C++ function procedure
Throughout this example, assume the following type definition:

typedef float Vector[];
// A Vector value represents a vector in n-dimensional space.

5.2 Parameters and arguments 123

Consider the following parameterless C++ function:

const int n = 3;
Vector v = {3.0, 4.0, 0.0};

float length () {
float s = 0.0;
for (int i = 0; i < n; i++)

s += v[i]*v[i];
return sqrt(s);

}

The function call ‘‘length()’’ always performs the same computation, computing the
length of the particular vector v in three-dimensional space. Thus the function is almost
useless at it stands.

We can make the function far more useful by parameterizing it with respect to v:

const int n = 3;

float length (Vector v) {
float s = 0.0;
for (int i = 0; i < n; i++)

s += v[i]*v[i];
return sqrt(s);

}

Now we can write function calls, such as ‘‘length(v1)’’ and ‘‘length(v2)’’, to compute
the lengths of different vectors.

We can make the function still more useful by parameterizing it with respect to n:

float length (Vector v, int n) {
float s = 0.0;
for (int i = 0; i < n; i++)

s += v[i]*v[i];
return sqrt(s);

}

Now we can write function calls, such as ‘‘length(v1, 2)’’ and ‘‘length(v2, 3)’’,
to compute the distances of different points from the origin in two-dimensional space,
three-dimensional space, or indeed any-dimensional space.

An argument is a value or other entity that is passed to a procedure. An actual
parameter is an expression (or other construct) that yields an argument. A formal
parameter is an identifier through which a procedure can access an argument.

In all programming languages, first-class values may be passed as arguments.
In most languages, either variables or pointers to variables may be passed as
arguments. In some languages, either procedures or pointers to procedures may
be passed as arguments. (In C, C++, and ADA, pointers to variables and pointers
to procedures are themselves first-class values.)

When a procedure is called, each formal parameter will become associated,
in some sense, with the corresponding argument. The nature of this association is
called a parameter mechanism.

Different programming languages provide a bewildering variety of parameter
mechanisms, e.g., value parameters, result parameters, value-result parameters,

124 Chapter 5 Procedural abstraction

constant parameters, variable parameters, procedural parameters, and functional
parameters. Fortunately, all these parameter mechanisms can be understood in
terms of two basic concepts:

• A copy parameter mechanism binds the formal parameter to a local variable
that contains a copy of the argument.

• A reference parameter mechanism binds the formal parameter directly to
the argument itself.

In the following subsections we examine these two concepts.

5.2.1 Copy parameter mechanisms

A copy parameter mechanism allows for a value to be copied into and/or out of
a procedure. The formal parameter FP denotes a local variable of the procedure.
A value is copied into FP on calling the procedure, and/or is copied out of FP
(to an argument variable) on return. The local variable is created on calling the
procedure, and destroyed on return.

There are three possible copy parameter mechanisms:

• A copy-in parameter (also known as a value parameter) works as follows.
When the procedure is called, a local variable is created and initialized
with the argument value. Inside the procedure, that local variable may be
inspected and even updated. (However, any updating of the local variable
has no effect outside the procedure.)

• A copy-out parameter (also known as a result parameter) is a mirror-image
of a copy-in parameter. In this case the argument must be a variable. When
the procedure is called, a local variable is created but not initialized. When
the procedure returns, that local variable’s final value is assigned to the
argument variable.

• A copy-in-copy-out parameter (also known as a value-result parameter)
combines copy-in and copy-out parameters. In this case also, the argument
must be a variable. When the procedure is called, a local variable is
created and initialized with the argument variable’s current value. When
the procedure returns, that local variable’s final value is assigned back to
the argument variable.

C, C++, and JAVA support only copy-in parameters; ADA supports all three
copy parameter mechanisms.

EXAMPLE 5.8 ADA copy parameter mechanisms

Consider the following ADA procedures:

type Vector is array (1 .. n) of Float;

procedure add (v, w: in Vector;
sum: out Vector) is

5.2 Parameters and arguments 125

(1) begin
for i in 1 .. n loop
sum(i) := v(i) + w(i);

end loop;
(2) end;

procedure normalize (u: in out Vector) is
(3) s: Float := 0.0;

begin
for i in 1 .. n loop
s := s + u(i)**2;

end loop;
s := sqrt(s);
for i in 1 .. n loop
u(i) := u(i)/s;

end loop;
(4) end;

Also assume that the keyword in signifies a copy-in parameter, that out signifies a
copy-out parameter, and that in out signifies a copy-in-copy-out parameter.

If a, b, and c are Vector variables, the procedure call ‘‘add(a, b, c);’’ works as
follows. At point (1), local variables named v and w are created, and the values of a and
b are assigned to v and w, respectively. Also at point (1), a local variable named sum is
created but not initialized. The procedure’s body then updates sum. At point (2), the final
value of sum is assigned to c.

The procedure call ‘‘normalize(c);’’ works as follows. At point (3), local variable
u is created, and the value of c is assigned to u. The body of normalize then updates u.
At point (4), the final value of u is assigned to c.

The copy parameter mechanisms display a pleasing symmetry, as shown in
Table 5.1. Since they are based on the concept of assignment, however, the copy
parameter mechanisms are unsuitable for types that lack assignment (such as
limited types in ADA). Another disadvantage is that copying of large composite
values is expensive.

5.2.2 Reference parameter mechanisms

A reference parameter mechanism allows for the formal parameter FP to be
bound directly to the argument itself. This gives rise to a simple uniform semantics
of parameter passing, suitable for all types of values in the programming language

Table 5.1 Summary of copy parameter mechanisms (FP stands for the formal parameter).

Parameter mechanism Argument Effect at procedure call Effect at return

Copy-in parameter value FP := argument value; –
Copy-out parameter variable – argument variable := FP;
Copy-in-copy-out parameter variable FP := argument value; argument variable := FP;

126 Chapter 5 Procedural abstraction

(not just first-class values). Reference parameter mechanisms appear under several
guises in programming languages:

• In the case of a constant parameter, the argument must be a value. FP is
bound to the argument value during the procedure’s activation. Thus any
inspection of FP is actually an indirect inspection of the argument value.

• In the case of a variable parameter, the argument must be a variable. FP
is bound to the argument variable during the procedure’s activation. Thus
any inspection (or updating) of FP is actually an indirect inspection (or
updating) of the argument variable.

• In the case of a procedural parameter, the argument must be a procedure.
FP is bound to the argument procedure during the called procedure’s
activation. Thus any call to FP is actually an indirect call to the argument
procedure.

These three parameter mechanisms are summarized in Table 5.2. Note how
closely they resemble one another.

C does not support reference parameter mechanisms directly, but we can
achieve the effect of variable parameters using pointers. If a C function has a
parameter of type T* (pointer to T), the corresponding argument must be a
pointer to a variable of type T. The caller can obtain a pointer to any variable V
by an expression of the form ‘‘&V’’. Using such a pointer, the called function can
inspect or update the variable V.

C++ does support variable parameters directly. If the type of a formal
parameter is T& (reference to T), the corresponding argument must be a variable
of type T.

ADA supports both constant and variable parameters.

EXAMPLE 5.9 ADA reference parameter mechanisms

Consider once more the ADA procedures of Example 5.8. But this time assume that
the keyword in signifies a constant parameter, and that out or in out signifies a
variable parameter.

Suppose that a, b, and c are Vector variables. The procedure call ‘‘add(a, b,
c);’’ works as follows. At point (1), v and w are bound to the values of a and b,
respectively; and sum is bound to the variable c. The body of add thus indirectly inspects
a and b, and indirectly updates c.

Table 5.2 Summary of reference parameter mechanisms (FP stands for the formal parameter).

Parameter mechanism Argument Effect at procedure call Effect at return

Constant parameter value bind FP to argument value –
Variable parameter variable bind FP to argument variable –
Procedural parameter procedure bind FP to argument procedure –

5.2 Parameters and arguments 127

The procedure call ‘‘normalize(c);’’ works as follows. At point (3), u is bound to
the variable c. The body of normalize thus indirectly inspects and updates c.

Notice that nothing happens at points (2) and (4). Notice also that no copying takes
place. The formal parameters v and w are treated as constants, so they cannot be updated;
therefore the corresponding arguments a and b cannot be indirectly updated.

Examples 5.8 and 5.9 illustrate the fact that constant and variable parameters
together provide similar expressive power to the copy parameter mechanisms,
i.e., the ability to pass values into and out of a procedure. The choice between
reference and copy parameter mechanisms is an important decision for the
language designer.

Reference parameters have simpler semantics, and are suitable for all types
of value (including procedures, which in most programming languages cannot be
copied). Reference parameters rely on indirect access to argument data, so copy
parameters are more efficient for primitive types, while reference parameters are
usually more efficient for composite types. (In a distributed system, however, the
procedure might be running on a processor remote from the argument data, in
which case it may be more efficient to copy the data and then access it locally.)

ADA mandates copy parameter mechanisms for primitive types, but allows
the compiler to choose between copy and reference parameter mechanisms for
composite types. Since the type Vector of Examples 5.8 and 5.9 is composite,
parameters of that type may be implemented either by copying or by reference.
Either way, a procedure call such as ‘‘add(a, b, c);’’ will have the same effect,
except possibly for a difference in efficiency.

A disadvantage of variable parameters is that aliasing becomes a hazard.
Aliasing occurs when two or more identifiers are simultaneously bound to the
same variable (or one identifier is bound to a composite variable and a second
identifier to one of its components). Aliasing tends to make programs harder to
understand and harder to reason about.

EXAMPLE 5.10 C++ aliasing

Consider the following C++ procedure with three variable parameters:

void pour (float& v1, float& v2, float& v) {
// Given two pots containing v1 and v2 liters of water, respectively,
// determine the effect of pouring v liters from the first pot into the second.

v1 -= v;
v2 += v;

}

Suppose that variables x, y, and z currently have values 4.0, 6.0, and 1.0, respectively.
Then the call ‘‘pour(x, y, z);’’ would update x to 3.0 and y to 7.0, as we would
expect. But now the call ‘‘pour(x, y, x);’’ would update x to 0.0 but leave y at 7.0,
unexpectedly. To understand the behavior of the latter call, note that both v1 and v are
aliases of x, and hence of each other.

128 Chapter 5 Procedural abstraction

Why is this behavior unexpected? When we read the procedure’s body, we tend to
assume that v1 and v denote distinct variables, so the assignment ‘‘v1 -= v;’’ updates
only v1. Nearly always, the assumption that distinct identifiers denote distinct variables is
justified. But very occasionally (in the presence of aliasing), this assumption is not justified,
and then we are taken by surprise.

Aliasing most commonly arises from variable parameters, but can also arise
from variable renaming definitions (Section 4.3.3). If a programming language has
either of these constructs, the onus is on programmers to avoid harmful aliasing.
(Note that the compiler cannot always detect aliasing. The aliasing in ‘‘pour(x,
y, x);’’ is rather obvious. But in ‘‘pour(a[i], a[j], a[k]);’’, the com-
piler cannot know whether aliasing exists unless it can predict the values of i, j,
and k.)

5.2.3 The Correspondence Principle
You might have noticed a correspondence between certain parameter mechanisms
and certain forms of declaration. For example:

• A constant parameter corresponds to a constant definition. In each case, an
identifier is bound to a first-class value.

• A variable parameter corresponds to a variable renaming definition. In
each case, an identifier is bound to an existing variable.

• A copy-in parameter corresponds to an (initialized) variable declaration.
In each case, a new variable is created and initialized, and an identifier is
bound to that variable.

In the interests of simplicity and regularity, a language designer might wish to
eliminate all inessential differences between declarations and parameter mecha-
nisms. The Correspondence Principle states:

For each form of declaration there exists a corresponding parameter mechanism.

Note that the converse is not always true. For example, no programming
language could reasonably have declarations that correspond to the copy-out and
copy-in-copy-out parameter mechanisms.

If a programming language complies with the Correspondence Principle,
programmers benefit for the following reason. Suppose that a program contains
a procedure P, and a (nonlocal) declaration of an entity X on which P depends.
Then we can parameterize P with respect to X, provided that the programming
language supports the parameter mechanism that corresponds to the declaration
of X. Since different calls to P can supply different arguments for X, the procedure
is more flexible than it was originally.

HASKELL complies well with the Correspondence Principle, if we restrict
our attention to first-class values. Its constant parameter mechanism corresponds
directly to its value definition. (Recall that HASKELL functions are first-class values,
and so need no special declarations or parameter mechanisms.)

C++ complies with the Correspondence Principle to a very limited extent.
C++’s initialized variable declaration is shown beside the corresponding copy-in

5.3 Implementation notes 129

Table 5.3 C++ declarations and parameter mechanisms (formal
parameter declarations and actual parameters are underlined).

Declaration Parameter mechanism

Initialized variable declaration: Copy-in parameter:

T I = E; void P (T I) {
. . .

}
Call:

P(E);

(No equivalent) Variable parameter:

void P (T & I) {
. . .

}
Call:

P(V);

parameter mechanism in Table 5.3. In each case, the identifier I is bound to a
newly-created variable initialized with the value of the expression E. In one case,
E is provided by the variable declaration. In the other case, E is provided by
the procedure call. A weakness of C++ is that it supports only two parameter
mechanisms, copy-in and variable parameters.

Recall Example 5.7, where we started with an initialized variable declaration
of v, a constant declaration of n, and a parameterless C++ function procedure.
The copy-in parameter v corresponded exactly to the original initialized variable
declaration. But the copy-in parameter n corresponded only approximately to the
original constant declaration: n now denotes a variable that could be updated
(which would have been a logical error in that application).

ADA complies with the Correspondence Principle to a greater extent. ADA’s
declarations are shown beside the corresponding parameter mechanisms in
Table 5.4. A weakness of ADA is that it allows programmers little control over the
choice between copy and reference parameter mechanisms.

If we wish to parameterize with respect to a procedure, both C++ and ADA

depart from the Correspondence Principle. Neither language has a parameter
mechanism that corresponds directly to a procedure definition. However, if we
wish to pass a procedure P as an argument to another procedure, we can achieve
essentially the same effect in C++ or ADA by passing a pointer to P.

5.3 Implementation notes

We have already seen, in Section 3.9.1, that a stack of activation frames is used
to allocate storage to local variables of procedures. In fact, the stack is used to
implement all aspects of procedure calls, including parameter passing.

130 Chapter 5 Procedural abstraction

Table 5.4 ADA declarations and parameter mechanisms (formal parameter declarations
and actual parameters are underlined).

Declaration Parameter mechanism

Initialized variable declaration: Copy-in parameter:

I: T := E; procedure P (I : in T) is
begin

. . .

end;
Call:

P(E);

Constant definition: Constant parameter:

I: constant T := E; procedure P (I : in T) is
begin

. . .

end;
Call:

P(E);

Variable renaming declaration: Variable parameter:

I: T renames V; procedure P (I : in out T) is
begin

. . .

end;
Call:

P(V);

5.3.1 Implementation of procedure calls

When a procedure P is called, an activation frame is pushed on to the stack. That
activation frame contains enough space for all of P’s local variables, together with
space for the return address and other housekeeping data. When P returns, that
activation frame is popped off the stack.

At any given time, the stack contains activation frames for all currently-active
procedures, in the order in which they were called (which is the reverse of the
order in which they will return). (See Figure 3.10.)

Recursive procedures require no special treatment. During a recursive acti-
vation of a recursive procedure P, the stack contains several activation frames for
P. (See Figure 3.11.)

5.3.2 Implementation of parameter mechanisms

To pass arguments between the calling procedure and the called procedure, we
simply deposit them either in registers or in an activation frame. The various
parameter mechanisms differ in the details.

Exercises 131

Recall that the copy parameter mechanisms work in terms of a local variable
denoted by the formal parameter. A copy-in parameter is implemented by passing
in the argument value and using it to initialize the local variable. A copy-out
parameter is implemented by passing out the local variable’s final value, and
using it to update the argument variable, on return from the called procedure.
A copy-in-copy-out parameter is implemented by both passing in the argument
variable’s value and passing out the updated value.

A reference parameter is implemented by passing the address of the argu-
ment; the called procedure then uses this address to access the argument
whenever required.

Summary
In this chapter:

• We have studied function procedures and proper procedures. We saw that a function
procedure abstracts over an expression, and that a proper procedure abstracts over
a command. We saw that the Abstraction Principle invites language designers to
consider extending abstraction to other programming language constructs, such as
a selector procedure which abstracts over a variable access.

• We have studied parameters and arguments. We saw that a programming lan-
guage can choose between copy parameter mechanisms and reference parameter
mechanisms. We saw that the Correspondence Principle exposes a duality between
declarations and parameter mechanisms.

• We have briefly examined how procedures and parameters are implemented.

Further reading

The Abstraction and Correspondence Principles were
formulated by TENNENT (1977, 1981). They were based

on earlier work by LANDIN (1966) and STRACHEY

(1967).

Exercises

Exercises for Section 5.1

5.1.1 Redesign the syntax of C or C++ function definitions and function calls to make
a clear distinction between proper procedures and function procedures.

*5.1.2 Redesign the syntax of C, C++, or ADA function definitions so that a function’s
body is an expression (rather than a block command). Show that this change,
in isolation, would reduce the expressive power of your language’s functions.
What other changes to your language would be needed to compensate? (Hint:
Compare your language’s expressions with the forms described in Sections 2.6,
3.8.1, and 4.4.2.)

*5.1.3 Redesign the syntax of C, C++, or ADA function definitions and function calls
to allow a function to have multiple results.

5.1.4 Would it make sense to apply the Abstraction Principle to: (a) literals; (b) types?

132 Chapter 5 Procedural abstraction

Exercises for Section 5.2
5.2.1 Find at least one example of a parameterless procedure that does not perform

exactly the same computation every time it is called. Under what circumstances,
in general, will a parameterless procedure behave like this?

*5.2.2 Make a list of all entities that can be passed as arguments in your favorite
programming language. Also make a list of any entities that cannot be passed
as arguments. Why are the latter excluded?

5.2.3 Consider the following ADA procedure:

procedure multiply (m, n: in out Integer) is
begin
m := m * n;
put(m); put(n);

end;

(a) Note that the copy-in-copy-out parameter mechanism is used here (since
Integer is a primitive type). Suppose thati contains 2 and that j contains
3. Show what is written by the following procedure calls:

multiply(i, j); multiply(i, i);

(b) Now suppose that the variable parameter mechanism were used instead.
Show what would be written by each of the above procedure calls. Explain
any difference.

5.2.4 Consider the procedure call ‘‘add(a, b, c);’’ of Examples 5.8 and 5.9.
Show that the procedure call has the expected outcome, whether copy or
reference parameter mechanisms are used. Repeat for the procedure call
‘‘add(a, b, b);’’. Show that (harmless) aliasing can arise in this case.

5.2.5 In C, C++, or ADA, would it make sense to apply the Correspondence Principle
to: (a) types; (b) record or structure fields?

Exercises for Section 5.3
5.3.1 Consider the implementation of a procedure P with a formal parameter FP of

type T.

(a) Assume that the copy-in-copy-out parameter mechanism is used. What exactly
is passed to P, a value or an address? What happens when P is called? What
happens inside P when it inspects FP? What happens inside P when it updates
FP? What if anything happens when P returns?

(b) Repeat, this time assuming that the variable parameter mechanism is used
instead.

PART III

ADVANCED CONCEPTS

Part III explains the more advanced programming language concepts, which are
supported by the more modern programming languages:

• data abstraction (packages, abstract types, and classes);
• generic abstraction (generic units and type parameters);
• type systems (inclusion polymorphism, parametric polymorphism, over-

loading, and type conversions);
• control flow (jumps, escapes, and exceptions).

133

Chapter 6

Data abstraction

Software engineering depends on the decomposition of large programs into program units.
The simplest program units are procedures, which we studied in Chapter 5. But the program
units that make the best building blocks for large programs are packages, abstract types,
and classes.

In this chapter we shall study:

• packages, which are program units that group together declarations of several
(usually related) components;

• encapsulation, whereby components of a package may be either public or private;

• abstract types, which are types whose representations are private, but which are
equipped with public operations;

• classes, which are program units that define the structure of families of objects, each
object being a group of private variables equipped with public operations;

• subclasses and inheritance, which form the basis of object-oriented programming;

• how objects are represented, and how method calls are implemented.

We start with packages because they are simple and general, and because they clearly
expose the concept of encapsulation. Abstract types are somewhat more specialized.
Classes resemble abstract types in some respects, but are enriched by the concepts of
subclasses and inheritance.

6.1 Program units, packages, and encapsulation

A program unit is any named part of a program that can be designed and
implemented more-or-less independently. A well-designed program unit has a
single purpose, and has a simple application program interface. If well designed, a
program unit is likely to be modifiable (capable of being changed without forcing
major changes to other program units), and is potentially reusable (capable of
being used in many programs).

The application program interface (or API) of a program unit is the minimum
information that application programmers need to know in order to use the
program unit successfully.

For instance, a procedure’s API consists of its identifier, formal parameters,
and result type if any (in order that application programmers can write well-formed
procedure calls), together with a specification of its observable behavior (in order
that application programmers can predict the outcome of these procedure calls).
The procedure’s API does not include the algorithm used in its definition.

135

136 Chapter 6 Data abstraction

A programming language whose only program units are procedures (such as
PASCAL or C) is suitable only for small-scale program construction. For large-scale
program construction, the language should support large-scale program units such
as packages, abstract types, and classes.

6.1.1 Packages
A package is a group of several components declared for a common purpose.
These components may be types, constants, variables, procedures, or indeed any
entities that may be declared in the programming language.

Here we shall consider a simple package whose components are all public,
i.e., visible to the application code that uses the package.

EXAMPLE 6.1 ADA simple package

The following ADA package groups declarations of types, constants, and variables:

package Earth is

type Continent is (
Africa, Antarctica, Asia, Australia,
Europe, NAmerica, SAmerica);

radius: constant Float := 6.4e3; -- km

area: constant array (Continent) of Float := (
30.3e6, 13.0e6, 43.3e6, 7.7e6,
10.4e6, 24.9e6, 17.8e6); -- km2

population: array (Continent) of Integer;

end Earth;

The Earth package produces the following set of bindings:

{ Continent → the type Continent,
radius → the real number 6.4×103,
area → the array value {Africa → 30.3×106, . . .},
population → an array variable of type(Continent → Integer)}

where:

Continent = {Africa, Antarctica, Asia, Australia, Europe, NAmerica, SAmerica}
The following application code uses some components of the Earth package:

for cont in Earth.Continent loop
put(Float(Earth.population(cont)

/ Earth.area(cont));
end loop;

Here Earth.Continent denotes a type component of the Earth package,
Earth.population denotes a variable component, and Earth.area denotes a
value component.

6.1 Program units, packages, and encapsulation 137

6.1.2 Encapsulation

In order to keep its API simple, a package typically makes only some of its com-
ponents visible to the application code that uses the package; these components
are said to be public. Other components are visible only inside the package; these
components are said to be private, and serve only to support the implementation
of the public components. A package with private components hides information
that is irrelevant to the application code. This technique for making a simple API
is called encapsulation.

The concept of encapsulation is important, not only for packages, but also
for other large-scale program units such as abstract types (Section 6.2) and classes
(Section 6.3).

Consider the set of bindings produced by a package’s component declarations.
All these bindings are visible inside the package, but only the bindings of the
public components are visible outside the package. Therefore we shall take the
meaning of a package to be the set of bindings of its public components.

An ADA package with both public and private components is declared in two
parts. The package specification declares only the public components, while the
package body declares any private components. Moreover, if a public component
is a procedure, the package specification only declares the procedure (providing
its name, formal parameters, and result type if any), while the package body
defines the procedure (providing its implementation). In other words, the package
specification gives the package’s interface, while the package body provides the
implementation details.

EXAMPLE 6.2 ADA package with encapsulation

Consider a small trigonometric package, whose public components are to be the sine and
cosine functions.

The following ADA package specification declares the package’s public components,
which are function procedures named sin and cos:

package Trig is

function sin (x: Float) return Float;

function cos (x: Float) return Float;

end Trig;

The corresponding package body defines both the public function procedures and the
package’s private components:

package body Trig is

twice_pi: constant Float := 6.2832;

function norm (x: Float) return Float is
begin

. . . -- code to compute x modulo twice_pi
end;

138 Chapter 6 Data abstraction

function sin (x: Float) return Float is
begin

. . . -- code to compute the sine of norm(x)
end;

function cos (x: Float) return Float is
begin

. . . -- code to compute the cosine of norm(x)
end;

end Trig;

The package body declares a constant twice_pi and a function procedure norm, which
are used to support the definitions of the sin and cos function procedures. Since
twice_pi and norm are not declared in the package specification, they are taken to be
private components.

The effect of elaborating the above package specification and body together is that the
Trig package produces the following set of bindings:

{ sin → function procedure that approximates the sine function,
cos → function procedure that approximates the cosine function }

The private components are excluded here, since they are not available to the application
code. Thus the package has a simple API, which is desirable.

Application code can use the package’s public components in the usual way, e.g.:

. . . Trig.cos(theta/2.0) . . .

But the compiler would reject any attempt by the application code to access the private
components directly:

. . . Trig.twicepi . . . -- illegal!

. . . Trig.norm(theta/2.0) . . . -- illegal!

Note that the package specification contains enough information for the application
programmer to write legal calls to Trig.sin and Trig.cos, and for the compiler to
type-check these calls.

A particularly important use of encapsulation is a package whose components
include a private variable, together with one or more public procedures that
access the private variable. The private variable cannot be accessed directly by
the application code, but can be accessed by the public procedures.

The advantage of this encapsulation is that the private variable’s representa-
tion can be changed (e.g., to make the procedures more efficient) without forcing
any changes to the application code. Furthermore, the package could control the
order of accesses to the private variable, e.g., to prevent inspection of the variable
before it has been initialized.

6.1 Program units, packages, and encapsulation 139

EXAMPLE 6.3 ADA encapsulated variable

Consider a package whose components are a dictionary (set of words) together with
procedures add and contains to operate on the dictionary. The dictionary itself is to be
a private variable, but the procedures add and contains are to be public. Assume that
each word is a value of type Word, declared elsewhere.

The following ADA package specification declares the public procedures:

package The_Dictionary is

procedure add (wd: in Word);
-- Add word wd to the dictionary if it is not already there.

function contains (wd: Word) return Boolean;
-- Return true if and only if word wd is in the dictionary.

end The_Dictionary;

The following package body provides all the implementation details, including decla-
rations of private variables representing the dictionary. For the time being, suppose that
we choose a naive representation for the dictionary:

package body The_Dictionary is
maxsize: constant := 1000;

size: Integer := 0;
words: array (1 .. maxsize) of Word;
-- The dictionary is represented as follows: size contains the number of
-- words, and words(1..size) contains the words themselves, in no
-- particular order.

procedure add (wd: in Word) is
begin
if not contains(wd) then

size := size + 1;
words(size) := wd;

end if;
end;

function contains (wd: Word) return Boolean is
begin
for i in 1 .. size loop

if wd = words(i) then
return true;

end if;
end loop;
return false;

end;

end The_Dictionary;

As well as declaring and initializing the private variables size and words, the package
body defines the public proceduresadd andcontains, which access the private variables.

140 Chapter 6 Data abstraction

The effect of elaborating the above package specification and body together is that the
The_Dictionary package produces the following set of bindings:

{ add → proper procedure that adds a word to the dictionary,
contains → function procedure that searches for a word in the dictionary}

Application code can call the public procedures:

if not The_Dictionary.contains(current_word) then
. . .

The_Dictionary.add(current_word);
end if;

But the compiler would reject any attempt by the application code to access the private
variables directly:

The_Dictionary.size := 0; -- illegal!

Now suppose that we want to change to a more efficient representation for the
dictionary (such as a search tree or hash table). We change the declarations of the private
variables, and we change the definitions of the public procedures. All the necessary changes
are localized in the package body. Since the dictionary representation is private, we can be
sure that no changes are needed to the application code. Thus the package is inherently
modifiable. This demonstrates clearly the benefits of encapsulation.

The variable components of a package have the same lifetimes as ordi-
nary variables declared immediately outside that package. If the package of
Example 6.3 was globally declared, the lifetime of its variable components (size
and words) would be the program’s entire run-time; if the package was declared
inside a block, the lifetime of its variable components would be an activation of
that block.

6.2 Abstract types

In Chapter 2 we viewed a type as a set of values equipped with suitable operations.
When we wish to introduce a new type, it is good practice to define the new type
and its operations in a single program unit. In defining the new type, we must
choose a representation for the values of that type, and define the operations in
terms of that representation. But sometimes even a well-chosen representation
has unwanted properties, which the following example illustrates.

EXAMPLE 6.4 ADA public type

In Example 6.3 we saw an ADA package that grouped a private dictionary variable together
with public procedures to operate on it.

Suppose now that we have an application that needs several dictionaries. An example
of such an application would be a spellchecker that provides both a main dictionary and a
user dictionary.

6.2 Abstract types 141

The following ADA package is a first attempt to solve this problem. Its components
include a public Dictionary type, together with public procedures clear, add, and
contains to operate on values and variables of that type. Each of these procedures has
a parameter of type Dictionary. If we stick to our naive dictionary representation, the
package specification looks like this:

package Dictionaries is

maxsize: constant := 1000;

type Dictionary is
record

size: Integer;
words: array (1 .. maxsize) of Word;

end record;

procedure clear (dict: in out Dictionary);
-- Make dictionary dict empty.

procedure add (dict: in out Dictionary;
wd: in Word);

-- Add word wd to dictionary dict if it is not already there.

function contains (dict: Dictionary; wd: Word)
return Boolean;

-- Return true if and only if word wd is in dictionary dict.

end Dictionaries;

The type Dictionary is public, as is the constant maxsize. Note also that the public
procedures add and contains now have parameters of type Dictionary, allowing
these procedures to operate on any Dictionary variable created by the application code.

The corresponding package body implements the public procedures:

package body Dictionaries is

procedure clear (dict: in out Dictionary) is
begin

dict.size := 0;
end;
procedure add (dict: in out Dictionary;

wd: in Word) is
begin

if not contains(dict, wd) then
dict.size := dict.size + 1;
dict.words(dict.size) := wd;

end if;
end;

function contains (dict: Dictionary; wd: Word)
return Boolean is

begin
for i in 1 .. dict.size loop

if wd = dict.words(i) then
return true;

end if;
end loop;
return false;

end;

end Dictionaries;

142 Chapter 6 Data abstraction

Using this package, the application code can declare as many variables of type
Dictionary as it needs:

use Dictionaries;
main_dict, user_dict: Dictionary;

(The clause ‘‘use Dictionaries;’’ allows us to abbreviate Dictionaries.
Dictionary to Dictionary, to abbreviate Dictionaries.add to add, and so on.)

The application code can operate on these variables by calling the public procedures:

if not contains(main_dict, current_word)
and not contains(user_dict, current_word) then

. . .

add(user_dict, current_word);
end if;

Unfortunately, making the type Dictionary public causes a number of difficulties.
There is nothing to prevent application code from manipulating a Dictionary variable
directly. For example, the code:

user_dict.size := 0;

is an attempted shortcut for ‘‘clear(user_dict);’’. But such code can be understood
only by someone familiar with the chosen representation. Worse, such code must be located
and modified whenever the representation is changed.

Another difficulty is that there is nothing to prevent application code from getting a
Dictionary variable into an improper state. For example, the code:

user_dict.size := user_dict.size - 1;

is a crude attempt to remove the word most recently added to user_dict. But this code
could make user_dict.size negative, which would be improper.

Yet another difficulty arises from the fact that the representation is non-unique: it
allows the same set of words to be represented by different values of type Dictionary.
This will happen if we add the same words in a different order:

dictA, dictB: Dictionary;
. . .

clear(dictA); add(dictA, "bat"); add(dictA, "cat");
clear(dictB); add(dictB, "cat"); add(dictB, "bat");
if dictA = dictB then . . .

At this point the value of dictA is (2, {1 → ‘‘bat’’, 2 → ‘‘cat’’, . . .}), whereas the value
of dictB is (2, {1 → ‘‘cat’’, 2 → ‘‘bat’’, . . .}. Both values represent the same set of words
{‘‘bat’’, ‘‘cat’’}. Nevertheless, the above equality test yields the wrong result.

Here is a summary of the difficulties that can arise in practice when a package
has a public type component:

• Application code can access the public type’s representation directly. If
we wish to change the representation (e.g., to make it more efficient), we
have to modify not only the package but also any application code that
accesses the representation directly. (Such code could be anywhere in the

6.2 Abstract types 143

application program. Even if there turns out to be no such code, we have to
read the whole program to be sure.)

• The public type’s representation might have improper values that do not
correspond to any values of the desired type. Even if the package’s pro-
cedures are programmed correctly not to generate improper values, faulty
application code might generate improper values.

• The public type’s representation might be non-unique. A simple equality
test might then yield the wrong result.

To avoid these problems we need an alternative way to define a new type.
An abstract type is a type whose identifier is public but whose representation is
private. An abstract type must be equipped with a group of operations to access its
representation. The operations are typically procedures and constants. The values
of the abstract type are defined to be just those values that can be generated by
repeated use of the operations.

A few programming languages (such as ML) have a customized program unit
that allows us to define an abstract type directly. In ADA, however, we define an
abstract type by writing a package with a private or limited private type. A private
type is equipped not only with the operations defined in the package but also
with the built-in assignment and equality test operations. A limited private type is
equipped only with the operations defined in the package.

EXAMPLE 6.5 ADA limited private type

The following ADA package is similar to that of Example 6.4, except that the Dictionary
type’s representation is limited private. Since the type’s identifier is public, the application
can still declare variables of the Dictionary type. If we stick to our naive dictionary
representation, the package specification looks like this:

package Dictionaries is

type Dictionary is limited private;
-- A Dictionary value represents a set of words.

procedure clear (dict: in out Dictionary);
-- Make dictionary dict empty.

procedure add (dict: in out Dictionary;
wd: in Word);

-- Add word wd to dictionary dict if it is not already there.

function contains (dict: Dictionary; wd: Word)
return Boolean;

-- Return true if and only if word wd is in dictionary dict.

private

maxsize: constant Integer := 1000;
type Dictionary is

record
size: Integer;

144 Chapter 6 Data abstraction

words: array (1 .. maxsize) of Word;
end record;

end Dictionaries;

Here ‘‘type Dictionary is limited private;’’ declares the type, making its
identifier public but hiding its representation. The representation is defined only in the
private part of the package specification.

The corresponding package body is exactly the same as in Example 6.4.
Using this package, application code can declare as many variables of type

Dictionary as it needs:

use Dictionaries;
main_dict, user_dict: Dictionary;

and can operate on these variables by calling the public procedures:

if not contains(main_dict, current_word)
and not contains(user_dict, current_word) then

. . .

add(user_dict, current_word);
end if;

However, application code cannot manipulate a Dictionary variable directly:

user_dict.size := 0; -- illegal!

since the representation of type Dictionary is private. Thus we can be confident that a
Dictionary variable will never have an improper value, since the package’s procedures
have been written carefully to generate only proper values, and there is no way for even
faulty application code to generate improper values.

Since Dictionary is declared as a limited private type, variables of this type can be
operated on only by the package’s public procedures. Even the built-in assignment and
equality test are forbidden. The reason for this decision is that an equality test such as:

dictA, dictB: Dictionary;
. . .

if dictA = dictB then . . .

might still yield the wrong result, because dictA and dictB could contain the same set
of words but differently represented.

In the unlikely event that we actually need an equality test for Dictionary values,
the package must provide its own operation for this purpose. In the package specification
we would declare this operation:

function "=" (dict1, dict2: Dictionary)
return Boolean;

-- Return true if and only if dict1 and dict2 contain the same set of words.

And in the package body we would define this operation carefully to yield the correct result:

function "=" (dict1, dict2: Dictionary)
return Boolean is

begin
if dict1.size /= dict2.size then

return false;
end if;

6.3 Objects and classes 145

for i in 1 .. dict2.size loop
if not contains(dict1, dict2.words(i)) then

return false;
end if;

end loop;
return true;

end;

It does not matter whether an abstract type’s representation is non-unique,
because the representation is private. The key point is that only desired prop-
erties of the abstract type can actually be observed by application code using
the operations with which the abstract type is equipped. In Example 6.5, the
different representations of the same set of words are not observable, because the
contains operation treats them all in the same way (and so too does the ‘‘=’’
operation, if provided).

We can easily change an abstract type’s representation: we need change only
the package body and the private part of the package specification. We can be
sure that we need not change the application code, since the latter cannot access
the representation directly.

(Note that it is anomalous that ADA requires the abstract type’s representation
to be defined in the private part of the package specification, rather than in the
package body along with the other implementation details. The reason for this
design anomaly will become clear in Section 11.4.5.)

Defining an abstract type does involve extra work: because its representation
is private, we must equip it with sufficient operations to generate and process all
desired values. We can classify operations on an abstract type T as follows. A
constructor is an operation that computes a new value of type T, possibly using
values of other types but not using an existing value of type T. A transformer is
an operation that computes a new value of type T, using an existing value of type
T. An accessor is an operation that computes a value of some other type, using
an existing value of type T. In general, we must equip each abstract type with at
least one constructor, at least one transformer, and at least one accessor. Between
them, the constructors and transformers must be capable of generating all desired
values of the abstract type.

In Example 6.5, clear is a constructor, add is a transformer, and contains
is an accessor. Any set of words can be generated by first calling clear, and
then calling add for each word in the set. Due to an implementation restriction,
however, at most 1000 words can be added. Thus the set of values of this abstract
type is:

Dictionary = {s | s is a set of words, #s ≤ 1000}

6.3 Objects and classes

An object is a group of variable components, equipped with a group of operations
that access these variables.

146 Chapter 6 Data abstraction

We can implement a single object by a package whose components are private
variables and public operations, as in Example 6.3. In many applications, however,
we need to create many similar objects. This leads naturally to the concept of a
class.

6.3.1 Classes

A class is a set of similar objects. All the objects of a given class have the same
variable components, and are equipped with the same operations.

Classes are, as we would expect, supported by all the object-oriented languages
including C++ and JAVA (and somewhat indirectly by ADA95). In object-oriented
terminology, an object’s variable components are variously called instance vari-
ables or member variables, and its operations are usually called constructors and
methods.

A constructor is an operation that creates (and typically initializes) a new
object of the class. In both C++ and JAVA, a constructor is always named after the
class to which it belongs.

A method is an operation that inspects and/or updates an existing object of
the class.

EXAMPLE 6.6 JAVA class

For comparison with Examples 6.3 and 6.5, let us see how to implement dictionaries
as objects.

Here is a possible JAVA class declaration (sticking to our naive dictionary representa-
tion):

class Dictionary {

// A Dictionary object represents a set of words.

private int size;
private String[] words;
// This dictionary is represented as follows: size contains the number
// of words, and words[0], . . . ,words[size-1] contain the words
// themselves, in no particular order.

public Dictionary (int maxsize) {
// Construct an empty dictionary, with space for maxsize words.

this.size = 0;
this.words = new String[maxsize];

}

public void add (String wd) {
// Add word wd to this dictionary if it is not already there.

if (! contains(wd)) {
this.words[this.size++] = wd;

}
}

6.3 Objects and classes 147

public boolean contains (String wd) {
// Return true if and only if word wd is in this dictionary.

for (int i = 0; i < this.size; i++) {
if (wd.equals(this.words[i])) return true;

}
return false;

}

}

Each object of class Dictionary will have private variable components named size
and words, and will be equipped with public methods named add and contains.

To create individual objects of the Dictionary class, we must call the constructor:

Dictionary mainDict = new Dictionary(10000);
Dictionary userDict = new Dictionary(1000);

The expression ‘‘new Dictionary(. . .)’’ creates and initializes a new object of
class Dictionary, yielding a pointer to that object. So the above code creates two
Dictionary objects, and makes the variables mainDict and userDict point to these
objects. These two objects are similar but distinct.

We can operate on these objects by method calls:

if (! mainDict.contains(currentWord)
&& ! userDict.contains(currentWord)) {

. . .

userDict.add(currentWord);
}

The method call ‘‘userDict.add(currentWord)’’ works as follows. First it takes the
object to which userDict points, which is called the target object. Then it selects the
method named add with which the target object is equipped. Then it calls that method
with the value of currentWord as an argument.

Within the method body, this denotes the target object. Thus ‘‘this.size++’’
actually increments userDict.size, and ‘‘this.words’’ actually refers to
userDict.words. (Actually, this.size and this.words may be abbreviated to
size and words, respectively.)

Application code may not access the variable components size and words directly,
since they are private:

userDict.size = 0; // illegal!

Nor can application code make Dictionary objects contain improper values. Conse-
quently, we can change the representation of Dictionary objects by modifying the
Dictionary class alone; no modifications to the application code are needed.

JAVA adopts reference semantics for assignment and equality testing of objects. Thus
the following equality test:

Dictionary dictA = . . ., dictB = . . .;
if (dictA == dictB) . . .

would actually compare references to two distinct Dictionary objects, wrongly yielding
false even if the two dictionaries happen to contain the same words. If we want to support
proper equality testing of Dictionary objects, the class must provide a method for
this purpose:

148 Chapter 6 Data abstraction

class Dictionary {

. . .

public boolean equals (Dictionary that) {
// Return true if and only if this dictionary and that contain the same set
// of words.

if (this.size != that.size) return false;
for (int i = 0; i < that.size; i++) {
if (! contains(that.words[i])) return false;

}
return true;

}

}

Application code would call that method as follows:

Dictionary dictA = . . ., dictB = . . .;
if (dictA.equals(dictB)) . . .

A method call both names a method and identifies a target object, which is the
object on which the method will operate. In a JAVA method call ‘‘O.M(E1, . . .,
En)’’, M is the method name, O identifies the target object, and the Ei are
evaluated to yield the arguments. The target object must be equipped with a
method named M, otherwise there is a type error. Inside the method’s body, this
denotes the target object.

EXAMPLE 6.7 C++ class

The following shows how we could declare a Dictionary class, analogous to that of
Example 6.6, in C++:

class Dictionary {

// A Dictionary object represents a set of words.

private:

int size;
String words[];
// This dictionary is represented as follows: size contains the number of
// words, and words[0], . . . , words[size-1] contain the words
// themselves, in no particular order.

public:

Dictionary (int maxsize);
// Construct an empty dictionary, with space for maxsize words.

void add (String wd);
// Add word wd to this dictionary if it is not already there.

6.3 Objects and classes 149

boolean contains (String wd) const;
// Return true if and only if word wd is in this dictionary.

}

In this class declaration, the variable components size and words are declared to be pri-
vate, while the constructor and the methods add and contains are declared to be public.

This class declaration only declares the constructor and methods (providing their
names, parameter types, and result types). We must therefore define these operations
separately. For this purpose we use qualified names such as Dictionary::add, which
denotes the add method of the Dictionary class:

Dictionary::Dictionary (int maxsize) {
this->size = 0;
this->words = new String[maxsize];

}

void Dictionary::add (String wd) {
if (! contains(wd)) {

this->words[this->size] = wd;
this->size++;

}
}

boolean Dictionary::contains (String wd) const {
for (int i = 0; i < this->size; i++) {
if (strcmp(wd, this->words[i])) return true;

}
return false;

}

To create individual objects of the Dictionary class, we must call the constructor:

Dictionary* main_dict = new Dictionary(10000);
Dictionary* user_dict = new Dictionary(1000);

The expression ‘‘new Dictionary(. . .)’’ creates and initializes a new object of
class Dictionary, yielding a pointer to that object. So the above code creates two
Dictionary objects, and makes the variables main_dict and user_dict point to
these objects. These objects are similar but distinct.

We can now access these objects by method calls:

if (! main_dict->contains(current_word)
&& ! user_dict->contains(current_word)) {

. . .

user_dict->add(current_word);
}

The method call ‘‘user_dict->add(. . .)’’ is actually an abbreviation of
‘‘(*user_dict).add(. . .)’’. Thus the target object is *user_dict, i.e., the object
to which user_dict points. Within the method body, this denotes a pointer to the
target object. Thus this->size actually refers to user_dict->size, and so on.
(Actually, we can abbreviate this->size to size.)

The following equality test:

Dictionary* dictA = . . ., dictB = . . .;
if (dictA == dictB) . . .

150 Chapter 6 Data abstraction

would compare pointers to the two Dictionary objects, wrongly yielding false even if the
two dictionaries happen to contain the same words. No better is the following equality test:

Dictionary* dictA = . . ., dictB = . . .;
if (*dictA == *dictB) . . .

which would actually compare the representations of the twoDictionary objects, wrongly
yielding false if the same words have been added to the two dictionaries in different orders.
If we need a correct equality test for Dictionary objects, the class must provide an
operation for this purpose (overloading the ‘‘==’’ operator):

class Dictionary {

. . .

public:

. . .

friend bool operator== (Dictionary* dict1,
Dictionary* dict2);

// Return true if and only if dictionaries dict1 and dict2 contain the
// same set of words.

}

Here is a possible implementation:

bool Dictionary::operator== (Dictionary* dict1,
Dictionary* dict2) {

if (dict1->size != dict2->size) return false;
for (int i = 0; i < dict2->size; i++) {
if (! dict1->contains(dict2->words[i]))

return false;
}
return true;

}

In both JAVA and C++, the programmer is allowed to choose which components
of an object are private and which are public. Constant components are often
public, allowing them to be directly inspected (but not of course updated) by
application code. Variable components should always be private, otherwise the
benefits of encapsulation would be lost. Constructors and methods are usually
public, unless they are auxiliary operations to be used only inside the class
declaration.

The concepts of an abstract type (Section 6.2) and a class (this section) have
much in common. Each allows application code to create several variables of a
type whose representation is private, and to manipulate these variables only by
operations provided for the purpose. However, there are differences between
abstract types and classes.

We can clearly see a syntactic difference if we compare the application code
in Examples 6.5 and 6.6:

6.3 Objects and classes 151

• Refer to the ADA Dictionary abstract type of Example 6.5. To operate
on a variable adict of this type, we write a call to the add procedure
as follows:

add(adict, aword);

Here the variableadict is passed as an ordinary argument to the procedure,
and is denoted by the formal parameter dict inside the procedure body.

• Refer to the JAVA Dictionary class of Example 6.5. To operate on an
object adict of this class, we write a call to the add method as follows:

adict.add(aword);

Here adict is the method call’s target object, and is denoted by the
keyword this inside the method body.

A more important difference between the two concepts is that the class
concept leads naturally to the concepts of subclasses and inheritance, which are
fundamental to object-oriented programming.

6.3.2 Subclasses and inheritance

We have seen that a class C is a set of similar objects. Every object of class C has
the same variable components, and is equipped with the same operations.

A subclass of C is a set of objects that are similar to one another but richer than
the objects of class C. An object of the subclass has all the variable components of
an object of class C, but may have extra variable components. Likewise, an object
of the subclass is equipped with all the methods of class C, but may be equipped
with extra methods.

If S is a subclass of C, we also say that C is a superclass of S.
A subclass is said to inherit its superclass’s variable components and methods.

In certain circumstances, however, a subclass may override some of its superclass’s
methods, by providing more specialized versions of these methods.

EXAMPLE 6.8 JAVA class and subclasses

Consider the following JAVA class declaration:

class Point {

// A Point object represents a point in the xy plane.

protected double x, y;
// This point is represented by its Cartesian coordinates (x,y).

public Point () {
// Construct a point at (0, 0).

x = 0.0; y = 0.0;
}

152 Chapter 6 Data abstraction

(1) public double distance () {
// Return the distance of this point from (0, 0).

return Math.sqrt(x*x + y*y);
}

(2) public final void move (double dx, double dy) {
// Move this point by dx in the x direction and by dy in the y direction.

x += dx; y += dy;
}

(3) public void draw () {
// Draw this point on the screen.

. . .

}

}

Each Point object consists of variable components x and y, and is equipped with methods
named distance, move, and draw.

Now consider the following class declaration:

class Circle extends Point {

// A Circle object represents a circle in the xy plane.

private double r;
// This circle is represented by the Cartesian coordinates of its center
// (x,y) together with its radius (r).

public Circle (double radius) {
// Construct a circle of radius r centered at (0, 0).

x = 0.0; y = 0.0; r = radius;
}

(4) public void draw () {
// Draw this circle on the screen.

. . .

}

(5) public double getDiam () {
// Return the diameter of this circle.

return 2.0 * r;
}

}

The clause ‘‘extends Point’’ states that class Circle is a subclass of Point (and
hence that Point is the superclass of Circle). Each Circle object consists of variable
components x, y, and r, and is equipped with methods named distance, move, draw,
and getDiam. Note that the extra variable component r is declared here, but not the
variable components x and y that are inherited from the superclass. Likewise, the extra
method getDiam is defined here, but not the methods distance and move that are
inherited from the superclass. Also defined here is a new version of the draw method,
which overrides the superclass’s draw method.

Consider the following application code:

Point p = new Point(); // p is at (0, 0)
Circle c = new Circle(10.0); // c is centered at (0, 0)

6.3 Objects and classes 153

p.move(12.0, 5.0); // now p is at (12, 5)
c.move(3.0, 4.0); // now c is centered at (3, 4)
. . . p.distance() . . . // yields 13
. . . c.distance() . . . // yields 5
p.draw(); // draws a point at (12, 5)
c.draw(); // draws a circle centered at (3, 4)
. . . c.getDiam() . . . // yields 10

Note that it is perfectly safe to apply the inherited distance and move methods
to Circle objects, since these methods access only the inherited x and y variable
components, which are common to Point and Circle objects. The extra getDiam
method accesses the extra variable component r, which is also safe because this method
can be applied only to a Circle object (never to a Point object).

The Circle class’s extra getDiam method and overriding draw method are per-
mitted to access the extra variable component r, which is private but declared in the same
class. They are also permitted to access the inherited variable components x and y, which
are protected and declared in the superclass. (If x and ywere private, on the other hand, we
would be unable to implement the Circle class’s draw method, unless we extended the
Point class with getX and getY methods returning the values of x and y, respectively.)

Now consider the following variable:

Point p;

This variable can refer to any object whose class is either Point or Circle (or indeed
any other subclass of Point). Consequently, the method call ‘‘p.draw()’’ will call either
the Point class’s draw method or the Circle class’s draw method, depending on the
class of object to which p currently refers. This is called dynamic dispatch.

Finally consider the following class declaration:

class Rectangle extends Point {

// A Rectangle object represents a rectangle in the xy plane.

private double w, h;
// This rectangle is represented by the Cartesian coordinates of its
// center (x,y) together with its width and height (w,h).

public Rectangle (double width, double height) {
// Construct a rectangle of width and height, centered at (0, 0).

x = 0.0; y = 0.0; w = width; h = height;
}

(6) public void draw () {
// Draw this rectangle on the screen.

. . .

}

(7) public double getWidth () {
// Return the width of this rectangle.

return w;
}

(8) public double getHeight () {
// Return the height of this rectangle.

return h;
}

}

154 Chapter 6 Data abstraction

The clause ‘‘extends Point’’ states that class Rectangle is a subclass of Point (and
hence that Point is the superclass of Rectangle). Each Rectangle object consists
of variable components x, y, w, and h, and is equipped with methods named distance,
move, draw, getWidth, and getHeight. Note that the extra variable components w
and h are declared here, but not the variable components x and y that are inherited from
the superclass. Likewise, the extra methods getWidth and getHeight are defined here,
but not the methods distance and move that are inherited from the superclass. Also
defined here is a new version of the draw method, which overrides the superclass’s draw
method.

A private component is visible only in its own class, while a public component
is visible everywhere. A protected component is visible not only in its own class but
also in any subclasses. Protected status is therefore intermediate between private
status and public status.

A subclass may itself have subclasses. This gives rise to a hierarchy of classes.
Inheritance is important because it enables programmers to be more produc-

tive. Once a method has been implemented for a particular class C, that method
is automatically applicable not only to objects of class C but also to objects of any
subclasses that inherit the method from C (and their subclasses, and so on). In
practice, this gain in programmer productivity is substantial.

Each method of a superclass may be either inherited or overridden by a
subclass. A JAVA method is inherited by default; in that case objects of the
superclass and the subclass share the same method. A JAVA method is overridden
if the subclass provides a method with the same identifier, parameter types,
and result type; in that case objects of the superclass are equipped with one
version of the method, while objects of the subclass are equipped with another
version.

A method is overridable if a subclass is allowed to override it. A JAVA method
is overridable only if it is not declared as final. (For example, the methods
distance and draw of the Point class in Example 6.8 are overridable, but
not the method move.) A C++ method is overridable only if it is declared as
virtual.

EXAMPLE 6.9 C++ class and subclasses

The C++ class and subclasses in this example correspond to the JAVA class and subclasses
of Example 6.8.

Consider the following C++ class declaration:

class Point {

// A Point object represents a point in the xy plane.

protected:

double x, y;
// This point is represented by its Cartesian coordinates (x,y).

6.3 Objects and classes 155

public:

Point ();
// Construct a point at (0, 0).

virtual double distance ();
// Return the distance of this point from (0, 0).

void move (double dx, double dy);
// Move this point by dx in the x direction and by dy in the y direction.

virtual void draw ();
// Draw this point on the screen.

};

Each Point object consists of variable components x and y, and is equipped with methods
nameddistance,move, anddraw (of which onlydistance anddraw are overridable).
We have chosen not to define the methods and constructor in this class declaration, so we
must define them elsewhere in the program.

Now consider the following class declaration:

class Circle : public Point {

// A Circle object represents a circle in the xy plane.

private:

double r;
// This circle is represented by the Cartesian coordinates of its center (x,y)
// together with its radius (r).

public:

Circle (double radius);
// Construct a circle of radius centered at (0, 0).

void draw ();
// Draw this circle on the screen.

double getDiam ();
// Return the diameter of this circle.

}

The clause ‘‘: public Point’’ states that class Circle is a subclass of Point (and that
Point is the superclass of Circle). Each Circle object consists of variable components
x, y, and r, and is equipped with methods named distance, move, draw, and getDiam.

The following is possible application code:

Point* p = new Point(); // p is at (0, 0)
Circle* c = new Circle(10.0); // c is centered at (0, 0)
p->move(12.0, 5.0); // now p is at (12, 5)
c->move(3.0, 4.0); // now c is centered at (3, 4)
. . . p->distance() . . . // yields 13
. . . c->distance() . . . // yields 5
p->draw(); // draws a point at (12, 5)
c->draw(); // draws a circle centered at (3, 4)
. . . c->getDiam() . . . // yields 10.0

156 Chapter 6 Data abstraction

Finally consider the following class declaration:

class Rectangle : public Point {

// A Rectangle object represents a rectangle in the xy plane.

private:

double w, h;
// This rectangle is represented by the Cartesian coordinates of its center
// (x,y) together with its width and height (w,h).

public:

Rectangle (double width, double height);
// Construct a rectangle of width and height, centered at (0, 0).

void draw ();
// Draw this rectangle on the screen.

double getWidth ();
// Return the width of this rectangle.

double getHeight ();
// Return the height of this rectangle.

}

The clause ‘‘: public Point’’ states that class Rectangle is a subclass of Point. Each
Rectangle object consists of variable components x, y, w, and h, and is equipped with
methods named distance, move, draw, getWidth, and getHeight.

Dynamic dispatch occurs in a method call where it is impossible to determine
at compile-time which version of the method is to be called. Dynamic dispatch
entails a run-time determination of the target object’s class followed by selecting
the appropriate method for that class.

Dynamic dispatch is necessary only where the named method is overridable
and the exact class of the target object is unknown at compile-time. (If the named
method is not overridable, there can be only one version of it. If the exact class of
the target object is known, the correct version of the method can be selected at
compile-time.)

For instance, consider the JAVA method call ‘‘O.M(E1,. . .,En)’’ or the
C++ method call ‘‘O->M(E1,. . .,En)’’, where M is an overridable method. The
compiler will infer that the class of O is C (say), but the actual class of the target
object could turn out to be either C or some subclass of C. The compiler will
ensure that class C is equipped with a method named M, which guarantees that
the target object (whatever its class) is indeed equipped with a method named M.
But it might be the case that some subclasses inherit method M from class C, while
other subclasses override method M, so the version to be called must be selected
at run-time.

6.3 Objects and classes 157

6.3.3 Abstract classes

An abstract class is a class in which no objects can be constructed. An abstract
class may have variable components and methods, but it differs from ordinary
classes in two respects:

• An abstract class has no constructor.

• Some of its methods may be undefined. (These are called abstract methods.)

The only purpose of an abstract class A is to serve as a superclass. Any
subclasses of A inherit its variable components and methods in the usual way. If
A has an abstract method, that method must be defined by all of A’s subclasses
that are not themselves abstract.

EXAMPLE 6.10 JAVA abstract class and subclasses

Recall thePoint class and theCircle andRectangle subclasses of Example 6.8. There
we treated circles and rectangles as special cases of points, which was rather artificial.

It is more natural to think of points, circles, and rectangles as special cases of shapes.
While it makes sense to construct point, circle, and rectangle objects, however, it makes no
sense to construct a shape object. The following JAVA abstract class captures the notion of
a shape:

abstract class Shape {

// Shape objects represent different kinds of shapes in the xy plane.

protected double x, y;
// This shape’s center is represented by its Cartesian coordinates (x,y).

public double distance () {
// Return the distance of this shape’s center from (0, 0).

return Math.sqrt(x*x + y*y);
}

public final void move (double dx, double dy) {
// Move this shape by dx in the x direction and by dy in the y direction.

x += dx; y += dy;
}

public abstract void draw ();
// Draw this shape on the screen.

}

Every Shape object will have variable components x and y, and will be equipped
with methods named distance, move, and draw. The distance and move meth-
ods are defined here in the usual way, the former being overridable. However, the
draw method cannot sensibly be defined here (what would it do?), so it is an abstract
method.

158 Chapter 6 Data abstraction

Since Shape is an abstract class, it has no constructor, so we cannot construct any
object of class Shape. So when we speak loosely of a ‘‘Shape object’’, we really mean an
object of a subclass of Shape.

Now consider the following subclasses of Shape:

class Point extends Shape {

// A Point object represents a point in the xy plane.

public Point () {
// Construct a point at (0, 0).

x = 0.0; y = 0.0;
}

public void draw () {
// Draw this point on the screen.

. . .

}

}

Each Point object consists of variable components x and y, and is equipped with
methods named distance, move, and draw. All of these methods are inherited from the
superclass Shape, except for the superclass’s abstract draw method which is defined here.

class Circle extends Shape {

// A Circle object represents a circle in the xy plane.

private double r;
// This circle is represented by the Cartesian coordinates of its center (x,y)
// together with its radius (r).

public Circle (double radius) {
// Construct a circle of radius centered at (0, 0).

x = 0.0; y = 0.0; r = radius;
}

public void draw () {
// Draw this circle on the screen.

. . .

}

public double getDiam () {
// Return the diameter of this circle.

return 2.0 * r;
}

}

Each Circle object consists of variable components x, y, and r, and is equipped with
methods named distance, move, draw, and getDiam. Again the superclass’s abstract
draw method is defined here.

class Rectangle extends Shape {

// A Rectangle object represents a rectangle in the xy plane.

6.3 Objects and classes 159

private double w, h;
// This rectangle is represented by the Cartesian coordinates of its center
// (x,y) together with its width and height (w,h).

public Rectangle (double width, double height) {
// Construct a rectangle of width and height, centered at (0, 0).

x = 0.0; y = 0.0; w = width; h = height;
}

public void draw () {
// Draw this rectangle on the screen.

. . .

}

public double getWidth () {
// Return the width of this rectangle.

return w;
}

public double getHeight () {
// Return the height of this rectangle.

return h;
}

}

Each Rectangle object consists of variable components x, y, w, and h, and is equipped
with methods named distance, move, draw, getWidth, and getHeight. Again the
superclass’s abstract draw method is defined here.

Figure 6.1 summarizes the relationships among these classes.

Point

draw

x
y
distance
move
draw «abstract»

Circle
r
draw
getDiam

Box
w
h
draw
getWidth
getHeight

Object «abstract»

clone
equals
…

class named C, with
variable components
named V1, …, Vn, and
with operations named
O1, …, Om

C

Notation:

C2

…

C2 is a
subclass
of C1

V1
…
Vn

…

C1

…
…

O1

…
Om

Shape «abstract»

Figure 6.1 Relationships between JAVA classes under single inheritance (Example 6.10).

160 Chapter 6 Data abstraction

6.3.4 Single vs multiple inheritance

An object-oriented language supports single inheritance if it restricts each class
to at most one superclass. Each subclass inherits the variable components and
methods of its single superclass.

An object-oriented language supports multiple inheritance if it allows each
class to have any number of superclasses. Each subclass inherits the variable
components and methods of all its superclasses.

Single inheritance is supported by most object-oriented languages, including
JAVA and ADA95. In JAVA each class’s unique superclass is named in the class
declaration’s extends clause. If there is no such clause, the default superclass is
Object. The Object class alone has no superclass. Thus all JAVA classes form a
hierarchy with the Object class at the top, as illustrated in Figure 6.1.

Multiple inheritance is less usual, but it is supported by C++. A C++ class
may be declared to have any number of superclasses (perhaps none). This gives
rise to class relationships such as those illustrated in the following example and
Figure 6.2.

EXAMPLE 6.11 C++ multiple inheritance

Consider the following C++ classes (in which methods are omitted for simplicity):

class Animal {
private:

float weight;
float speed;

public:
. . .

}

Animal«abstract»
weight
speed

…

Bird «abstract»
egg-size

…

Flier «abstract»
wing-span

…

Mammal «abstract»
gestation-time

…

…
…

Penguin

…
…

Eagle
sonar-range

…

Bat

…

Cat

Figure 6.2 Relationships between C++ classes under multiple inheritance (Example 6.11).

6.3 Objects and classes 161

class Mammal : public Animal {
private:

float gestation_time;
public:

. . .

}

class Bird : public Animal {
private:

float egg_size;
public:

. . .

}

class Flyer : public Animal {
private:

float wing_span;
public:

. . .

}

class Cat : public Mammal {
public:

. . .

}

class Bat : public Mammal, public Flyer {
private:

float sonar_range;
public:

. . .

}

In the declaration of the Mammal class, the clause ‘‘: public Animal’’ states that
Mammal has one superclass, Animal. Thus a Mammal object has variable components
weight and speed (inherited from Animal) and gestation_time. Similarly, the
Bird and Flyer classes each have one superclass, Animal.

In the declaration of the Cat class, the clause ‘‘: public Mammal’’ states that
Cat has one superclass, Mammal. Thus a Cat object has variable components weight
and speed (inherited indirectly from Animal) and gestation_time (inherited from
Mammal).

In the declaration of the Bat class, the clause ‘‘: public Mammal, public Flier’’
states that Bat has two superclasses, Mammal and Flyer. Thus a Bat object has variable
components weight andspeed (inherited indirectly fromAnimal),gestation_time
(inherited from Mammal), wing_span (inherited from Flier), and sonar_range. A
Bat object also inherits methods from both Mammal and Flyer as well as from Animal.

Figure 6.2 summarizes the relationships among these classes (and a few other possi-
ble classes).

Multiple inheritance is useful in some real applications (not just tongue-in-
cheek applications like Example 6.11). However, multiple inheritance also gives
rise to a conceptual difficulty (and to implementation difficulties, which will be
explained in Section 6.4).

162 Chapter 6 Data abstraction

The conceptual difficulty is as follows. Suppose that the Animal class in
Example 6.11 defines a method named M, which is overridden by both the
Mammal and Flier subclasses. Then which version of method M is inherited by
the Bat class? In other words, which version is called by the method call ‘‘O->M
(. . .)’’, where O identifies a Bat object? There are several possible answers to
this question:

• Call the Mammal version of the method, on the grounds that Mammal is the
first-named superclass of Bat.

• Force the programmer to state explicitly, in the Bat class declaration,
whether the Mammal or the Flier version of the method is to be preferred.

• Force the programmer to state explicitly, in the method call, whether the
Mammal or the Flier version of the method is to be preferred.

• Prohibit such a method call, on the grounds that it is ambiguous. This is
C++’s answer.

None of these answers is entirely satisfactory. Consider an innocent application
programmer who is expected to use a large class library. The programmer is
broadly aware of the repertoire of classes but has only a partial understanding of
their relationships, in particular the extent to which the library exploits multiple
inheritance. Sooner or later the programmer will receive an unpleasant surprise,
either because the compiler prohibits a desired method call, or because the
compiler selects an unexpected version of the method.

6.3.5 Interfaces
In software engineering, the term interface is often used as a synonym for
application program interface. In some programming languages, however, the
term has a more specific meaning: an interface is a program unit that declares (but
does not define) the operations that certain other program unit(s) must define.

An ADA package specification is a kind of interface: it declares all the
operations that the corresponding package body must define. As we saw in
Section 6.1, however, an ADA package specification has other roles such as
defining the representation of a private type, so it is an impure kind of interface.

In JAVA, an interface serves mainly to declare abstract methods that certain
other classes must define. We may declare any class as implementing a particular
interface, in which case the class must define all the abstract methods declared in
the interface. (A JAVA interface may define constants as well as declare abstract
methods, but it may not do anything else.)

EXAMPLE 6.12 JAVA interfaces

Consider the following JAVA interface:

interface Comparable {

// A Comparable object can be compared with another object to

6.3 Objects and classes 163

// determine whether it is equal to, less than, or greater than that other
// object.

public abstract int compareTo (Object other);

}

This interface declares one abstract method, compareTo. Any class that implements
the Comparable interface must define a method named compareTo with the same
parameter and result types.

Note that, when we speak loosely of a Comparable object, we really mean an object
of a class that implements the Comparable interface.

Consider also the following interface:

interface Printable {

// A Printable object can be rendered as a string.

public abstract String toString ();

}

This interface also declares one abstract method, toString. (More generally, a JAVA

interface may declare several abstract methods.)
Now consider the following JAVA class:

class Date implements Comparable, Printable {

private int y, m, d;

public Date (int year, int month, int day) {
y = year; m = month; d = day;

}

public advance () {
. . .

}

public int compareTo (Object other) {
Date that = (Date)other;
return (this.y < that.y ? -1 :

this.y > that.y ? +1 :
this.m < that.m ? -1 :
this.m > that.m ? +1 :
this.d - that.d);

}

public String toString () {
return (y + "-" + m + "-" + d);

}

}

The Date class implements both the Comparable and Printable interfaces. As
required, it defines a method named compareTo and a method named toString, as
well as defining constructors and methods of its own.

Interfaces achieve some of the benefits of multiple inheritance, while avoiding
the conceptual difficulty explained at the end of Section 6.3.4. In general, a JAVA

164 Chapter 6 Data abstraction

class has exactly one superclass, but may implement any number of interfaces.
The class can inherit method definitions from its superclass (and indirectly from
its superclass’s superclass, and so on), but it cannot inherit method definitions
from the interfaces (since interfaces do not define anything). So there is never any
confusion about which method is selected by a particular method call.

In Example 6.12, the Date class has one superclass (Object), and it imple-
ments two interfaces. The latter serve only to declare some methods with which
the Date class must be equipped. In fact, the Date class defines both these
methods itself. Alternatively, it would have been perfectly legal for the Date
class to inherit its toString method from the Object class. (That would not
have been sensible, however, since the specialized toString method defined in
the Date class was more appropriate than the unspecialized toString method
defined in the Object class.)

6.4 Implementation notes

Here we outline the implementation of objects and method calls in a language that
supports only single inheritance. We also draw attention to the implementation
difficulties of multiple inheritance.

6.4.1 Representation of objects

In general, each object of a given class is represented by a tag field (which indicates
the class of the object) followed by the object’s variable components.

Consider objects of the JAVA Point class and its subclasses in Example 6.8.
Each Point object is represented by a tag field followed by two variable com-
ponents (x and y) of type double. Each Circle object is represented by a tag
field followed by three variable components (x, y, and r) of type double, and
each Rectangle object is represented by a tag field followed by four variable
components (x, y, w, and h) of type double. Objects of all three classes are
illustrated in Figure 6.3.

Note that all JAVA objects are accessed through pointers, as shown in
Figure 6.3. C++ and ADA95 objects, on the other hand, are accessed through
pointers if and only if the programmer chooses to introduce pointers.

An object’s tag field indicates its class. Tag fields are needed whenever objects
of different classes can be used interchangeably. In particular, they are needed to
implement dynamic dispatch (Section 6.4.2). In other circumstances (for example,
when a class has no superclass or subclass), tag fields can be omitted.

The variable components of an object can be accessed efficiently, since the
compiler can determine their offsets relative to the start of the object. This is true
even when objects of a subclass can be used in place of objects of their superclass,
assuming single inheritance, since inherited variable components are placed at
the same offset in objects of the superclass and subclass. For example, the JAVA

declaration ‘‘Point p;’’ allows p to refer to an object of class Point, Circle,
or Rectangle, but p.x or p.y can be accessed efficiently without even bothering
to test the object’s class.

6.4 Implementation notes 165

x 2.0

y 5.0

tag
x 0.0

y 0.0

tag

r 2.5

x 0.0

y 0.0

tag

w 3.0

h 4.0

method (1)distance
method (2)move
method (3)draw

method (1)distance
method (2)move
method (4)draw

method (1)distance
method (2)move
method (6)draw

method (5)getDiam method (7)getWidth
method (8)getHeight

Point
class object

Circle
class object

Rectangle
class object

Figure 6.3 Representation of JAVA objects of classes Point, Circle, and Rectangle
(Example 6.8).

In the presence of multiple inheritance, it is much more difficult to represent
objects in such a way that variable components can be accessed efficiently.
In Example 6.11, all objects have weight and speed components; so far so
good. But a Cat object has a gestation_time component, a Bat object
has gestation_time and wing_span components, an Eagle object has
wing_span andegg_size components, and aPenguinobject has anegg_size
component. There is no simple way to represent objects of all these classes in such
a way that a given component always has the same offset relative to the start of
the object.

6.4.2 Implementation of method calls

In a method call, the target object’s address is passed to the called method, whether
it is an explicit parameter or not. For instance, in a JAVA method call of the form
‘‘O.M(. . .)’’, the address of the target object (determined by O) is passed to
the method named M, enabling that method to inspect and/or update the target
object. In effect, the target object is an implicit argument, and is denoted by this
inside the method body.

If a particular method is never overridden, a call to that method can be
implemented like an ordinary procedure call (see Section 5.3).

However, complications arise when a subclass overrides a method of its
superclass. In Example 6.8, both the Circle and Rectangle subclasses override
the Point class’s draw method. When the method named draw is called with
a target object whose class is not known at compile-time, dynamic dispatch
is necessary to determine the correct method at run-time. Objects must be
represented in such a way that dynamic dispatch is possible.

166 Chapter 6 Data abstraction

For each class C a class object is created, which contains a table of addresses
of the methods with which class C is equipped. Figure 6.3 illustrates the Point,
Circle, and Rectangle class objects. Note that they all share the same dis-
tance and move methods, but their draw methods are different. Moreover, the
Circle class object alone contains the address of the method named getDiam,
while the Rectangle class object alone contains the addresses of the methods
named getWidth and getHeight.

An ordinary object’s tag field contains a pointer to the appropriate class
object. A method call ‘‘O.M(. . .)’’ is therefore implemented as follows:

(1) Determine the target object from O.

(2) Follow the pointer from the target object’s tag field to the corresponding
class object.

(3) Select the method named M in the class object.

(4) Call that method, passing the address of the target object.

The method named M can be accessed efficiently in step (3), since the compiler
can determine its offset relative to the start of the class object, assuming single
inheritance.

In the presence of multiple inheritance, it is much more difficult to implement
dynamic dispatch efficiently. There is no simple way to represent class objects
in such a way that a given method always has the same offset. This problem
is analogous to the problem of representing the ordinary objects themselves
(Section 6.4.1).

Summary

In this chapter:

• We have studied the concepts of packages, abstract types, and classes, which are
program units well suited to be the building blocks of large programs.

• We have seen that a package consists of several (usually related) components, which
may be any entities such as types, constants, variables, and procedures.

• We have seen that each component of a program unit may be either public or
private, which is encapsulation. Encapsulation enables a program unit to have a
simple application program interface.

• We have seen that an abstract type has a private representation and public operations
(procedures). This encapsulation enables the abstract type’s representation to be
changed without affecting application code.

• We have seen that the objects of a class typically have private variable components
and public operations. This encapsulation enables the objects’ representation to be
changed without affecting application code.

• We have seen that a class may have subclasses, which inherit some or all of the
operations from their superclass.

• We have seen how objects are represented in a computer, and how method calls are
implemented.

Exercises 167

Further reading

The importance of encapsulation in the design of large pro-
grams was first clearly recognized by PARNAS (1972). He
advocated a discipline whereby access to each global vari-
able is restricted to procedures provided for the purpose, on
the grounds that this discipline enables the variable’s rep-
resentation to be changed without forcing major changes
to the rest of the program. A variable encapsulated in this
way is just what we now call an object.
A discussion of encapsulation in general, and a rationale
for the design of ADA packages in particular, may be found
in Chapter 8 of ICHBIAH (1979).
The concept of abstract types was introduced by LISKOV

and ZILLES (1974). This concept has proved to be extremely
valuable for structuring large programs. Abstract types
are amenable to formal specification, and much research
has focused on the properties of such specifications, and
in particular on exploring exactly what set of values are
defined by such a specification.
The concept of a class, and the idea that a class can
inherit operations from another class, can be traced back to

SIMULA67, described in BIRTWHISTLE et al. (1979). How-
ever, SIMULA67 did not support encapsulation, so the
variable components of an object could be accessed by
application code. Furthermore, SIMULA67 confused the con-
cept of object with the independent concepts of reference
and coroutine.

The classification of operations into constructors, accessors,
and transformers was first suggested by MEYER (1989).
Meyer has been a major influence in the modern develop-
ment of object-oriented programming, and he has designed
his own object-oriented language EIFFEL, described in
MEYER (1988).

In this chapter we have touched on software engineering.
Programming is just one aspect of software engineering,
and the programming language is just one of the tools in
the software engineer’s kit. A thorough exploration of the
relationship between programming languages and the wider
aspects of software engineering may be found in GHEZZI

and JAZAYERI (1997).

Exercises

Exercises for Section 6.1
6.1.1 Choose a programming language (such as C or PASCAL) that does not support

packages, abstract types, or classes. (a) How would the trigonometric package of
Example 6.2 be programmed in your language? (b) What are the disadvantages
of programming in this way?

*6.1.2 Choose a programming language (such as FORTRAN or PASCAL) that has built-in
features for text input/output. Design (but do not implement) a package that
provides equivalent functionality. The user of your package should be able to
achieve all of your language’s text input/output capabilities without using any
of the language’s built-in features.

Exercises for Section 6.2
6.2.1 (a) Design a Money abstract type, whose values are amounts of money

expressed in your own currency. Equip your abstract type with operations
such as addition and subtraction of amounts of money, and multiplication by
a given integer. (b) Suggest an efficient representation for your abstract type.
Use any suitable programming language.

6.2.2 (a) Design a Complex abstract type, whose values are complex numbers.
Equip your abstract type with operations such as magnitude, complex addi-
tion, complex subtraction, and complex multiplication. (b) Suggest an efficient
representation for your abstract type.

6.2.3 (a) Design a Date abstract type, whose values are calendar dates. Equip your
abstract type with operations such as equality test, comparison (‘‘is before’’),

168 Chapter 6 Data abstraction

adding or subtracting a given number of days, and conversion to ISO format
‘‘yyyy-mm-dd’’. (b) Suggest an efficient representation for your abstract type.

6.2.4 (a) Design a Fuzzy abstract type, whose values are yes, no, and maybe. Equip
your abstract type with operations such as and, or, and not. (b) Suggest an
efficient representation for your abstract type.

*6.2.5 (a) Design a Rational abstract type, whose values are rational numbers m/n.
Equip your abstract type with operations such as construction from a given pair
of integers m and n, addition, subtraction, multiplication, equality test, and com-
parison (‘‘is less than’’). (b) Implement your abstract type, representing each
rational number by a pair of integers (m, n). (c) Modify your implementation,
representing each rational number by a pair of integers with no common factor.
What are the advantages and disadvantages of this modified representation?

Exercises for Section 6.3
6.3.1 (a) Design a Counter class, such that each Counter object is to be a counter

(i.e., a nonnegative integer). Equip your class with operations to zero the
counter, increment the counter, and inspect the counter. (b) Implement your
class. Use any suitable object-oriented language.

6.3.2 Consider the class hierarchy in Figure 6.1. (a) Define classes for other useful
shapes, such as straight lines, rectangles, etc., placing them in an appropriate
hierarchy. Each of these classes must provide a draw operation. (b) Define
a Picture class, such that each Picture object is to be a collection of
shapes. Provide an operation that draws the whole picture, by drawing all of its
component shapes.

*6.3.3 (a) Design a Text class, where each Text object is to be a text (i.e., a
sequence of characters subdivided into paragraphs). Equip your class with
operations to load a text from a given text-file, save a text to a text-file,
insert a given sequence of characters at a selected position in a text, delete a
selected sequence of characters, and display a text within a given line-width.
(b) Implement your class.

6.3.4 Redesign and reimplement your Rational abstract type of Exercise 6.2.5 as
a class.

6.3.5 A fictional bank offers the following types of customer accounts. A basic account
has no frills at all. A savings account pays interest at the end of each day on
the current balance. A current account provides the customer with an overdraft
facility, a checkbook, an ATM card, and a PIN (personal identification number)
to enable an ATM to verify his/her identity.

Suppose that the class hierarchy of Figure 6.4 has been designed for the software
to maintain such accounts.

(a) Say which methods are inherited and which methods are overridden by
each subclass.

(b) Outline how this class hierarchy would be expressed in C++, JAVA, or
ADA95. Make reasonable assumptions about the parameters and result of
each method. You need not define the methods in detail.

Exercises 169

name
address
balance

deposit
withdraw
change-address
get-balance
print-statement «abstract»

overdraft-limit
pin
last-check-number

verify
withdraw
print-statement
print-checkbook

interest-rate
print-statement
pay-interest

Account «abstract»

Current-AccountSavings-AccountBasic-Account

print-statement

Figure 6.4 Class hierarchy (Exercise 6.3.5).

Exercises for Section 6.4
6.4.1 Draw diagrams showing the representation of objects of the classes you designed

in Exercises 6.3.1–6.3.4.

Chapter 7

Generic abstraction

Cost-effective software engineering demands reuse of previously-implemented program
units. To be reusable, a program unit must be capable of being used in a variety of
applications. Typical examples of reusable program units are stack, queue, list, and set
classes (or abstract types). It turns out that these and many other reusable program units
are intrinsically generic, i.e., capable of being parameterized with respect to the type of
data on which they operate. Thus the concept of a generic unit is important in practice.
Unfortunately, generic units are supported only by a few of the major programming
languages, and this has tended to inhibit software reuse.

In this chapter we shall study:

• generic units, and how they may be instantiated to generate ordinary program units;
• generic units with type parameters;
• implementation of generic units.

7.1 Generic units and instantiation
In the last chapter we studied program units like packages, abstract types, and
classes. Such program units may depend on entities (such as values and types) that
are defined elsewhere in the program, but then they are not reusable. The key to
reuse is to parameterize such program units.

A generic unit is a program unit that is parameterized with respect to
entities on which it depends. Instantiation of a generic unit generates an ordinary
program unit, in which each of the generic unit’s formal parameters is replaced by
an argument.

A generic unit can be instantiated as often as required, thus generating on
demand a family of similar program units. This concept places a very powerful
tool into programmers’ hands. A single generic unit can be instantiated several
times in the same program, thus avoiding duplication of program code. It can also
be instantiated in many different programs, thus facilitating reuse.

Let us note, in passing, that generic units are predicted by the Abstraction
Principle. In Section 5.1.3 we saw that a function procedure is an abstraction
over an expression, and that a proper procedure is an abstraction over a com-
mand. Likewise:

• A generic unit is an abstraction over a declaration. That is to say, a
generic unit has a body that is a declaration, and a generic instantiation
is a declaration that will produce bindings by elaborating the generic
unit’s body.

171

172 Chapter 7 Generic abstraction

Generic units are in fact supported by ADA, C++, and (since 2004) JAVA.
These three languages have approached the design of generics from three different
angles, and a comparison is instructive.

In this section we study ADA and C++ generic units parameterized with
respect to values on which they depend. (JAVA does not support such generic
units.) In Section 7.2 we shall study ADA, C++, and JAVA generic units param-
eterized with respect to types (or classes) on which they depend, an even more
powerful concept.

7.1.1 Generic packages in ADA

ADA supports both generic procedures and generic packages. Here we shall focus
on generic packages.

EXAMPLE 7.1 ADA generic package

The following ADA generic package encapsulates an abstract type whose values are
bounded queues of characters. The package is parameterized with respect to the capacity
of the queue.

generic
capacity: Positive;

package Queues is

type Queue is limited private;
-- A Queue value represents a queue whose elements are characters and
-- whose maximum length is capacity.

procedure clear (q: out Queue);
-- Make queue q empty.

procedure add (q: in out Queue;
e: in Character);

-- Add element e to the rear of queue q.

procedure remove (q: in out Queue;
e: out Character);

-- Remove element e from the front of queue q.

private

type Queue is
record
length: Integer range 0 .. capacity;
front, rear: Integer range 0 .. capacity-1;
elems: array (0 .. capacity-1) of Character;

end record;
-- A queue is represented by a cyclic array, with the queued elements
-- stored either in elems(front..rear-1) or in
-- elems(front..capacity-1) and elems(0..rear-1).

end Queues;

7.1 Generic units and instantiation 173

The clause ‘‘capacity: Positive;’’ between the keywords generic and package
states that capacity is a formal parameter of the generic package, and that it denotes an
unknown positive integer value. This formal parameter is used both in the generic package
specification above (in the definition of type Queue) and in the package body below.

The package body would be as follows (for simplicity neglecting checks for underflow
and overflow):

package body Queues is

procedure clear (q: out Queue) is
begin
q.front := 0; q.rear := 0; q.length := 0;

end;

procedure add (q: in out Queue;
e: in Character) is

begin
q.elems(q.rear) := e;
q.rear := (q.rear + 1) mod capacity;
q.length := q.length + 1;

end;

procedure remove (q: in out Queue;
e: out Character) is

begin
e := q.elems(q.front);
q.front := (q.front + 1) mod capacity;
q.length := q.length - 1;

end;

end Queues;

We must instantiate this generic package by a special form of declaration called an
instantiation:

package Line_Buffers is new Queues(120);

This instantiation of Queues is elaborated as follows. First, the formal parameter capac-
ity is bound to 120 (the argument of the instantiation). Next, the specification and body
of Queues are elaborated, generating a package that encapsulates queues with space for
up to 120 characters. That package is named Line_Buffers.

Here is another instantiation:

package Input_Buffers is new Queues(80);

This instantiation generates a package that encapsulates queues with space for up to 80
characters. That package is named Input_Buffers.

The result of an instantiation is an ordinary package, which can be used like any
other package:

inbuf: Input_Buffers.Queue;
. . .

Input_Buffers.add(inbuf, '*');

174 Chapter 7 Generic abstraction

7.1.2 Generic classes in C++
C++ supports both generic functions (called function templates) and generic classes
(called class templates). Here we shall focus on generic classes.

EXAMPLE 7.2 C++ generic class
The following C++ generic class is similar to Example 7.1, encapsulating an abstract type
whose values are bounded queues of characters. The class is parameterized with respect to
the capacity of the queue.

template
<int capacity>

class Queue {

// A Queue object represents a queue whose elements are characters and
// whose maximum length is capacity.

private:

char elems[capacity];
int front, rear, length;
// The queue is represented by a cyclic array, with the queued elements
// stored either in elems[front..rear-1] or in
// elems[front..capacity-1] and elems[0..rear-1].

public:

Queue ();
// Construct an empty queue.

void add (char e);
// Add element e to the rear of this queue.

char remove ();
// Remove and return the front element of this queue.

}

The clause ‘‘int capacity’’ between angle brackets states that capacity is a formal
parameter of the generic class, and that it denotes an unknown integer value. This formal
parameter is used in the class’s component declarations.

We can define the generic class’s constructor and methods separately, as follows:

template
<int capacity>

Queue<capacity>::Queue () {
front = rear = length = 0;

}

template
<int capacity>

void Queue<capacity>::add (char e) {
elems[rear] = e;
rear = (rear + 1) % capacity;
length++;

}

7.1 Generic units and instantiation 175

template
<int capacity>

char Queue<capacity>::remove () {
char e = elems[front];
front = (front + 1) % capacity;
length--;
return e;

}

Note that every constructor and method definition must be prefixed by ‘‘template <int
capacity>’’. This notation is cumbersome and error-prone.

We can instantiate this generic class as follows:

typedef Queue<80> Input_Buffer;
typedef Queue<120> Line_Buffer;

The instantiation Queue<80> generates an instance of the Queue generic class in which
each occurrence of the formal parameter capacity is replaced by the value 80; the
generated class is named Input_Buffer. The instantiation ‘‘Queue<120>’’ generates
another instance of Queue in which each occurrence of capacity is replaced by 120; the
generated class is named Line_Buffer.

We can now declare variables of type Input_Buffer and Line_Buffer in the
usual way:

Input_Buffer inbuf;
Line_Buffer outbuf;
Line_Buffer errbuf;

Alternatively, we can instantiate the generic class and use the generated class directly:

Queue<80> inbuf;
Queue<120> outbuf;
Queue<120> errbuf;

A C++ generic class can be instantiated ‘‘on the fly’’, as we have just seen.
This gives rise to a conceptual problem and a related pragmatic problem:

• The conceptual problem is concerned with type equivalence. If the two vari-
ables outbuf anderrbuf are separately declared with typesQueue<120>
and Queue<120>, C++ deems the types of these variables to be equiva-
lent, since both types were obtained by instantiating the same generic class
with the same argument. But if two variables were declared to be of types
Queue<m> and Queue<n-1>, the compiler could not decide whether their
types were equivalent unless it could predict the values of the variables m
and n. For this reason, C++ instantiations are restricted: it must be possible
to evaluate their arguments at compile-time.

• The pragmatic problem is that programmers lose control over code expan-
sion. For example, if ‘‘Queue<120>’’ occurs in several places in the
program, a simple-minded C++ compiler might generate several instances
of Queue, while a smart compiler should create only one instance.

176 Chapter 7 Generic abstraction

(ADA avoids these problems by insisting that generic units are instantiated
before being used. If we instantiated the same ADA generic package twice with
the same arguments, the generated packages would be distinct, and any type
components of these generated packages would be distinct. This is consistent
with ADA’s usual name equivalence rule for types. So ADA allows arguments in
instantiations to be evaluated at run-time.)

7.2 Type and class parameters

We have seen that, if a program unit uses a value defined elsewhere, the program
unit can be made generic and parameterized with respect to that value.

If a program unit uses a type (or class) defined elsewhere, the Correspondence
Principle (see Section 5.2.3) suggests that we should be able to make the program
unit generic and parameterize it with respect to that type. Thus we have a
completely new kind of parameter, a type parameter.

ADA, C++, and JAVA generic units may have type parameters. In this section
we use similar examples to compare generic units with type parameters in
these languages.

7.2.1 Type parameters in ADA

An ADA generic unit may be parameterized with respect to any type on which
it depends.

EXAMPLE 7.3 ADA generic package with a type parameter

The following ADA generic package encapsulates an abstract type whose values are homo-
geneous lists. The package is parameterized with respect to the type of the list elements.

generic
type Element is private;

package Lists is

type List is limited private;
-- A List value represents a list whose elements are of type Element.

procedure clear (l: out List);
-- Make list l empty.

procedure add (l: in out List; e: in Element);
-- Add element e to the end of list l.

. . . -- other operations

private

capacity: constant Integer := . . .;

type List is
record
length: Integer range 0 .. capacity;

7.2 Type and class parameters 177

elems: array (1 .. capacity) of Element;
end record;

end Lists;

The clause ‘‘type Element is private;’’ between the keywords generic and
package states that Element is a formal parameter of the generic package, and that it
denotes an unknown type. This formal parameter is used both in the package specification
and in the package body:

package body Lists is

procedure clear (l: out List) is
begin
l.length := 0;

end;

procedure add (l: in out List; e: in Element) is
begin
l.length := l.length + 1;
l.elems(l.length) := e;

end;

. . . -- other operations

end Lists;

The following instantiation of Lists:

package Phrases is new Lists(Character);

is elaborated as follows. First, the formal parameter Element is bound to the Character
type (the argument in the instantiation). Then the specification and body of Lists are
elaborated, generating a package that encapsulates lists with elements of typeCharacter.
That package is named Phrases, and can be used like any ordinary package:

sentence: Phrases.List;
. . .

Phrases.add(sentence, '.');

Now consider the following application code:

type Transaction is record . . . end record;
package Transaction_Lists is new Lists(Transaction);

This instantiation ofLists is elaborated similarly. The generated package namedTrans-
action_Lists encapsulates lists with elements of type Transaction.

If a generic unit is parameterized with respect to a value, it can use the
corresponding argument value, although it does not know what that value is. By
the same reasoning, if a generic unit is parameterized with respect to a type, it
should be able to use the corresponding argument type, although it does not know
what that type is. But there is a paradox here: if the generic unit knows nothing
about the argument type, it can declare variables of the type, but it cannot apply

178 Chapter 7 Generic abstraction

any operations to these variables! So the generic unit must know at least some of
the operations with which the type is equipped.

In Example 7.3, the clause ‘‘type Element is private;’’ between the
keywords generic and package is ADA’s way of stating that the argument type
is equipped with (at least) the assignment and equality test operations. Inside the
generic package, therefore, values of type Element can be assigned by commands
like ‘‘l.elems(l.length) := e;’’. The compiler does not know the actual
type of these values, but at least it does know that the type is equipped with the
assignment operation.

Often a type parameter must be assumed to be equipped with a more
specialized operation. The following example illustrates such a situation.

EXAMPLE 7.4 ADA generic package with a type parameter and a function parameter

The following ADA generic package encapsulates sequences, i.e., sortable lists. The generic
package is parameterized with respect to the type Element of the sequence elements.
Since one of its operations is to sort a sequence of elements, the generic package is also
parameterized with respect to a function precedes that tests whether one value of type
Element should precede another in a sorted sequence.

generic
type Element is private;
with function precedes (x, y: Element) return Boolean;

package Sequences is

type Sequence is limited private;
-- A Sequence value represents a sequence whose elements are of
-- type Element.

procedure clear (s: out Sequence);
-- Make sequence s empty.

procedure append (s: in out Sequence;
e: in Element);

-- Add element e to the end of sequence s.

procedure sort (s: in out Sequence);
-- Sort sequence s with respect to the function precedes.

private

capacity: constant Integer := . . .;

type Sequence is
record
length: Integer range 0 .. capacity;
elems: array (1 .. capacity) of Element;

end record;

end Sequences;

The clause ‘‘type Element is private;’’ states that Element is a formal param-
eter of the generic package, and that it denotes an unknown type equipped with the

7.2 Type and class parameters 179

assignment and equality test operations. The clause ‘‘with function precedes (x,
y: Element) return Boolean;’’ states that precedes is also a formal parameter,
and that it denotes an unknown function that takes two arguments of the type denoted
by Element and returns a result of type Boolean. Between them, these two clauses say
that the unknown type denoted by Element is equipped with a boolean function named
precedes as well as the assignment and equality test operations.

The package body uses both the Element type and the precedes function:

package body Sequences is

. . .

procedure sort (s: in out Sequence) is
e: Element;

begin
. . .

if precedes(e, s.elems(i)) then . . .

. . .

end;

end Sequences;

Here is a possible instantiation of Sequences:

type Transaction is record . . . end record;

function earlier (t1, t2: Transaction) return Boolean;
-- Return true if and only if t1 has an earlier timestamp than t2.

package Transaction_Sequences is
new Sequences(Transaction, earlier);

This instantiation is elaborated as follows. First, the formal parameter Element is bound
to the Transaction type (the first argument), and the formal parameter precedes
is bound to the earlier function (the second argument). Then the specification and
body of Sequences are elaborated, generating a package encapsulating sequences of
Transaction records that can be sorted into order by timestamp. The generated package
is named Transaction_Sequences, and can be used like any ordinary package:

audit_trail: Transaction_Sequences.Sequence;
. . .

Transaction_Sequences.sort(audit_trail);

Here are two further instantiations:

package Ascending_Sequences is
new Sequences(Float, "<");

package Descending_Sequences is
new Sequences(Float, ">");

readings: Ascending_Sequences.Sequence;
. . .

Ascending_Sequences.sort(readings);

The first instantiation generates a package encapsulating sequences of real numbers that
can be sorted into ascending order. This is so because ‘‘<’’ denotes a function that takes two
arguments of type Float and returns a result of type Boolean. The second instantiation

180 Chapter 7 Generic abstraction

generates a package encapsulating sequences of real numbers that can be sorted into
descending order. This is so because ‘‘>’’ also denotes a function that takes two arguments
of type Float and returns a result of type Boolean, but of course the result is true if and
only if its first argument is numerically greater than its second argument.

In general, if an ADA generic unit is to have a type parameter T, we specify it
by a clause of the form:

type T is specification of operations with which T is equipped;

The compiler checks the generic unit itself to ensure that:

operations used for T in the generic unit
⊆ operations with which T is equipped (7.1)

The compiler separately checks every instantiation of the generic unit to ensure
that:

operations with which T is equipped
⊆ operations with which the argument type is equipped (7.2)

Together, (7.1) and (7.2) guarantee that the argument type is indeed equipped
with all operations used for T in the generic unit.

Summarizing, the design of ADA generic units enables the compiler to type-
check the declaration of each generic unit, and separately to type-check every
instantiation of the generic unit. Thus, once implemented, ADA generic units can
be safely reused.

7.2.2 Type parameters in C++

A C++ generic unit may be parameterized with respect to any type or class on
which it depends.

EXAMPLE 7.5 C++ generic class with a type parameter (1)

The following C++ generic class encapsulates homogeneous lists. It is parameterized with
respect to the type Element of the list elements.

template
<class Element>

class List is

// A List object represents a list whose elements are of type Element.

private:

const int capacity = . . .;
int length;
Element elems[capacity];

7.2 Type and class parameters 181

public:

List ();
// Construct an empty list.

void append (Element e);
// Add element e to the end of this list.

. . . // other methods

}

The clause ‘‘class Element’’ between angle brackets states that Element is a formal
parameter of the generic class, and that it denotes an unknown type. (Do not be misled by
C++’s syntax: the unknown type may be any type, not necessarily a class type.)

As usual, we define the generic class’s constructor and methods separately:

template
<class Element>

List<Element>::List () {
length = 0;

}

template
<class Element>

void List<Element>::append (Element e) {
elems[length++] = e;

}

. . . // other methods

Consider the following instantiation:

typedef List<char> Phrase;

This instantiation List<char> is elaborated as follows. First, the formal parameter
Element is bound to the char type. Then the generic class and the corresponding
constructor and method definitions are elaborated, generating a class that encapsulates
lists with elements of type char. The generated class can be used like any other class:

Phrase sentence;
. . .

sentence.add('.');

Finally, consider the following application code:

struct Transaction { . . . };

typedef List<Transaction> Transaction_List;

This instantiation is elaborated similarly. The generated class encapsulates lists with
elements of type Transaction.

EXAMPLE 7.6 C++ generic class with a type parameter (2)

The following C++ generic class encapsulates sequences, i.e., sortable lists. It is parameter-
ized with respect to the type Element of the sequence elements.

182 Chapter 7 Generic abstraction

template
<class Element>

class Sequence is

// A Sequence object represents a sequence whose elements are of
// type Element.

private:

const int capacity = . . .;
int length;
Element elems[capacity];

public:

Sequence ();
// Construct an empty sequence.

void append (Element e);
// Add element e to the end of this sequence.

void sort ();
// Sort this sequence into ascending order.

}

As usual, we define the constructor and methods separately, for example:

template
<class Element>

void Sequence<Element>::sort () {
Element e;
. . .

if (e < elems[i]) . . .

. . .

}

Note the use of the ‘‘<’’ operation in the definition of the sort method. This code
is perfectly legal, although it assumes without proper justification that the argument type
denoted by Element is indeed equipped with a ‘‘<’’ operation.

Here is a possible instantiation:

typedef Sequence<float> Number_Sequence;
Number_Sequence readings;
. . .

readings.sort();

This instantiationSequence<float> is elaborated as follows. First, the formal parameter
Element is bound to the float type. Then the generic class and corresponding method
definitions are elaborated, generating a class encapsulating sequences of float values
that can be sorted into ascending order.

Now consider the following instantiation:

typedef char* String;
typedef Sequence<String> String_Sequence;

The instantiation Sequence<String> generates a class String_Sequence encap-
sulating sequences of String values (where a String value is a pointer to an array

7.2 Type and class parameters 183

of characters). Unfortunately, this class’s sort operation does not behave as we might
expect: the ‘‘<’’ operation when applied to operands of type char* merely compares
pointers; it does not compare the two strings lexicographically!

Finally consider the following instantiation:

struct Transaction { . . . };
typedef Sequence<Transaction> Transaction_Sequence;

The compiler will reject the instantiation Sequence<Transaction>, because the
Transaction type is not equipped with a ‘‘<’’ operation.

The problem with the above generic class is that one of its methods is defined in terms
of the ‘‘<’’ operation, but some types are equipped with an unsuitable ‘‘<’’ operation, and
other types are equipped with no ‘‘<’’ operation at all.

The problem illustrated in Example 7.6 exposes a weakness in C++ generics.
Various workarounds are possible, such as passing a comparison function to the
sort method, but none is entirely satisfactory.

In general, if a C++ generic unit is to have a type parameter T, we specify it
simply by enclosing in angle brackets a clause of the form:

class T

This clause reveals nothing about the operations with which T is supposed to be
equipped. When the compiler checks the generic unit, all it can do is to note which
operations are used for T. The compiler must then check every instantiation of
the generic unit to ensure that:

operations used for T in the generic unit
⊆ operations with which the argument type is equipped (7.3)

C++ generic units are not a secure foundation for software reuse. The compiler
cannot completely type-check the definition of a generic unit; it can only type-
check individual instantiations. Thus future reuse of a generic unit might result in
unexpected type errors.

7.2.3 Class parameters in JAVA

Until 2004, JAVA did not support any form of generic abstraction. However, JAVA

now supports generic classes, which are classes parameterized with respect to
other classes.

EXAMPLE 7.7 JAVA generic class with a class parameter

The following JAVA generic class encapsulates homogeneous lists. The class is parameterized
with respect to the class of the elements of the list.

class List <Element> {

// A List object represents a list whose elements are of class Element.

184 Chapter 7 Generic abstraction

private length;
private Element[] elems;

public List () {
// Construct an empty list.

. . .

}

public void append (Element e) {
// Add element e to the end of this list.

. . .

}

. . . // other methods

}

The class declaration’s heading states that Element is a formal parameter of the List
generic class, and that it denotes an unknown class.

This generic class can be instantiated as follows:

List<Character> sentence;
List<Transaction> transactions;

Here sentence refers to a list whose elements are objects of class Character, and
transactions refers to a list whose elements are objects of class Transaction.

The argument in an instantiation must be a class, not a primitive type:

List<char> sentence; // illegal!

If a JAVA generic class must assume that a class parameter is equipped with
particular operations, the class parameter must be specified as implementing a
suitable interface (see Section 6.3.5). Such a class parameter is said to be bounded
by the interface.

EXAMPLE 7.8 JAVA generic class with a bounded class parameter

Consider the following JAVA generic interface:

interface Comparable <Item> {

// A Comparable<Item> object can be compared with an object of
// class Item to determine whether the first object is equal to, less than,
// or greater than the second object.

public abstract int compareTo (Item that);
// Return 0 if this object is equal to that, or
// a negative integer if this object is less than that, or
// a positive integer if this object is greater than that.

}

7.2 Type and class parameters 185

If a class C is declared as implementing the interface Comparable<C>, C must be
equipped with a compareTo operation that compares the target object (of class C) with
another object of class C.

The following JAVA generic class encapsulates sequences, i.e., sortable lists, equipped
with a sort operation:

class Sequence
<Element implements Comparable<Element>> {

// A Sequence object represents a sequence whose elements are of
// type Element.

private length;
private Element[] elems;

public Sequence () {
// Construct an empty sequence.

. . .

}

public void append (Element e) {
// Add element e to the end of this sequence.

. . .

}

public void sort () {
// Sort this sequence into ascending order.

Element e;
. . .

if (e.compareTo(elems[i]) < 0) . . .

. . .

}

}

The clause ‘‘Element implements Comparable<Element>’’ between angle brack-
ets states that Element is a formal parameter of the generic class, and that it denotes an
unknown class equipped with a compareTo operation.

Here is a possible instantiation of the Sequence class:

Sequence<Transaction> auditTrail;
. . .

auditTrail.sort();

where we are assuming that the Transaction class is declared as follows:

class Transaction implements Comparable<Transaction> {

private . . .; // representation

public int compareTo (Transaction that) {
// Return 0 if this transaction has the same timestamp as that, or
// negative if this transaction has an earlier timestamp than that, or
// positive if this transaction has a later timestamp than that.

. . .

}

. . . // other methods

}

186 Chapter 7 Generic abstraction

On the other hand, the instantiation Sequence<Point> would be illegal: the
Point class (Example 6.8) is not declared as implementing the Comparable<Point>
interface.

In general, if a JAVA generic unit is to have a class parameter C, we specify it
by a clause of the form:

class C implements Int

where Int is an interface. (If ‘‘implements Int’’ is omitted, an empty interface is
assumed.) The compiler checks the generic unit itself to ensure that:

operations used for C in the generic unit
⊆ operations declared in Int (7.4)

The compiler separately checks every instantiation of the generic unit to ensure
that:

operations declared in Int
⊆ operations with which the argument class is equipped (7.5)

Together, (7.4) and (7.5) guarantee that the argument class is indeed equipped
with all operations used for C in the generic unit.

The design of JAVA generic units (unlike those of C++) is based on type
theory. The practical significance of this is that the compiler can type-check the
declaration of each generic unit, and separately type-check every instantiation.
Thus JAVA generic units can be safely reused.

The weakness of JAVA generic classes is that they can be parameterized only
with respect to classes. They cannot be parameterized with respect to primitive
types such as char, int, and float (a consequence of JAVA’s lack of type
completeness), nor can they be parameterized with respect to values on which
they depend.

7.3 Implementation notes
Generic units with type parameters pose interesting implementation problems.
Since a type parameter denotes an unknown type, the compiler cannot determine
from the generic unit itself how values of that type will be represented. (In
particular, the compiler cannot determine how much storage space variables of
that unknown type will occupy.) Only when the generic unit is instantiated does
the compiler have all that information.

7.3.1 Implementation of ADA generic units

Recall the Lists generic package of Example 7.3. The type parameter Element
denotes an unknown type, so the compiler does not yet know how values of
type Element will be represented. Moreover, the compiler does not yet know
how values of type List will be represented, since that type is defined in terms
of Element.

7.3 Implementation notes 187

package A is new
 Lists(Character);

Representation of
type A.List:

elems(2)
‘O’

?

3

elems(3)

length
‘B’
‘Y’

elems(1)

?
elems(4)

?
elems(5)

?
elems(6)

?
elems(7)

elems(2) apr
jun

4

elems(3)

length
sepelems(1)

novelems(4)
?elems(5)
?elems(6)
?elems(7)
?elems(8)

package B is new
 Lists(Month);

Representation of
type B.List:

?elems(9)
?elems(10)

elems(8)
elems(9)

elems(10)
?
?

2length

dec

25

jan

1
elems(1)

elems(2)

elems(3)

elems(4)

package C is new
 Lists(Date);

Representation of
type C.List:

elems(10)

?
?
?
?

?
?

…

(a) (b) (c)

Figure 7.1 Representations of types obtained by instantiating the ADA generic package
Lists (Example 7.3).

When the generic package is instantiated, however, the type parameter
Element is replaced by a known type. Figure 7.1(a) illustrates an instantiation
in which Element is replaced by Character. Similarly, Figure 7.1(b) and (c)
illustrate instantiations in which Element is replaced by an enumeration type
Month and by a record type Date, respectively. These three instantiations define
three distinct types (A.List, B.List, and C.List), and the compiler knows the
representation of each type.

In general, each instantiation of an ADA generic package is compiled by
generating object code specialized for that instantiation.

In some cases, however, different instantiations can share the same object
code if the types involved have similar representations. In Figure 7.1(a) and (b),
the representations of the types A.List and B.List are similar enough to make
shared object code feasible.

7.3.2 Implementation of C++ generic units

Implementation of C++ generic classes is broadly similar to the implementation
outlined in Section 7.3.1, but is slightly complicated by the fact that C++ generic
classes can be instantiated ‘‘on the fly’’.

Recall the List generic class of Example 7.5. The application code could be
peppered with declarations of variables of type List<float> (say). In C++’s
type system all these types are regarded as equivalent, so all these variables are
equipped with the same operations. If a generic class is instantiated in different
places with the same arguments, the compiler must make all these instantiations
share the same object code.

188 Chapter 7 Generic abstraction

(a) Representation of
class List<Character>:

6

Char[]

List
‹Char›

Char

‘B’Char

‘Y’Char

‘O’

(b) Representation of
class List<Date>:

4

Date[]

List
‹Date›

Date

1
1

Date

12
25

3 2

Figure 7.2 Representations of classes obtained by instantiating the JAVA generic class
List (Example 7.7).

7.3.3 Implementation of JAVA generic units

Implementation of JAVA generic classes is greatly simplified by the fact that
they can be parameterized with respect to classes only (not values or primitive
types), together with the fact that objects of all classes are accessed through
pointers.

Recall the List generic class of Example 7.7. All objects of class
List<Element> have similar representations, as illustrated in Figure 7.2,
regardless of the actual class denoted by Element. Therefore, all instantiations
of the List generic class can share the same object code.

Summary
In this chapter:

• We have seen the importance of generic abstraction for software reuse.

• We have studied generic units, and seen how they may be instantiated to generate
ordinary program units. We have seen that procedures, packages, and classes can
all be made generic.

• We have seen how generic units may be parameterized with respect to values.

• We have seen how generic units may be parameterized with respect to types,
including types equipped with specific operations.

• We have seen how generic units can be implemented, paying particular attention to
the problems caused by type parameters.

Exercises 189

Further reading

A rationale for the design of ADA generic units may be
found in Chapter 8 of ICHBIAH (1979).

Likewise, a rationale for the design of C++ generic
units may be found in Chapter 15 of STROUSTRUP (1994).
Chapter 8 of STROUSTRUP (1997) gives many examples of
C++ generic units, including several possible workarounds
for the problem identified in Example 7.6.

JAVA generic classes were based on a proposal by BRACHA

et al. (1998). The paper lucidly explains the design of generic
classes, showing how it is solidly founded on type theory.
The paper also shows in detail how generic classes can be
implemented easily and efficiently.

Exercises

Exercises for Section 7.1
7.1.1 Consider the ADA generic package of Example 7.1 and the C++ generic class of

Example 7.2.

(a) Instantiate each of these generic units to declare a queue line with space
for up to 72 characters. Write code to read a line of characters, adding each
character to the queue line (which is initially empty).

(b) Modify each of these generic units to provide an operation that tests
whether a queue is empty. Write code to remove all characters from the
queue line, and print them one by one.

Exercises for Section 7.2
7.2.1 Consider the ADA generic package of Example 7.3, the C++ generic class of

Example 7.5, and the JAVA generic class of Example 7.7. Instantiate each of
these so that you can declare a variableitinerary to contain a list of airports.
Assume that you are given a suitable type or class Airport.

7.2.2 Consider the ADA generic package of Example 7.4, the C++ generic class of
Example 7.6, and the JAVA generic class of Example 7.8. Instantiate each of
these so that you can declare a sequence of words, where a word is a string of
letters. Do this in such a way that the sort operation will sort the words into
alphabetical order.

7.2.3 Consider the ADA generic package of Example 7.1 and the C++ generic class of
Example 7.2.

(a) Modify each of these generic units so that it is parameterized with respect
to the type of the queue elements as well as the capacity of the queue.

(b) Why cannot we declare a JAVA generic class whose parameters are the type
of the queue elements and the capacity of the queue?

(c) Declare a JAVA generic class whose parameter is the class of the queue
elements, such that the capacity of the queue is a parameter of the
constructor.

*7.2.4 Design a generic unit that implements sets. A set is an unordered collection
of values in which no value is duplicated. Parameterize your generic unit with
respect to the type of the values in the set. Provide an operation that constructs

190 Chapter 7 Generic abstraction

an empty set, an operation that adds a given value to a set, an operation that
unites two sets, and an operation that tests whether a given value is contained
in a set. Implement your generic unit in either ADA, C++, or JAVA.

Assume as little as possible about the type of the values in the set. What
assumption(s) are you absolutely forced to make about that type?

*7.2.5 Design a generic unit that implements maps. A map is an unordered collection
of (key, value) entries in which no key is duplicated. Parameterize your generic
unit with respect to the type of the keys and the type of the values. Provide an
operation that constructs an empty map, an operation that adds a given (key,
value) entry to a map, an operation that tests whether a map contains an entry
with a given key, and an operation that retrieves the value in the entry with a
given key. Implement your generic unit in either ADA, C++, or JAVA.

Assume as little as possible about the type of the keys and the type of the values.
What assumption(s) are you absolutely forced to make about these types?

Chapter 8

Type systems

Older programming languages had very simple type systems in which every variable and
parameter had to be declared with a specific type. However, experience shows that their
type systems are inadequate for large-scale software development. For instance, C’s type
system is too weak, allowing a variety of type errors to go undetected, while on the
other hand, PASCAL’s type system is too rigid, with the consequence that many useful
(and reusable) program units, such as generic sorting procedures and parameterized types,
cannot be expressed at all.

These and other problems prompted development of more powerful type systems,
which were adopted by the more modern programming languages such as ADA, C++, JAVA,
and HASKELL.

In this chapter we shall study:

• inclusion polymorphism, which is concerned with subtypes and subclasses, and their
ability to inherit operations from their parent types and superclasses;

• parametric polymorphism, which is concerned with procedures that operate uni-
formly on arguments of a whole family of types;

• parameterized types, which are types that take other types as parameters;

• overloading, whereby the same identifier can denote several distinct procedures in
the same scope;

• type conversions, including casts and coercions.

8.1 Inclusion polymorphism

Inclusion polymorphism is a type system in which a type may have subtypes,
which inherit operations from that type. In particular, inclusion polymorphism is
a key concept of object-oriented languages, in which a class may have subclasses,
which inherit methods from that class.

8.1.1 Types and subtypes

Recall that a type T is a set of values, equipped with some operations. A subtype
of T is a subset of the values of T, equipped with the same operations as T. Every
value of the subtype is also a value of type T, and therefore may be used in a
context where a value of type T is expected.

The concept of subtypes is a fruitful and pervasive notion in programming. A
common situation is that we declare a variable (or parameter) of type T, but know

191

192 Chapter 8 Type systems

that the variable will range over only a subset of the values of type T. It is better
if the programming language allows us to declare the variable’s subtype, and thus
declare more accurately what values it might take. This makes the program easier
to understand, and possibly more efficient.

The older programming languages support subtypes in only a rudimentary
form. For example, C has several integer types, of which char and int may be
seen as subtypes of long, and two floating-point types, of which float may be
seen as a subtype of double. PASCAL supports subrange types, a subrange type
being a programmer-defined range of values of a discrete primitive type.

ADA supports subtypes much more systematically. We can define a subtype
of any primitive type (including a floating-point type) by defining a subrange of
that primitive type’s values. We can define a subtype of any array type by fixing its
index bounds. We can define a subtype of any discriminated record type by fixing
the tag.

EXAMPLE 8.1 ADA primitive types and subtypes

The following ADA declarations define some subtypes of Integer:

subtype Natural is Integer range 0 .. Integer'last;
subtype Small is Integer range -3 .. +3;

These subtypes, which are illustrated in Figure 8.1, have the following sets of values:

Natural = {0, 1, 2, 3, 4, 5, 6, . . .}
Small = {−3, −2, −1, 0,+1,+2,+3}

We can declare variables of these subtypes:

i: Integer;
n: Natural;
s: Small;

Now an assignment like ‘‘i := n;’’ or ‘‘i := s;’’ can always be performed, since the
assigned value, although unknown, is certainly in the type of the variable i. On the other
hand, an assignment like ‘‘n := i;’’, ‘‘n := s;’’, ‘‘s := i;’’, or ‘‘s := n;’’ requires
a run-time range check, to ensure that the assigned value is actually in the subtype of the
variable being assigned to.

The following ADA declaration defines a subtype of Float:

subtype Probability is Float range 0.0 .. 1.0;

Natural

… –6 –5 –4 –3 –2 –1 1 2 3 4 5 6

Small

Integer

0 …

Figure 8.1 Integer subtypes in ADA.

8.1 Inclusion polymorphism 193

EXAMPLE 8.2 ADA array type and subtypes

The following ADA declarations define an array type and some of its subtypes:

type String is array (Integer range <>) of Character;

subtype String1 is String(1 .. 1);
subtype String5 is String(1 .. 5);
subtype String7 is String(1 .. 7);

The values of type String are strings (character arrays) of any length. The values of subtypes
String1, String5, and String7 are strings of length 1, 5, and 7, respectively. These subtypes
are illustrated in Figure 8.2.

EXAMPLE 8.3 ADA discriminated record type and subtypes

The following ADA declarations define a discriminated record (disjoint union) type and all
of its subtypes:

type Form is (pointy, circular, rectangular);
type Figure (f: Form := pointy) is

record
x, y: Float;
case f is

when pointy =>
null;

when circular =>
r: Float;

when rectangular =>
h, w: Float;

end case;
end record;

subtype Point is Figure(pointy);
subtype Circle is Figure(circular);
subtype Rectangle is Figure(rectangular);

The values of type Figure are tagged tuples, in which the tags are values of the type
Form = {pointy, circular, rectangular}:

Figure = pointy(Float × Float)
+ circular(Float × Float × Float)
+ rectangular(Float × Float × Float × Float)

String7

“Susanne”

String

…“Jeffrey”

String5

“David” …“Carol” … …“” …“A”

String1

…“B”

Figure 8.2 Array subtypes in ADA.

194 Chapter 8 Type systems

Figure

Circle

…

circular(3.0, 4.0, 5.0)

…

Rectangle

circular(0.0, 0.0, 1.0) rectangular(0.0, 0.0, 7.0, 2.0)

rectangular(3.0, 4.0, 1.0, 1.0)

Point

…

pointy(3.0, 4.0)

pointy(0.0, 0.0)

Figure 8.3 Discriminated record subtypes in ADA.

The values of subtype Point are those in which the tag is fixed as pointy, the values of
subtype Circle are those in which the tag is fixed as circular, and the values of subtype
Rectangle are those in which the tag is fixed as rectangular:

Point = pointy(Float × Float)
Circle = circular(Float × Float × Float)

Rectangle = rectangular(Float × Float × Float × Float)

These subtypes are illustrated in Figure 8.3.
Here are some possible variable declarations, using the type and some of its subtypes:

diagram: array (. . .) of Figure;
frame: Rectangle;
cursor: Point;

Each component of the array diagram can contain any value of type Figure. However,
the variable frame can contain only a value of the subtype Rectangle, and the variable
cursor can contain only a value of the subtype Point.

If the programming language supports subtypes, we cannot uniquely state the
subtype of a value. For example, Figure 8.1 shows that the value 2 is not only in the
type Integer but also in the subtypes Natural and Small, and indeed in numerous
other subtypes of Integer. However, the language should allow the subtype of each
variable to be declared explicitly.

Let us now examine the general properties of subtypes. A necessary condition
for S to be a subtype of T is that every value of S is also a value of T, in other
words S ⊆ T. A value known to be in subtype S can then safely be used wherever
a value of type T is expected.

The type T is equipped with operations that are applicable to all values of
type T. Each of these operations will also be applicable to values of the subtype
S. We say that S inherits these operations. For example, any function of type
Integer → Boolean can safely be inherited by all the subtypes of Integer, such as
Natural and Small in Figure 8.1, so the same function may be viewed as being
of type Natural → Boolean or Small → Boolean. No run-time check is needed to
ensure that the function’s argument is of type Integer.

Suppose that a value known to be of type T1 is computed in a context where
a value of type T2 is expected. This happens, for example, when an expression E

8.1 Inclusion polymorphism 195

of type T1 occurs in an assignment ‘‘V := E’’ where the variable V is of type T2,
or in a function call ‘‘F(E)’’ where F’s formal parameter is of type T2. In such a
context we have insisted until now that T1 must be equivalent to T2 (Section 2.5.2).
In the presence of subtypes, however, we can allow a looser compatibility between
types T1 and T2.

T1 is compatible with T2 if and only if T1 and T2 have values in common. This
implies that T1 is a subtype of T2, or T2 is a subtype of T1, or both T1 and T2 are
subtypes of some other type.

If T1 is indeed compatible with T2, there are two possible cases of interest:

• T1 is a subtype of T2, so all values of type T1 are values of type T2. In this
case, the value of type T1 can be used safely in a context where a value of
type T2 is expected; no run-time check is necessary.

• T1 is not a subtype of T2, so some (but not all) values of type T1 are values of
type T2. In this case, the value of type T1 can be used only after a run-time
check to determine whether it is also a value of type T2. This is a kind
of run-time type check, but much simpler and more efficient than the full
run-time type checks needed by a dynamically typed language.

8.1.2 Classes and subclasses
In Section 6.3 we saw that a class C is a set of objects, equipped with some
operations (constructors and methods). These methods may be inherited by the
subclasses of C. Any object of a subclass may be used in a context where an object
of class C is expected.

Consider a class C and a subclass S. Each object of class C has one or
more variable components, and is equipped with methods that access the variable
components. Each object of class S inherits all the variable components of objects
of class C, and may have additional variable components. Each object of class S
potentially inherits all the methods of objects of class C, and may be equipped
with additional methods that access the additional variable components.

Subclasses are not exactly analogous to subtypes. The objects of the subclass S
may be used wherever objects of class C are expected, but the former objects have
additional components, so the set of objects of subclass S is not a subset of the
objects of C. Nevertheless, the subclass concept is closely related to the subtype
concept. The following example shows how.

EXAMPLE 8.4 JAVA subclasses as subtypes

Consider the JAVA class Point of Example 6.8:

class Point {
protected double x, y;

public void draw () {. . .} // Draw this point.

. . . // other methods
}

196 Chapter 8 Type systems

and its subclasses Circle and Rectangle:

class Circle extends Point {
private double r;

public void draw () {. . .} // Draw this circle.

. . . // other methods
}

class Rectangle extends Point {
private double w, h;

public void draw () {. . .} // Draw this rectangle.

. . . // other methods
}

These classes model points, circles, and rectangles (respectively) on the xy plane. For a
circle or rectangle, x and y are the coordinates of its center.

The methods of classPoint are inherited by the subclassesCircle andRectangle.
This is safe because the methods of class Point can access only the x and y components,
and these components are inherited by the subclasses.

Now let us consider the types Point, Circle, and Rectangle, whose values are Point
objects, Circle objects, and Rectangle objects, respectively. We view objects as
tagged tuples:

Point = Point(Double × Double)

Circle = Circle(Double × Double × Double)

Rectangle = Rectangle(Double × Double × Double × Double)

Clearly, Circle and Rectangle are not subtypes of Point.
However, let Point‡ be the type whose values are objects of class Point or any

subclass of Point:

Point‡ = Point(Double × Double)

+ Circle(Double × Double × Double)

+ Rectangle(Double × Double × Double × Double)

Clearly, Circle and Rectangle (and indeed Point) are subtypes of Point‡. The relationship
between these types is illustrated in Figure 8.4.

JAVA allows objects of any subclass to be treated like objects of the superclass. Consider
the following variable:

Point‡

Circle

…
Circle(3.0, 4.0, 5.0)

…

Rectangle

Circle(0.0, 0.0, 1.0) Rectangle(0.0, 0.0, 7.0, 2.0)

Rectangle(3.0, 4.0, 1.0, 1.0)

Point(0.0, 0.0)

Point(3.0, 4.0)
…

Point

Figure 8.4 Object subtypes in JAVA.

8.1 Inclusion polymorphism 197

Point p;
. . .

p = new Point(3.0, 4.0);
. . .

p = new Circle(3.0, 4.0, 5.0);

This variable may refer to an object of class Point or any subclass of Point. In other
words, this variable may refer to any value of type Point‡.

In general, if C is a class, then C‡ includes not only objects of class C but also
objects of every subclass of C. Following ADA95 terminology, we shall call C‡ a
class-wide type.

Comparing Figures 8.3 and 8.4, we see that discriminated record types and
classes have similar roles in data modeling; in fact they can both be understood
in terms of disjoint unions (Section 2.3.3). The major difference is that classes are
superior in terms of extensibility. Each subclass declaration, as well as defining the
set of objects of the new subclass, at the same time extends the set of objects of
the superclass’s class-wide type. The methods of the superclass remain applicable
to objects of the subclass, although they can be overridden (specialized) to the
subclass if necessary. This extensibility is unique to object-oriented programming,
and accounts for much of its success.

EXAMPLE 8.5 JAVA extensibility

Consider once again the Point class and its Circle and Rectangle subclasses of
Example 8.4. Suppose that we now declare further subclasses:

class Line extends Point {
private double length, orientation;

public void draw () { . . . } // Draw this line.
}

class Textbox extends Rectangle {
private String text;

public void draw () { . . . } // Draw this text.
}

These subclass declarations not only define the set of objects of the two new subclasses:

Line = Line(Double × Double × Double)

Textbox = Textbox(Double × Double × String)

but also extend their superclasses’ class-wide types:

Point‡ = Point(Double × Double)

+ Circle(Double × Double × Double)

+ Rectangle(Double × Double × Double × Double)

+ Line(Double × Double × Double)

+ Textbox(Double × Double × String)

198 Chapter 8 Type systems

Rectangle‡ = Rectangle(Double × Double × Double × Double)

+ Textbox(Double × Double × String)

The draw methods of the Point, Circle, and Rectangle classes are unaffected
by this change. Only the overriding drawmethods of the Line and Textbox classes have
to be defined.

See also Exercise 8.1.3.

8.2 Parametric polymorphism

In this section we shall study a type system that enables us to write what are known
as polymorphic procedures.

Consider, for example, a function procedure to compute the length of a list.
An ordinary function could operate on (say) lists of characters, but could not also
operate on lists of other types. A polymorphic function, on the other hand, could
operate on lists of any type, exploiting the fact that the algorithm required to
implement the function (counting the list elements) does not depend on the type
of the list elements.

A monomorphic (‘‘single-shaped’’) procedure can operate only on arguments
of a fixed type. A polymorphic (‘‘many-shaped’’) procedure can operate uniformly
on arguments of a whole family of types.

Parametric polymorphism is a type system in which we can write polymorphic
procedures. The functional languages ML and HASKELL are prominent examples
of languages that exhibit parametric polymorphism. We shall use HASKELL to
illustrate this important concept.

In passing, note that some of the benefits of parametric polymorphism can also
be achieved using C++ or JAVA generic classes, which we covered in Chapter 7.
(See also Exercise 8.2.7.)

8.2.1 Polymorphic procedures

In HASKELL it is a simple matter to declare a polymorphic function. The key is to
define the function’s type using type variables, rather than specific types. We shall
introduce this idea by a series of examples.

A type variable is an identifier that stands for any one of a family of types.
In this section we shall write type variables as Greek letters (α, β, γ, . . .), partly
for historical reasons and partly because they are easily recognized. In HASKELL

type variables are conventionally written as lowercase Roman letters (a, b, c, . . .),
which is unfortunate because they can easily be confused with ordinary variables.

EXAMPLE 8.6 HASKELL polymorphic function (1)

The following HASKELL monomorphic function accepts a pair of integers and returns the
second of these integers:

second (x: Int, y: Int) = y

8.2 Parametric polymorphism 199

This monomorphic function is of type Integer × Integer → Integer. The function call
‘‘second(13, 21)’’ will yield 21. However, the function call ‘‘second(13, true)’’
would be illegal, because the argument pair does not consist of two integers.

But why should this function be restricted to accepting a pair of integers? There is no
integer operation in the function definition, so the function’s argument could in principle
be any pair of values whatsoever. It is in fact possible to define the function in this way:

second (x: σ, y: τ) = y

This polymorphic function is of type σ × τ → τ. Here σ and τ are type variables, each
standing for an arbitrary type.

Now the function call ‘‘second(13, true)’’ is legal. Its type is determined as
follows. The argument is a pair of type Integer × Boolean. If we systematically sub-
stitute Integer for σ and Boolean for τ in the function type σ × τ → τ, we obtain
Integer × Boolean → Boolean, which matches the argument type. Therefore the result
type is Boolean.

Consider also the function call ‘‘second(name)’’, where the argument name is of
type String × String. This function call is also legal. If we systematically substitute String
for σ and String for τ in the function type σ × τ → τ, we obtain String × String → String,
which matches the argument type. Therefore the result type is String.

This polymorphic function therefore accepts arguments of many types. However,
it does not accept just any argument. A function call like ‘‘second(13)’’ or ‘‘sec-
ond(1978, 5, 5)’’ is still illegal, because the argument type cannot be matched to the
function type σ × τ → τ. The allowable arguments are just those values that have types of
the form σ × τ, i.e., pairs.

A polytype derives a family of similar types. Two examples of polytypes are
σ × τ and σ × τ → τ. A polytype always includes one or more type variables.

The family of types derived by a polytype is obtained by making all possible
systematic substitutions of types for type variables. The family of types derived by
σ × τ → τ includes Integer × Boolean → Boolean and String × String → String. It
does not include Integer × Boolean → Integer, or Integer → Integer, or Integer ×
Integer × Integer → Integer. In other words, each type in the family derived by
σ × τ → τ is the type of a function that accepts a pair of values and returns a result
of the same type as the second component of the pair.

EXAMPLE 8.7 HASKELL polymorphic function (2)

Consider the following HASKELL monomorphic function:

either (b: Bool) (x1: Char) (x2: Char) =
if b then x1 else x2

The type of this monomorphic function is Boolean → Character → Character →
Character. The following code contains a call to the either function:

translate (x: Char) =
either (isspace x) x '*'

200 Chapter 8 Type systems

The either function’s first parameter clearly must be of type Boolean, since it is
tested by an if-expression. But the second and third parameters need not be of type
Character, since no character operations are applied to them.

Here now is a polymorphic version of the either function:

either (b: Bool) (x1: τ) (x2: τ) =
if b then x1 else x2

The type of this function is Boolean → τ → τ → τ. Thus the first argument must be a
boolean, and the other two arguments must be values of the same type as each other. The
following code illustrates what we can do with the polymorphic either function:

translate (x: Char) =
either (isspace x) x '*'

max (m: Int, n: Int) =
either (m > n) m n

The latter call would be illegal with the original monomorphic either function.
The polytype Boolean → τ → τ → τ derives a family of types that includes Boolean →

Character → Character → Character, Boolean → Integer → Integer → Integer, and many
others.

EXAMPLE 8.8 HASKELL polymorphic function (3)

The following defines the integer identity function in HASKELL:

idInt (x: Int) = x

This monomorphic function is of type Integer → Integer, and maps any integer to itself.
The following defines the polymorphic identity function:

id (x: τ) = x

This polymorphic function is of type τ → τ, and maps any value to itself. In other words, it
represents the following mapping:

id = {false → false, true → true,
. . . ,−2 → −2,−1 → −1, 0 → 0, 1 → 1, 2 → 2, . . . ,

‘‘’’ → ‘‘’’, ‘‘a’’ → ‘‘a’’, ‘‘ab’’ → ‘‘ab’’, . . . ,
. . .}

8.2.2 Parameterized types

A parameterized type is a type that takes other type(s) as parameters. For instance,
consider array types in C. We can think of τ[] as a parameterized type, which can
be specialized to an ordinary type (such as char[], or float[], or float[][])
by substituting an actual type for the type variable τ.

All programming languages have built-in parameterized types. For instance,
C and C++ have τ[] and τ*, while ADA has ‘‘array (σ) of τ’’ and ‘‘access
τ’’. But only a few programming languages, notably ML and HASKELL, allow

8.2 Parametric polymorphism 201

programmers to define their own parameterized types. The following examples
illustrate the possibilities.

EXAMPLE 8.9 HASKELL parameterized type (1)

Consider the following HASKELL parameterized type definition:

type Pair τ = (τ, τ)

In this definition τ is a type parameter, denoting an unknown type. The definition makes
‘‘Pair τ’’ a parameterized type whose values are homogeneous pairs.

An example of specializing this parameterized type would be ‘‘Pair Int’’. By
substituting Int for τ, we see that the resulting type is ‘‘(Int, Int)’’, whose values are
pairs of integers. Another example would be ‘‘Pair Float’’, a type whose values are
pairs of real numbers.

EXAMPLE 8.10 HASKELL parameterized type (2)
The following HASKELL (recursive) parameterized type definition defines homogeneous
lists with elements of type τ:

data List τ = Nil | Cons (τ, List τ)

Now ‘‘List Int’’ is a type whose values are lists of integers.
We can go on to define some polymorphic functions on lists:

head (l: List τ) =
case l of
Nil -> . . . -- error
Cons(x,xs) -> x

tail (l: List τ) =
case l of
Nil -> . . . -- error
Cons(x,xs) -> xs

length (l: List τ) =
case l of
Nil -> 0
Cons(x,xs) -> 1 + length(xs)

As a matter of fact, HASKELL has a built-in parameterized list type, written [τ],
equipped with head, tail, and length functions.

Rather than using the notation of any particular programming language,
we shall henceforth use mathematical notation like Pair<τ> and List<τ> for
parameterized types. Thus we can rewrite the type definitions of Examples 8.9
and 8.10 as equations:

Pair<τ> = τ × τ (8.1)
List<τ> = Unit + (τ × List<τ>) (8.2)

202 Chapter 8 Type systems

Using this notation, the types of the functions defined in Example 8.10 are
as follows:

head : List<τ> → τ

tail : List<τ> → List<τ>

length : List<τ> → Integer

8.2.3 Type inference
Most statically typed programming languages insist that we explicitly declare the
type of every entity declared in our programs. This is illustrated clearly by ADA

constant, variable, and function declarations:

I: constant T := E;
I: T;
function I (I': T') return T;

in which the type of each constant, variable, parameter, and function result is
declared explicitly.

By contrast, consider the HASKELL constant definition:

I = E

The type of the declared constant is not stated explicitly, but is inferred from the
type of the expression E.

Type inference is a process by which the type of a declared entity is inferred,
where it is not explicitly stated. Some functional programming languages such as
HASKELL and ML rely heavily on type inference, to the extent that we rarely need
to state types explicitly.

So far we have been writing HASKELL function definitions in the form:

I (I': T') = E

Here the type of the formal parameter I′ is explicitly declared to be T ′. On the
other hand, the function result type must be inferred from the function body
E. In fact, we need not declare the parameter type either; instead we can write
more concisely:

I I' = E

The type of I′ is then inferred from its applied occurrences in the function’s
body E.

EXAMPLE 8.11 HASKELL type inference (1)
Consider the following HASKELL function definition:

even n = (n 'mod' 2 = 0)

The operator mod has type Integer → Integer → Integer. From the subexpression ‘‘n
'mod' 2’’ we can infer that n must be of type Integer (otherwise the subexpression would
be ill-typed). Then we can infer that the function body is of type Boolean. So the function
even is of type Integer → Boolean.

8.2 Parametric polymorphism 203

Type inference sometimes yields a monotype, but only where the avail-
able clues are strong enough. In Example 8.11, the function’s body contained a
monomorphic operator, mod, and two integer literals. These clues were enough to
allow us to infer a monotype for the function.

The available clues are not always so strong: the function body might be
written entirely in terms of polymorphic functions. Indeed, it is conceivable that
the function body might provide no clues at all. In these circumstances, type
inference will yield a polytype.

EXAMPLE 8.12 HASKELL type inference (2)
Consider the following HASKELL function definition:

id x = x

Let τ be the type of x. The function body yields no clue as to what τ is; all we can infer
is that the function result will also be of type τ. Therefore the type of id is τ → τ. This
function is, in fact, the polymorphic identity function of Example 8.8.

EXAMPLE 8.13 HASKELL type inference (3)

Consider the following definition of an operator ‘‘.’’:

f . g =
\x -> f(g(x))

We can see that both f and g are functions, from the way they are used. Moreover, we can
see that the result type of g must be the same as the parameter type of f. Let the types of
f and g be β → γ and α → β, respectively. The type of x must be α, since it is passed as an
argument to g. Therefore, the subexpression ‘‘f(g(x))’’ is of type γ, and the expression
‘‘\x -> f(g(x))’’ is of type α → γ. Therefore, ‘‘.’’ is of type (β → γ) → (α → β) →
(α → γ).

In fact, ‘‘.’’ is HASKELL’s built-in operator that composes two given functions.

EXAMPLE 8.14 HASKELL type inference (4)

Recall the following HASKELL parameterized type definition from Example 8.10:

data List τ = Nil | Cons (τ, τ list)

The following function definition does not state the type of the function’s parameter or
result, but relies on type inference:

length l =
case l of
Nil -> 0
Cons(x,xs) -> 1 + length(xs)

204 Chapter 8 Type systems

The result type of length is clearly Integer, since one limb of the case expression is an
integer literal (and the other is an application of the operator ‘‘+’’ to an integer literal). The
case expression also tells us that the value of l is eitherNil or of the form ‘‘Cons(x,xs)’’.
This allows us to infer that l is of type List<τ>. We cannot be more specific, since the
function body contains no clue as to what τ is. Thus length is of type List<τ> → Integer.

HASKELL adopts a laissez-faire attitude to typing. The programmer may declare
the type of an entity voluntarily, or may leave the compiler to infer its type.

Excessive reliance on type inference, however, tends to make large programs
difficult to understand. A reader might have to study the whole of a program
in order to discover the types of its individual functions. Even the implementer
of the program could have trouble understanding it: a slight programming error
might cause the compiler to infer different types from the ones intended by the
implementer, resulting in obscure error messages. So explicitly declaring types,
even if redundant, is good programming practice.

8.3 Overloading
In discussing issues of scope and visibility, in Section 4.2.2, we assumed that
each identifier denotes at most one entity in a particular scope. Now we relax
that assumption.

An identifier is said to be overloaded if it denotes two or more distinct proce-
dures in the same scope. Such overloading is acceptable only if every procedure
call is unambiguous, i.e., the compiler can uniquely identify the procedure to be
called using only type information.

In older programming languages such as C, identifiers and operators denoting
certain built-in functions are overloaded. (Recall, from Section 2.6.3, that we may
view an operator application like ‘‘n + 1’’ as a function call, where the operator
‘‘+’’ denotes a function. From this point of view, an operator acts as an identifier.)

EXAMPLE 8.15 C overloaded functions

The C ‘‘-’’ operator simultaneously denotes four distinct built-in functions:

• integer negation (a function of type Integer → Integer)

• floating-point negation (a function of type Float → Float)

• integer subtraction (a function of type Integer × Integer → Integer)

• floating-point subtraction (a function of type Float × Float → Float).

No ambiguity can arise. In function calls such as ‘‘-y’’ and ‘‘x-y’’, the number of operands
and their types uniquely determine which function is being called.

In more modern languages such as ADA, C++, and JAVA, overloading is
not restricted to built-in procedures. Programmers are at liberty to overload
previously-defined identifiers and operators.

8.3 Overloading 205

EXAMPLE 8.16 ADA overloaded functions

The ADA ‘‘/’’ operator simultaneously denotes two distinct built-in functions:

• integer division (a function of type Integer × Integer → Integer)

• floating-point division (a function of type Float × Float → Float).

For example, the function call ‘‘7/2’’ yields the Integer value 3, while ‘‘7.0/2.0’’ yields
the Float value 3.5.

The following function declaration further overloads the ‘‘/’’ operator:

function "/" (m, n: Integer) return Float;
-- Return the quotient of m and n as a real number.

Now ‘‘/’’ denotes three distinct functions:

• integer division (a function of type Integer × Integer → Integer)

• floating-point division (a function of type Float × Float → Float)

• floating-point division of integers (a function of type Integer × Integer → Float).

Now the function call ‘‘7/2’’ yields either the Integer value 3 or the Float value 3.5,
depending on its context.

Because the functions for integer division and floating-point division of integers differ
only in their result types, in general the identification of ‘‘/’’ in a function call will depend
on the context as well as the number and types of actual parameters. The following function
calls illustrate the resulting complexities. (In the right-hand column, subscripting is used to
distinguish the three functions: ‘‘/ii’’ is integer division, ‘‘/ff’’ is floating-point division, and
‘‘/if’’ is floating-point division of integers.)

n: Integer; x: Float;
. . .

x := 7.0/2.0; – computes 7.0/ff2.0 = 3.5
x := 7/2; – computes 7/if2 = 3.5
n := 7/2; – computes 7/ii2 = 3
n := (7/2)/(5/2); – computes (7/ii2)/ii(5/ii2) = 3/ii2 = 1

Some function calls are ambiguous, even taking context into account:

x := (7/2)/(5/2); – computes
either (7/ii2)/if(5/ii2) = 3/if 2 = 1.5
or (7/if2)/ff(5/if2) = 3.5/ff 2.5 = 1.4

We can characterize overloading in terms of the types of the overloaded
functions. Suppose that an identifier F denotes both a function f1 of type S1 → T1
and a function f2 of type S2 → T2. (Recall that this covers functions with multiple
arguments, since S1 or S2 could be a Cartesian product.) The overloading may be
either context-independent or context-dependent.

Context-independent overloading requires that S1 and S2 are non-equivalent.
Consider the function call ‘‘F(E)’’. If the actual parameter E is of type S1, then F
here denotes f1 and the result is of type T1. If E is of type S2, then F here denotes
f2 and the result is of type T2. With context-independent overloading, the function
to be called is always uniquely identified by the type of the actual parameter.

206 Chapter 8 Type systems

Context-dependent overloading requires only that S1 and S2 are non-equiva-
lent or that T1 and T2 are non-equivalent. If S1 and S2 are non-equivalent, the
function to be called can be identified as above. If S1 and S2 are equivalent but
T1 and T2 are non-equivalent, context must be taken into account to identify the
function to be called. Consider the function call ‘‘F(E)’’, where E is of type S1
(equivalent to S2). If the function call occurs in a context where an expression of
type T1 is expected, then F must denote f1; if the function call occurs in a context
where an expression of type T2 is expected, then F must denote f2.

With context-dependent overloading, it is possible to formulate expressions
in which the function to be called cannot be identified uniquely, as we saw
in Example 8.16. The programming language must prohibit such ambiguous
expressions.

C exhibits context-independent overloading: the parameter types of the
overloaded functions are always non-equivalent. ADA exhibits context-dependent
overloading: either the parameter types or the result types of the overloaded
functions may be non-equivalent.

Not only function procedures but also proper procedures and even literals
can be overloaded, as the following example illustrates. (See also Exercises 8.3.2
and 8.3.3.)

EXAMPLE 8.17 ADA overloaded proper procedures

The ADA Text_IO package overloads the identifier ‘‘put’’ to denote two distinct built-in
proper procedures:

procedure put (item: Character);
-- Write item to standard output.

procedure put (item: String);
-- Write all characters of item to standard output.

For example, the procedure call ‘‘put('!');’’ writes a single character, while ‘‘put
("hello");’’ writes a string of characters.

The following is a legal ADA procedure declaration:

procedure put (item: Integer);
-- Convert item to a signed integer literal and write it to standard output.

Now the procedure call ‘‘put(13);’’ would write ‘‘+13’’.

We must be careful not to confuse the distinct concepts of overloading
(which is sometimes called ad hoc polymorphism) and parametric polymorphism.
Overloading means that a small number of separately-defined procedures happen
to have the same identifier; these procedures do not necessarily have related
types, nor do they necessarily perform similar operations on their arguments.

8.4 Type conversions 207

Polymorphism is a property of a single procedure that accepts arguments of
a large family of related types; the parametric procedure is defined once and
operates uniformly on its arguments, whatever their type.

Overloading does not actually increase the programming language’s expres-
sive power, as it could easily be eliminated by renaming the overloaded procedures.
Thus the ADA procedures of Example 8.17 could be renamed putChar, putStr,
and putInt, with no consequence other than a modest loss of notational con-
venience. On the other hand, parametric polymorphism genuinely increases the
language’s expressive power, since a polymorphic procedure may take arguments
of an unlimited variety of types.

8.4 Type conversions

A type conversion is a mapping from the values of one type to corresponding
values of a different type. A familiar example of a type conversion is the natural
mapping from integers to real numbers:

{. . . ,−2 → −2.0,−1 → −1.0, 0 → 0.0, +1 → +1.0, +2 → +2.0, . . .}
There are many possible type conversions from real numbers to integers, including
truncation and rounding. Other examples of type conversions are the mapping
from characters to the corresponding strings of length 1, the mapping from
characters to the corresponding character-codes (small integers), and the mapping
from character-codes to the corresponding characters.

Type conversions are not easily characterized mathematically. Some type
conversions map values to mathematically-equal values (e.g., integers to real
numbers), but others do not (e.g., truncation and rounding). Some type conversions
are one-to-one mappings (e.g., the mapping from characters to strings of length 1),
but most are not. Some type conversions are total mappings (e.g., the mapping from
characters to character-codes), but others are partial mappings (e.g., the mapping
from character-codes to characters). Where a type conversion is a partial mapping,
there is a significant practical consequence: it could cause the program to fail.

Programming languages vary, not only in which type conversions they define,
but also in whether these type conversions are explicit or implicit.

A cast is an explicit type conversion. In C, C++, and JAVA, a cast has the form
‘‘(T)E’’. In ADA, a cast has the form ‘‘T(E)’’. If the subexpression E is of type S
(not equivalent to T), and if the programming language defines a type conversion
from S to T, then the cast maps the value of E to the corresponding value of
type T.

A coercion is an implicit type conversion, and is performed automatically
wherever the syntactic context demands it. Consider an expression E in a context
where a value of type T is expected. If E is of type S (not equivalent to T), and if the
programming language allows a coercion from S to T in this context, then the coer-
cion maps the value of E to the corresponding value of type T. A typical example
of such a syntactic context is an assignment ‘‘V := E’’, where V is of type T.

208 Chapter 8 Type systems

EXAMPLE 8.18 PASCAL coercions and ADA casts

PASCAL provides a coercion from Integer to Float, using the natural mapping from integers
to real numbers shown above. On the other hand, PASCAL provides no coercion from
Float to Integer, but forces the programmer to choose an explicit type conversion function
(trunc or round) to make clear which mapping is desired.

var n: Integer; x: Real;
. . .

x := n; -- converts the value of n to a real number
n := x; -- illegal!
n := round(x); -- converts the value of x to an integer by rounding

ADA does not provide any coercions at all. But it does support all possible casts
between numeric types:

n: Integer; x: Float;
. . .

x := n; -- illegal!
n := x; -- illegal!
x := Float(n); -- converts the value of n to a real number
n := Integer(x); -- converts the value of x to an integer by rounding

Note that ADA chooses rounding as its mapping from real numbers to integers. This choice
is arbitrary, and programmers have no choice but to memorize it.

Some programming languages are very permissive in respect of coercions. For
instance, C allows coercions from integers to real numbers, from narrow-range to
wide-range integers, from low-precision to high-precision real numbers, and from
values of any type to the unique value of type void. To these JAVA adds coercions
from every type to String, from a subclass to its superclass, from a primitive
type to the corresponding wrapper class and vice versa, and so on.

The general trend in modern programming languages is to minimize or even
eliminate coercions altogether, while retaining casts. At first sight this might
appear to be a retrograde step. However, coercions fit badly with parametric poly-
morphism (Section 8.2) and overloading (Section 8.3), concepts that are certainly
more useful than coercions. Casts fit well with any type system, and anyway are
more general than coercions (not being dependent on the syntactic context).

8.5 Implementation notes
This chapter is largely theoretical, but it raises one practical issue not consid-
ered elsewhere in this book: how can we implement parametric polymorphism
efficiently?

8.5.1 Implementation of parametric polymorphism

Polymorphic procedures operate uniformly on arguments of a variety of types.
An argument passed to a polymorphic procedure might be an integer in one call,
a real number in a second call, a tuple in a third call, and a list in a fourth call.

8.5 Implementation notes 209

One way to implement a polymorphic procedure would be to generate a
separate instance of the procedure for each distinct argument type. However, such
an implementation would be unsuitable for a functional programming language
such as ML or HASKELL, in which programs tend to include a large proportion of
polymorphic procedures.

A better way is to represent values of all types in such a way that they look
similar to a polymorphic procedure. We can achieve this effect by representing
every value by a pointer to a heap object, as shown in Figure 8.5. Consider the
following polymorphic functions:

• The polymorphic either function of Example 8.7 has type Boolean →
τ → τ → τ. Its second and third arguments are of type τ, i.e., they could
be values of any type. The function can only copy the values, and this is
implemented by copying the pointers to the values.

• The second function of Example 8.6 has type σ × τ → τ. Its argument is
of type σ × τ, so it must be a pair, but the components of that pair could

Cons

Nil

2

Cons
3

Cons
5

7True 3.1416

Cons

Nil

0.5

Cons
0.3333

Cons
0.25

Boolean Integer Float

List‹Integer› List‹Float›

Month × Integer

Nov

5

Integer × Month

5

Nov

Integer × Month × Integer

Nov

5

2004

(a)

(b)

(c)

Figure 8.5 Representation of values of different types in the presence of parametric
polymorphism: (a) primitive values; (b) tuples; (c) lists.

210 Chapter 8 Type systems

be values of any type. The function could select either component of the
argument pair, so all pairs must have similar representations. Compare the
pairs of type Integer × Month and Month × Integer in Figure 8.5(b).

• The head, tail, and length functions of Example 8.10 have types
List<τ> → τ, List<τ> → List<τ>, and List<τ> → Integer, respectively.
Each function’s argument is of type List<τ>, so it must be a list, but
the components of that list could be values of any type. The function could
test whether the argument list is empty or not, or select the argument list’s
head or tail, so all lists must have similar representations. Compare the lists
of type List<Integer> and List<Float> in Figure 8.5(c).

When a polymorphic procedure operates on values of unknown type, it cannot
know the operations with which that type is equipped, so it is restricted to copying
these values. That can be implemented safely and uniformly by copying the
pointers to these values.

This implementation of parametric polymorphism is simple and uniform, but
it is also costly. All values (even primitive values) must be stored in the heap;
space must be allocated for them when they are first needed, and deallocated by
a garbage collector when they are no longer needed.

Summary
In this chapter:

• We have studied inclusion polymorphism, which enables a subtype or subclass to
inherit operations from its parent type or class.

• We have studied parametric polymorphism, which enables a procedure to operate
uniformly on arguments of a whole family of types, and the related concept of
parameterized types.

• We have studied type inference, whereby the types of declared entities are not
stated explicitly in the program but are left to be inferred by the compiler.

• We have studied overloading, whereby several procedures may have the same
identifier in the same scope, provided that these procedures have non-equivalent
parameter types and/or result types.

• We have studied type conversions, both explicit (casts) and implicit (coercions).

• We have seen how parametric polymorphism influences the representation of values
of different types.

Further reading

Much of the material in this chapter is based on an illu-
minating survey paper by CARDELLI and WEGNER (1985).
The authors propose a uniform framework for understand-
ing parametric polymorphism, abstract types, subtypes, and
inheritance. Then they use this framework to explore the
consequences of combining some or all of these concepts
in a single programming language. (However, no major
language has yet attempted to combine them all.)

For another survey of type systems see REYNOLDS (1985).
Unlike Cardelli and Wegner, Reynolds adopts the point
of view that the concepts of coercion and subtype are
essentially the same. For example, if a language is to provide
a coercion from Integer to Float, then Integer should be
defined as a subtype of Float. From this point of view,
subtypes are not necessarily subsets.

Exercises 211

The system of polymorphic type inference used in lan-
guages like ML and HASKELL is based on a type inference
algorithm independently discovered by HINDLEY (1969)
and MILNER (1978). ML’s type system is described in

detail in WIKSTRÖM (1987), and HASKELL’s type system
in THOMPSON (1999).
For a detailed discussion of overloading in ADA, see
ICHBIAH (1979).

Exercises

Exercises for Section 8.1

8.1.1 Show that two different subtypes of an ADA primitive type may overlap, but two
different subtypes of an ADA array or record type are always disjoint.

8.1.2 Consider the class hierarchy of Figure 6.4. Write down equations (similar to
those at the end of Example 8.4) defining the set of values of each of the types
Account, Basic-Account, Savings-Account, Current-Account, and Account‡.

8.1.3 Compare ADA discriminated record types with JAVA classes and subclasses, in
terms of extensibility.

(a) Define the following ADA function, where Figure is the discriminated
record type of Example 8.3:

function area (fig: Figure) return Float;

(b) Now suppose that straight lines and text boxes are to be handled as well
as points, circles, and rectangles. Modify the ADA code (type and function
definitions) accordingly.

(c) Add definitions of the following JAVA method to each of the classes of
Example 8.4:

float area ();

(d) Now suppose that straight lines and text boxes are to be handled as well.
Modify the JAVA code accordingly.

Exercises for Section 8.2

8.2.1 Consider the HASKELL list functions defined in Example 8.10. Similarly define:
(a) a function to reverse a given list; (b) a function to concatenate two given
lists; (c) a function to return the kth element of a given list. State the type of
each function, using the notation defined at the end of Section 8.2.2.

8.2.2 Define the following polymorphic functions in HASKELL: (a) ‘‘map f xs’’
returns a list in which each element is obtained by applying the function f to the
corresponding element of list xs; (b) ‘‘filter f xs’’ returns a list consisting
of every element x of list xs such that f x yields true. State the types of map
and filter.

*8.2.3 Define a parameterized type Set<τ> in HASKELL. Equip it with operations
similar to those in Exercise 7.2.4, and state the type of each operation.

212 Chapter 8 Type systems

8.2.4 Write a HASKELL function twice, whose argument is a function f and whose
result is the function h defined by h(x) = f (f (x)). What is the type of twice ?
Given that the following function returns the second power of a given integer:

sqr (i: Int) = i * i

use twice to define a function that returns the fourth power of a given integer.

8.2.5 Infer the types of the following HASKELL functions, given that the type of not
is Boolean → Boolean:

negation p = not . p;

cond b f g =
\ x -> if b x then f x else g x

8.2.6 Infer the types of the following HASKELL list functions, given that the type of
‘‘+’’ is Integer → Integer → Integer:

sum1 [] = 0
sum1 (n:ns) = n + sum1 ns

insert z f [] = z
insert z f (x:xs) = f x (insert z f xs)

sum2 xs = insert 0 (+) xs

Compare the functions sum1 and sum2.

*8.2.7 Investigate the extent to which the benefits of parametric polymorphism can
be achieved, in either C++ or JAVA, using generic classes and generic functions
(methods). In your chosen language, attempt to code (a) the second polymor-
phic function of Example 8.6; (b) the id polymorphic function of Example 8.8;
(c) the Pair parameterized type of Example 8.9; (d) the List parameterized
type and thehead,tail, andlength polymorphic functions of Example 8.10.

Exercises for Section 8.3
8.3.1 Suppose that the operator ‘‘++’’ (denoting concatenation) is overloaded, with

types Character × Character → String, Character × String → String, String ×
Character → String, and String × String → String. Is this overloading context-
dependent or context-independent? Identify each occurrence of ‘‘++’’ in the
following expressions:

c ++ s
(s ++ c) ++ c
s ++ (c ++ c)

where c is a Character variable and s is a String variable.

8.3.2 Adapt the characterization of overloading in Section 8.3 to cover proper
procedures. Is the overloading of proper procedures context-dependent or
context-independent?
Consider a language in which the operator ‘‘/’’ is overloaded, with types that
include Integer × Integer → Integer and Integer × Integer → Float. The language

Exercises 213

also has an overloaded proper procedure write whose argument may be either
Integer or Float. Find examples of procedure calls in which the procedure to be
called cannot be identified uniquely.

8.3.3 Adapt the characterization of overloading in Section 8.3 to cover literals. Is the
overloading of literals context-dependent or context-independent?
Consider a language in which arithmetic operators such as ‘‘+’’ and ‘‘-’’ are
overloaded, with types Integer × Integer → Integer and Float × Float → Float. It
is now proposed to treat the literals 1, 2, 3, etc., as overloaded, with types Integer
and Float, in order to allow expressions like ‘‘x+1’’, where x is of type Float.
Examine the implications of this proposal. (Assume that the language has no
coercion that maps Integer to Float.)

Exercises for Section 8.4
8.4.1 What type conversions are allowed in your favorite language? What is the

mapping performed by each type conversion? Separately consider (a) casts and
(b) coercions.

Chapter 9

Control flow

Using sequential, conditional, and iterative commands (Section 3.7) we can implement a
variety of control flows, each of which has a single entry and a single exit. These control
flows are adequate for many purposes, but not all.

In this chapter we study constructs that enable us to implement a greater variety of
control flows:

• sequencers, which are constructs that influence the flow of control;

• jumps, which are low-level sequencers that can transfer control almost anywhere;

• escapes, which are sequencers that transfer control out of textually enclosing
commands or procedures;

• exceptions, which are sequencers that can be used to signal abnormal situations.

9.1 Sequencers

Figure 9.1 shows four flowcharts: a simple command, a sequential subcommand,
an if-command, and a while-command. Each of these flowcharts has a single entry
and a single exit. The same is true for other conditional commands, such as case
commands, and other iterative commands, such as for-commands. (See Exercise
9.1.1.) It follows that any command formed by composing simple, sequential,
conditional, and iterative commands has a single-entry single-exit control flow.

Sometimes we need to implement more general control flows. In particular,
single-entry multi-exit control flows are often desirable.

A sequencer is a construct that transfers control to some other point in the
program, which is called the sequencer’s destination. Using sequencers we can
implement a variety of control flows, with multiple entries and/or multiple exits.
In this chapter we shall examine several kinds of sequencers: jumps, escapes,
and exceptions. This order of presentation follows the trend in language design
from low-level sequencers (jumps) towards higher-level sequencers (escapes
and exceptions).

The mere existence of sequencers in a programming language radically affects
its semantics. For instance, we have hitherto asserted that the sequential command
‘‘C1; C2’’ is executed by first executing C1 and then executing C2. This is true
only if C1 terminates normally. But if C1 executes a sequencer, C1 terminates
abruptly, which might cause C2 to be skipped (depending on the sequencer’s
destination).

215

216 Chapter 9 Control flow

C

C1

C2

falsetrue
E

C1 C2

(c) if (E) C1
else C2

E

C

true

(d) while (E) C(b) C1; C2(a) primitive
command C

false

Figure 9.1 Flowcharts of primitive, sequential, if-, and while-commands.

Some kinds of sequencers are able to carry values. Such values are computed
at the place where the sequencer is executed, and are available for use at the
sequencer’s destination.

9.2 Jumps
A jump is a sequencer that transfers control to a specified program point. A
jump typically has the form ‘‘goto L;’’, and this transfers control directly to the
program point denoted by L, which is a label.

EXAMPLE 9.1 Jumps
The following program fragment (in a C-like language) contains a jump:

if (E1)
C1

else {
C2

goto X;
}
C3

while (E2) {
C4

X: C5

}

Here the label X denotes a particular program point, namely the start of command C5.
Thus the jump ‘‘goto X;’’ transfers control to the start of C5.

Figure 9.2 shows the flowchart corresponding to this program fragment. Note that the
if-command and while-command have identifiable subcharts, which are highlighted. The
program fragment as a whole has a single entry and a single exit, but the if-command has
two exits, and the while-command has two entries.

Unrestricted jumps allow any command to have multiple entries and multiple
exits. They tend to give rise to ‘‘spaghetti’’ code, so called because its flowchart
is tangled.

9.2 Jumps 217

falsetrue

C4

C5

E1

C1 C2

E2
false

true

C3

Figure 9.2 Flowchart of a program fragment with a jump
(Example 9.1).

‘‘Spaghetti’’ code tends to be hard to understand. It is worth reflecting on
why this is so. Simple commands like assignments, and even composite single-
entry single-exit commands, are largely self-explanatory. But jumps are not
self-explanatory at all. For example, what effect does the jump ‘‘goto Z;’’ have
on the program’s behavior? It might be a forward jump that causes commands to
be skipped, or a backward jump that causes commands to be repeated. We cannot
tell until we locate the label Z, which might be many pages away.

Most major programming languages support jumps, but they are really obso-
lete in the modern languages. JAVA refuses to support jumps, on the grounds that
the higher-level escapes and exceptions are sufficient in practice.

Even in programming languages that do support jumps, their use is constrained
by the simple expedient of restricting the scope of each label: the jump ‘‘goto
L;’’ is legal only within the scope of L. In C, for example, the scope of each label
is the smallest enclosing block command (‘‘{ . . . }’’). It is therefore possible to
jump within a block command, or from one block command out to an enclosing
block command; but it is not possible to jump into a block command from outside,
nor from one function’s body to another. The jump in Example 9.1 would in fact
be illegal in C.

The last point does not imply that the flowchart of Figure 9.2 cannot be
programmed in C. We simply rewrite the while-command in terms of equivalent
conditional and unconditional jumps:

while (E2) { ≡ goto Y;
C4 W: C4

X: C5 X: C5

} Y: if (E2) goto W;

218 Chapter 9 Control flow

The resulting code is even less readable, however. C’s jumps are not restricted
enough to prevent ‘‘spaghetti’’ coding.

A jump within a block command is relatively simple, but a jump out of a
block command is more complicated. Such a jump must destroy the block’s local
variables before transferring control to its destination.

EXAMPLE 9.2 Jump out of a block command

Consider the following (artificial) C code:

char stop;
stop = '.';
do {
char ch;
ch = getchar();
if (ch == EOT) goto X;
putchar(ch);

} while (ch != stop);
printf("done");

X: ;

The jump ‘‘goto X;’’ transfers control out of the block command {. . .}. Therefore it also
destroys the block command’s local variable ch.

A jump out of a procedure’s body is still more complicated. Such a jump must
destroy the procedure’s local variables and terminate the procedure’s activation
before transferring control to its destination. Even greater complications arise
when a jump’s destination is inside the body of a recursive procedure: which
recursive activations are terminated when the jump is performed? To deal with
this possibility, we have to make a label denote not simply a program point, but a
program point within a particular procedure activation.

Thus jumps, superficially very simple, in fact introduce unwanted complexity
into the semantics of a high-level programming language. Moreover, this com-
plexity is unwarranted, since wise programmers in practice avoid using jumps in
complicated ways. In the rest of this chapter, we study sequencers that are both
higher-level than jumps and more useful in practice.

9.3 Escapes
An escape is a sequencer that terminates execution of a textually enclosing
command or procedure. In terms of a flowchart, the destination of an escape
is always the exit point of an enclosing subchart. With escapes we can program
single-entry multi-exit control flows.

ADA’s exit sequencer terminates an enclosing loop, which may be a while-
command, a for-command, or a basic loop (‘‘loop C end loop;’’ simply causes
the loop body C to be executed repeatedly). An exit sequencer within a loop body
terminates the loop.

9.3 Escapes 219

C1

C2

E
true

false

loop body

loop

Figure 9.3 Flowchart of a loop with
an escape.

In the following basic loop, there is a single (conditional) exit sequencer:

loop
C1

exit when E;
C2

end loop;

The corresponding flowchart is shown in Figure 9.3, in which both the loop body
and the basic loop itself are highlighted. Note that the loop has a single exit,
but the loop body has two exits. The normal exit from the loop body follows
execution of C2, after which the loop body is repeated. The other exit from
the loop body is caused by the exit sequencer, which immediately terminates
the loop.

It is also possible for an exit sequencer to terminate an outer loop. An ADA

exit sequencer may refer to any named enclosing loop. The following example
illustrates this possibility.

EXAMPLE 9.3 ADA exit sequencer

The following type represents a diary for a complete year:

type Year_Diary is array (Month_Number, Day_Number)
of Diary_Entry;

Consider the following procedure:

function search (diary: Year_Diary;
this_year: Year_Number;
key_word: String)

return Date is
-- Search diary for the first date whose entry matches key_word.
-- Return the matching date, or January 1 if there is no match.

match_date: Date := (this_year, 1, 1);

220 Chapter 9 Control flow

begin
search:

(1) for m in Month_Number loop
(2) for d in Day_Number loop

if matches(diary(m,d), key_word) then
match_date := (this_year, m, d);

(3) exit search;
end if;

end loop;
end loop;

return match_date;
end;

Here the outer loop starting at (1) is named search. Thus the sequencer ‘‘exit
search;’’ at (3) terminates that outer loop.

On the other hand, a simple ‘‘exit;’’ at (3) would terminate only the inner
loop (2).

The break sequencer of C, C++, and JAVA allows any composite command
(typically a loop or switch command) to be terminated immediately.

EXAMPLE 9.4 JAVA break sequencers

The following JAVA method corresponds to Example 9.3:

static Date search (DiaryEntry[][] diary;
int thisYear;
String keyWord) {

Date matchDate = new Date(thisyear, 1, 1);
search:

for (int m = 1; m <= 12; m++) {
for (int d = 1; d <= 31; d++) {

if (diary[m][d].matches(keyWord)) {
matchDate = new Date(thisYear, m, d);
break search;

}
}

}
return matchDate;

}

A particularly important kind of escape is the return sequencer. This may occur
anywhere in a procedure’s body, and its destination is the end of the procedure’s
body. A return sequencer in a function’s body must also carry the function’s result.
Return sequencers are supported by C, C++, JAVA, and ADA.

9.4 Exceptions 221

EXAMPLE 9.5 C++ return sequencer

Consider the following C++ function:

int gcd (int m, n) {
// Return the greatest common divisor of positive integers m and n.

int p = m, q = n;
for (;;) {

int r = p % q;
if (r == 0) return q;
p = q; q = r;

}
}

The sequencer ‘‘return q;’’ escapes from the function’s body, carrying the value of q as
the function’s result.

Escapes are usually restricted so that they cannot transfer control out of
procedures. For example, a return sequencer always terminates the immediately
enclosing procedure body, and an exit sequencer inside a procedure’s body
can never terminate a loop enclosing that procedure. Without such restrictions,
escapes would be capable of terminating procedure activations, causing undue
complications (similar to those caused by jumps out of procedures, explained at
the end of Section 9.3).

The only escape that can terminate procedure activations without undue
complications is the halt sequencer, which terminates the whole program. In some
programming languages this is provided as an explicit sequencer (such as STOP
in FORTRAN); in others it is lightly disguised as a built-in procedure (such as
exit() in C). A halt sequencer may carry a value (typically an integer or string),
representing the reason for terminating the program, that will be reported to the
user of the program.

9.4 Exceptions

An abnormal situation is one in which a program cannot continue normally.
Typical examples are the situations that arise when an arithmetic operation
overflows, or an input/output operation cannot be completed. Some abnormal
situations are specific to particular applications, for example ill-conditioned data
in mathematical software, or syntactically ill-formed source code in a compiler.

What should happen when such an abnormal situation arises? Too often, the
program simply halts with a diagnostic message. It is much better if the program
transfers control to a handler, a piece of code that enables the program to recover
from the situation. A program that recovers reasonably from such situations is
said to be robust.

Typically, an abnormal situation is detected in some low-level program unit,
but a handler is more naturally located in a high-level program unit. For example,

222 Chapter 9 Control flow

suppose that an application program attempts to read a nonexistent record from a
file. This abnormal situation would be detected in the input/output subsystem, but
any handler should be located in the application code where a suitable recovery
action can be programmed. Furthermore, the program might contain several calls
to the input/output subsystem, reading records for different purposes. The most
appropriate recovery action will depend on the purpose for which the record was
read. Thus the program might need several handlers specifying different recoveries
from the same kind of abnormal situation. For all these reasons, neither jumps
nor escapes are powerful enough to transfer control from the point where the
abnormal situation is detected to a suitable handler.

A common technique for handling abnormal situations is to make each
procedure pass back a suitable status flag. (In the case of a function procedure,
the status flag can be the function result, which is the C convention. In the case
of a proper procedure, the status flag must be passed back through a parameter.)
The procedure sets its status flag to indicate which if any abnormal situation it has
detected. On return, the application code can test the status flag. This technique
has the advantage of requiring no special programming language construct, but
it also has serious disadvantages. One is that the application code tends to get
cluttered by tests of status flags. Another is that the programmer might forgetfully
or lazily omit to test a status flag. In fact, abnormal situations represented by status
flags are by default ignored!

Exceptions are a superior technique for handling abnormal situations. An
exception is an entity that represents an abnormal situation (or a family of
abnormal situations). Any code that detects an abnormal situation can throw (or
raise) an appropriate exception. That exception may subsequently be caught in
another part of the program, where a construct called an exception handler (or
just handler) recovers from the abnormal situation. Every exception can be caught
and handled, and the programmer has complete control over where and how each
exception is handled. Exceptions cannot be ignored: if an exception is thrown, the
program will halt unless it catches the exception.

The first major programming language with a general form of exception
handling was PL/I. An on-command associates a handler with a given exception
e. Thereafter, if any operation throws exception e, the associated handler is
executed, then the offending operation may be resumed. The handler associated
with a given exception may be updated at any time. The dynamic nature of the
exception–handler association and the fact that the offending operation may be
resumed make the PL/I exception concept problematic, and we shall not consider
it further here.

A better exception concept has been designed into more modern languages
such as ADA, C++, and JAVA. A handler for any exception may be attached to any
command. If that command (or any procedure called by it) throws the exception,
execution of that command is terminated and control is transferred to the handler.
The command that threw the exception is never resumed.

Let us first consider ADA exceptions, which are the simplest. The sequencer
‘‘raise e;’’ throws exception e. ADA has an exception-handling command of
the form:

9.4 Exceptions 223

begin
C0

exception
when e1 => C1

. . .

when en => Cn
end;

This is able to catch any of the exceptions e1, . . . , en. There are three
possibilities:

• If the subcommand C0 terminates normally, then the exception-handling
command as a whole terminates normally. (None of the handlers is exe-
cuted.)

• If the command C0 throws one of the named exceptions ei, then execution
of C0 is terminated abruptly, the handler Ci is executed, and then the
exception-handling command as a whole terminates normally.

• If the command C0 throws any other exception, then the exception-handling
command itself is terminated abruptly, and throws that same exception.

EXAMPLE 9.6 ADA exceptions

Consider an ADA program that is to read and process rainfall data for each month of the
year. Assume the following type definition:

type Annual_Rainfall is array (Month_Number) of Float;

The following procedure reads the annual rainfall data:

procedure get_annual (input: in out File_Type;
rainfall: out Annual_Rainfall) is

r: Float;
begin
for m in Month_Number loop

(1) begin
(2) get(input, r);
(3) rainfall(m) := r;

exception
when data_error =>

(4) put("Bad data for "); put(m);
skip_bad_data(input);
rainfall(m) := 0.0;

end;
end loop;

end;

This illustrates how the program can recover from reading ill-formed data. The command
(2) calls the library procedure get to read a numeric literal. That procedure will throw the
end_error exception if no more data remain to be read, or the data_error exception
if the numeric literal is ill-formed. The enclosing exception-handling command starting
at (1) is able to catch a data_error exception. If the command (2) does indeed throw
data_error, the sequential command (2,3) is terminated abruptly, and the exception

224 Chapter 9 Control flow

handler starting at (4) is executed instead; this prints a warning message, skips the ill-
formed data, and substitutes zero for the missing number. Now the exception-handling
command terminates normally, and execution of the enclosing loop then continues. Thus
the procedure will continue reading the data even after encountering ill-formed data.

The following main program calls get_annual:

procedure main is
rainfall: Annual_Rainfall;
input: File_Type;

(5) begin
open(input, . . .);

(6) get_annual(input, rainfall);
(7) . . . // process the data in rainfall

exception
when end_error =>

(8) put("Annual rainfall data is incomplete");
end;

This illustrates how the program can respond to incomplete input data. As mentioned
above, the library procedure get will throw end_error if no more data remain to be
read. If indeed this happens, the procedure get_annual does not catch end_error,
so that exception will be thrown by the command (6) that calls get_annual. Here the
exception will be caught, with the exception handler being the command (8), which simply
prints a message to the user. In consequence, the command (7) will be skipped.

Although not illustrated by Example 9.6, we can attach different handlers for
the same exception to different commands in the program. We can also attach
handlers for several different exceptions to the same command.

Note the following important properties of exceptions:

• If a subcommand throws an exception, the enclosing command also throws
that exception, unless it is an exception-handling command able to catch
that particular exception. If a procedure’s body throws an exception, the
corresponding procedure call also throws that exception.

• A command that throws an exception is terminated abruptly (and will never
be resumed).

• Certain exceptions are built-in, and may be thrown by built-in operations.
Examples are arithmetic overflow and out-of-range array indexing.

• Further exceptions can be declared by the programmer, and can be thrown
explicitly when the program itself detects an abnormal situation.

C++ and JAVA, being object-oriented languages, treat exceptions as objects.
JAVA, for instance, has a built-inException class, and every exception is an object
of a subclass of Exception. Each subclass of Exception represents a different
abnormal situation. An exception object contains an explanatory message (and
possibly other values), which will be carried to the handler. Being first-class
values, exceptions can be stored and passed as parameters as well as being thrown
and caught.

9.4 Exceptions 225

The JAVA sequencer ‘‘throw E;’’ throws the exception yielded by expression
E. The JAVA exception-handling command has the form:

try
C0

catch (T1 I1) C1

. . .

catch (Tn In) Cn
finally Cf

this is able to catch any exception of class T1 or . . . or Tn. If the subcommand
C0 throws an exception of type Ti, then the exception handler Ci is executed
with the identifier Ii bound to that exception. Just before the exception-handling
command terminates (whether normally or abruptly), the subcommand Cf is
executed unconditionally. (The finally clause is optional.)

An important feature of JAVA is that every method must specify the exceptions
that it might throw. A method’s heading may include an exception specification of
the form ‘‘throws T1, . . . , Tn’’, where T1, . . . , Tn are the classes of exceptions
that could be thrown. In the absence of an exception specification, the method is
assumed never to throw an exception. (Actually, this is an over-simplification: see
Section 12.4.2.)

EXAMPLE 9.7 JAVA exceptions

Consider a JAVA program that is to read and process rainfall data for each month of the
year (as in Example 9.6).

The following method attempts to read a numeric literal:

static float readFloat (BufferedReader input)
throws IOException, NumberFormatException {

. . . // skip space characters
if (. . .) // end of input reached

(1) throw new IOException("end of input");
String literal = . . .; // read non-space characters

(2) float f = Float.parseFloat(literal);
return f;

}

This method specifies that it might throw an exception of class IOException or Num-
berFormatException (but no other). If the end of input is reached (so that no literal
can be read), the sequencer at (1) constructs an exception of class IOException (con-
taining an explanatory message) and throws that exception. If a literal is read but turns
out not to be a well-formed numeric literal, the library method Float.parseFloat
called at (2) constructs an exception of class NumberFormatException (containing the
ill-formed literal) and throws that exception.

The following method reads the annual rainfall data:

static float[] readAnnual (BufferedReader input)
throws IOException {

float[] rainfall = new float[12];
for (int m = 0; m < 12; m++) {

226 Chapter 9 Control flow

(3) try {
(4) float r = readFloat(input);
(5) rainfall[m] = r;

}
catch (NumberFormatException e) {

(6) System.out.println(e.getMessage()
+ " is bad data for " + m);

rainfall[m] = 0.0;
}

}
return rainfall;

}

This illustrates how the program can recover from reading ill-formed data. Consider
the call to readFloat at (4). The enclosing exception-handling command, which starts
at (3), is able to catch a NumberFormatException. Thus if readFloat throws a
NumberFormatException, the code (4,5) is terminated abruptly, and the exception
handler starting at (6) is executed instead; this prints a warning message incorporating
the ill-formed literal carried by the exception (extracted by ‘‘e.getMessage()’’), and
substitutes zero for the missing number. Now the exception-handling command terminates
normally, and the enclosing loop continues. Thus the remaining rainfall data will be
read normally.

The following main program calls readAnnual:

static void main () {
float[] rainfall;

(7) try {
(8) rainfall = readAnnual();
(9) . . . // process the data in rainfall

}
catch (IOException e) {

(10) System.out.println(
"Annual rainfall data is incomplete");

}
}

This illustrates how the program can respond to incomplete input data. If readFloat
throws an IOException, the method readAnnual does not catch it, so it will be thrown
by the method call at (8). The enclosing exception-handling command, starting at (7), does
catch the exception, the handler being the command (10), which simply prints a warning
message to the user. In consequence, the command (9) will be skipped.

9.5 Implementation notes

9.5.1 Implementation of jumps and escapes

Most jumps and escapes are simple transfers of control, easily implemented in
object code. However, a jump or escape out of a block is more complicated:
variables local to that block must be destroyed before control is transferred. A
jump or escape out of a procedure is still more complicated: the procedure’s stack
frame must be popped off the stack before control is transferred.

Summary 227

9.5.2 Implementation of exceptions
The implementation of exceptions is interesting because it entails a trade-off.
The issue is how efficiently control is transferred to the appropriate exception
handler when an exception is thrown, bearing in mind that the exception handler
is typically not in the procedure that throws the exception but in a calling
procedure. The best implementation depends on how frequently exceptions
are thrown.

If we assume that exceptions are infrequently thrown, the program should
be executed at close to full speed as long as it does not throw an exception, but
transfer of control to an exception handler need not be particularly fast when (and
if) the program does throw an exception. In this case an efficient implementation
is as follows:

(a) At a procedure call, mark the calling procedure’s activation frame to indi-
cate whether the procedure call is inside an exception-handling command.

(b) When exception e is thrown, pop unmarked activation frames off the stack
one by one. Then transfer control to the appropriate exception-handling
command. If the latter contains a handler for exception e, execute that
handler. If not, throw exception e again.

If we assume that exceptions are frequently thrown, transfer of control to the
exception handler should be reasonably fast, even if extra instructions are needed
to anticipate this eventuality. In this case, an efficient implementation is as follows:

(a) At the start of an exception-handling command, push the address of the
exception-handling code and the address of the topmost activation frame
on to a separate exception stack.

(b) At the end of an exception-handling command, pop a pair of addresses
off the exception stack.

(c) When exception e is thrown, note the exception-handling code and activa-
tion frame addresses at the top of the exception stack. Pop all activation
frames above the noted activation frame. Then transfer control to the
noted exception-handling code. If the latter contains a handler for excep-
tion e, execute that handler. If not, throw exception e again.

Summary
In this chapter:

• We have studied the effect of sequencers on the program’s control flow.

• We have studied jumps, seeing how they result in ‘‘spaghetti’’ code, and how jumps
out of procedures cause undue complications.

• We have studied escapes, including exits and returns, which support flexible single-
entry multi-exit control flows.

• We have studied exceptions, which are an effective technique for robust handling
of abnormal situations.

• We have seen how jumps, escapes, and exceptions can be implemented efficiently.

228 Chapter 9 Control flow

Further reading

BÖHM and JACOPINI (1966) proved that every flowchart
can be programmed entirely in terms of sequential com-
mands, if-commands, and while-commands. Their theorem
is only of theoretical interest, however, since the elimina-
tion of multi-entry and multi-exit control flows requires us
to introduce auxiliary boolean variables and/or to dupli-
cate commands. Since that is unnatural, the existence of
sequencers in programming languages is justified.

The dangers of jumps were exposed in a famous letter by
DIJKSTRA (1968b). An extended discussion of the use and
abuse of jumps may be found in KNUTH (1974).

A variety of loops with multiple exits were proposed by
ZAHN (1974).

The term sequencer was introduced by TENNENT (1981).
Tennent discusses the semantics of sequencers in terms of

continuations, a very powerful semantic concept beyond
the scope of this book. Tennent also proposed a sequencer
abstraction – an application of the Abstraction Principle –
but this proposal has not been taken up by any major
programming language.

A discussion of exceptions may be found in Chapter 12
of ICHBIAH (1979). This includes a demonstration that
exception handling can be implemented efficiently – with
negligible overheads on any program unless it actually
throws an exception.

Which (if any) exceptions a procedure might throw is an
important part of its observable behavior. JAVA methods
must have exception specifications, but in C++ function
definitions they are optional. A critique of C++ exception
specifications may be found in SUTTER (2002).

Exercises

Exercises for Section 9.1
9.1.1 Extend Figure 9.1 by drawing the flowcharts of: (a) a C, C++, or JAVA do-while

command; (b) a C, C++, or JAVA for-command; (c) a C, C++, or JAVA switch
command; (d) an ADA case command.

Exercises for Section 9.2
9.2.1 Consider the following code fragment (in C, C++, or JAVA):

p = 1; m = n; a = b;
while (m > 0) {

if (m % 2 != 0) p *= a;
m /= 2;
a *= a;

}

(a) Draw the corresponding flowchart. Outline the subcharts corresponding
to the while-command, the if-command, and the bracketed sequential
command. Note that these subcharts are properly nested.

(b) Rewrite the code fragment entirely in terms of conditional and uncondi-
tional jumps. Explain why this makes the code fragment harder to read.

*9.2.2 Some programming languages count labels as values.
(a) ALGOL60 allows labels to be passed as arguments. Explain why use of this

feature can make a program hard to understand.

(b) PL/I counts labels as first-class values, which can be stored as well as passed
as arguments. Explain why use of this feature can make a program even
harder to understand.

(c) Show that the effect of passing a label as an argument can be achieved
(indirectly) in C.

Exercises 229

Exercises for Section 9.3
9.3.1 Consider the hypothetical form of loop, ‘‘do C1 while (E) C2’’, which was

mentioned in Section 3.7.7.
(a) Draw the hypothetical loop’s flowchart. Compare it with the ADA loop

whose flowchart is in Figure 9.3.

(b) We would classify the hypothetical loop as a single-entry single-exit control
flow, but the ADA loop as a single-entry multi-exit control flow. What is the
distinction?

9.3.2 Modify the ADA code of Example 9.3 and the JAVA code of Example 9.4 to avoid
using any sequencer. You will need to replace the for-loops by while-loops. Is
your code more or less readable than the original code?

9.3.3 Modify the ADA code of Example 9.3 and the JAVA code of Example 9.4 to
construct the default date (January 1) only if the search fails.

9.3.4 C, C++, and JAVA have a continue sequencer, which terminates the current
iteration of the enclosing loop, thus causing the next iteration (if any) to be
started immediately. Show that the continue sequencer can be understood in
terms of an all-purpose escape.

Exercises for Section 9.4
9.4.1 Rewrite the ADA program of Example 9.6 or the JAVA program of Example 9.7

using status flags rather than exceptions. Each status flag is to be a copy-out
parameter or function result of type {ok, end-error, data-error}. Compare and
contrast the status-flag and exception-handling versions of the program.

9.4.2 Consider the ADA package The_Dictionary of Example 6.3. Make this
package declare an exception, which is to be thrown on attempting to add a
word to a full dictionary.

9.4.3 Consider your text input/output package of Exercise 6.1.2. Make your package
declare suitable exceptions, which are to be thrown on attempting to read past
end-of-file, to read ill-formed input data, etc.

*9.4.4 C++’s input/output library classes use status flags. Redesign them to use
exceptions instead.

Chapter 10

Concurrency

The constructs introduced in the preceding chapters are sufficient to write sequential
programs in which no more than one thing happens at any time. This property is inherent
in the way control passes in sequence from command to command, each completing before
the next one starts. Concurrent programs are able to carry out more than one operation at
a time. Concurrent programming in high-level languages dates back to PL/1 and ALGOL68,
but did not become commonplace until relatively recently, with languages such as ADA and
JAVA.

This chapter removes our former restriction to sequential program structures and
considers the language design concepts needed for concurrent programming. In particular,
we shall study:

• the semantic differences between sequential and concurrent programming;

• the problematic ways in which basic programming constructs interact with each
other in the presence of concurrency;

• low-level primitives that introduce and control concurrency;

• high-level control abstractions in modern, concurrent languages.

10.1 Why concurrency?
To be honest, concurrency is a nuisance. It makes program design more difficult,
and it greatly reduces the effectiveness of testing. Nevertheless, there are important
reasons for including concurrency in our repertoire of programming language
design concepts.

The first of these reasons, and historically the most important one, is the
quest for speed. An early milestone in computer architecture was the provision of
hardware to let a computer execute input/output operations and CPU operations
simultaneously. This immediately introduced concurrent programming. For best
performance, computation had to be optimally overlapped with input and output.
This was far from easy. So computer manufacturers introduced operating systems
to automate the handling of concurrency. Operating systems are the archetypal
concurrent programs, and the need to overlap computation with input/output still
offers an important motivation for concurrent programming.

By running two or more jobs concurrently, multiprogramming systems try
to make good use of resources that would otherwise be left idle. When a job is
held up, waiting for the end of an input/output operation that cannot be fully
overlapped, a multiprogramming system passes control of the CPU to a lower-
priority job that is ready to run. At the end of the awaited input/output operation,

231

232 Chapter 10 Concurrency

the low-priority job is interrupted and the high-priority job is resumed. If the speed
of the high-priority job is limited by input/output and the speed of the low-priority
job is limited by the CPU, they run synergistically, using both input/output devices
and CPU to good effect.

Multiaccess, or server, systems extend this principle, allowing many jobs to be
run, each on behalf of a remote user. The demand from many concurrent users
may easily exceed the capacity of one CPU. Multiprocessor systems deal with this
by providing two or more CPUs, operating simultaneously on a common workload
in shared storage.

Distributed systems consist of several computers that not only operate inde-
pendently but can also intercommunicate efficiently. These have the potential
for both higher (aggregate) performance and greater reliability than centralized
systems based on similar hardware.

As CPU speeds begin to approach basic technological limits, further gains in
performance can be looked for only in the better exploitation of concurrency. In
that sense, concurrent programming is the future of all programming.

The second reason for including concurrency in programming languages is the
need to write programs that faithfully model concurrent aspects of the real world.
For example, simulation is a field in which concurrent programming has a long
history. This takes concurrency out of the narrow domain of operating systems
and makes it an important topic for many application programmers.

The third reason for interest in concurrency is the development of new, and
more highly concurrent, computer architectures.

The least radical of these ideas gives a single CPU the ability to run more than
one program at a time. It switches from one program to another (under hardware
control) when it would otherwise be held up, waiting for access to main storage.
(Main storage access is typically much slower than the execution time of a typical
instruction.) In effect, this simulates a multiprocessor computer in a single CPU.

Many other architectures inspired by concurrency have been tried, but none
of them has had enough success to enter the mainstream. They may yet have
their day.

• Array processors provide many processing elements that operate simul-
taneously on different parts of the same data structure. By this means
high performance can be achieved on suitable tasks – essentially, those for
which the data fall naturally into rectangular arrays. Problems in linear
algebra, which arise in science, engineering, and economics, are well suited
to array processors.

• Dataflow computers embody an approach in which operations wait until
their operands (perhaps the results of earlier operations) become avail-
able. They are aimed at extracting the maximum concurrency from the
evaluation of expressions and may be especially suitable for functional
programming languages.

• Connectionism, also known as parallel distributed processing, is a funda-
mentally different approach based on the modeling of neural networks in
living brains. Some think that this is the way to realize the dream of artificial
intelligence.

10.2 Programs and processes 233

The study of concurrent programming aims to provide a framework that would
unify all of these developments. It must be admitted that this goal is still remote.

Well-designed sequential programs are reasonably understandable; their com-
plexity grows in proportion to their size. This is possible because sequential
programs have important properties that make them, more or less, intellectu-
ally manageable. As we shall see, concurrent programs do not generally share
these properties.

10.2 Programs and processes

A sequential process is a totally ordered set of steps, each step being a change of
state in some component of a computing system. Their total ordering is defined in
the sense that, given any two steps, it is always possible to say which is the earlier.
A sequential program specifies the possible state changes of a sequential process,
which take place in an order determined by the program’s control structures. A
concurrent program specifies the possible state changes of two or more sequential
processes. No ordering is naturally defined between the state changes of one of
these processes and the state changes of any of the others. Therefore, they are
said to execute concurrently, and they may even execute simultaneously.

An example of a sequential process is the execution of a program written
in a simple language such as C. The state changes constituting such a process
are the results of executing assignment and input/output commands that update
the variables of the program. These actions are ordered by the sequencing rules
of the language, which define how control flows from command to command.
Note that, because of the total ordering, we can associate the state changes of a
sequential process with the passage of real (physical) time, although no specific
rate of progress is implied.

If we consider the execution of a machine-code program the same holds good,
except that the sequencing rules are defined by the computer architecture, and
that not only storage but also registers (such as the program counter) are variables
of the state.

To be completely honest, state changes at the most basic level might not
be totally ordered in time. For example, during a store instruction, the bits of
the source operand may be copied concurrently into the destination operand.
However, it is not possible to examine the bits of the destination operand inde-
pendently, to monitor the order in which they change. As far as the programmer
is concerned, they all change at once. This departure from strict sequentiality is
therefore irrelevant, because it is not observable.

For the sake of speed, some realizations of a computer architecture may allow
even greater departures from strictly sequential execution. For example, a CPU
may be able to overlap three instructions, one in the instruction-fetch phase, one
in the instruction-decode phase, and one in the instruction-execute phase. If this
has no observable side effects, the departure from sequentiality again is irrelevant
to the programmer. Computer architects include interlocks in the hardware to
ensure that overlapped execution does not affect the outcome. For example, if
two instructions are in progress at the same time, and the second depends on a

234 Chapter 10 Concurrency

result of the first, the computer will delay the second instruction to ensure that the
result becomes available before any attempt is made to use it.

Similarly, a high-level programming language might allow some freedom as to
the ordering of operations within a program. In a language where expressions have
no side effects, for example, two subexpressions may be evaluated in either order,
or collaterally, or even concurrently. We can preserve the notion of a sequential
process by looking at a large enough unit of action, such as the evaluation of a
complete expression, or the execution of a complete command.

10.3 Problems with concurrency
We now look at ways in which concurrent programs differ from sequen-
tial programs.

10.3.1 Nondeterminism

Correct sequential programs are deterministic. A deterministic program (see
Section 3.7.5) follows a sequence of steps that is completely reproducible in
multiple executions with the same input. Determinism is a very important property,
since it makes it feasible to verify programs by testing.

A few constructs, such as collateral commands (Section 3.7.5) and nondeter-
ministic conditional commands (Section 3.7.6), introduce some unpredictability
into sequential programs – we cannot tell in advance exactly which sequence of
steps they will take. The compiler is free to decide the order of execution, so a
given program might behave differently under different compilers. In practice,
however, a particular compiler will fix the order of execution. The program’s
behavior is still reproducible, even if not portable.

A concurrent program, on the other hand, is likely to be genuinely nondeter-
ministic, even under a specific compiler. That is to say, we cannot predict either
the sequence of steps that it takes or its final outcome.

Usually we attempt to write programs that are effectively deterministic
(Section 3.7.5), so that their outcomes are predictable. But an incorrect con-
current program may behave as expected most of the time, deviating from its
normal behavior intermittently and irreproducibly. Such concurrent program-
ming errors are among the most difficult to diagnose. The search for ways to
prevent them motivates much of what follows.

10.3.2 Speed dependence

A sequential program is speed-independent because its correctness does not
depend on the rate at which it is executed. This is a property so basic that we tend
to take it for granted. Among other benefits, it allows computer manufacturers to
produce a range of architecturally compatible machines that differ in speed and
cost. The same software runs correctly on all models in the range, thanks to speed
independence.

The outcome of a concurrent program is speed-dependent, in general, as it may
depend on the relative speeds at which its constituent sequential processes run.

10.3 Problems with concurrency 235

Consequently, small random fluctuations in the speeds of CPUs and input/output
devices may lead to nondeterminism.

Where absolute speeds must be taken into account – where the computer must
synchronize its behavior with external physical equipment such as sensors and
servomechanisms – we have a real-time program.

When outcomes are speed-dependent, a race condition is said to exist.

EXAMPLE 10.1 Race conditions
Suppose that two processes, P and Q, update the same String variable s, as follows:

In P: s := "ABCD";

In Q: s := "EFGH";

The programmer reasons as follows. One outcome is that P completes its assignment to s
before Q starts on its assignment, so that the final value of s is ‘‘EFGH’’. If things happen
the other way about, the outcome is that s takes the value ‘‘ABCD’’.

But other outcomes are possible. Suppose that P and Q update s one character at
a time. Then s could end up with any of the sixteen values ‘‘ABCD’’, ‘‘ABCH’’, . . . ,
‘‘EFGD’’, ‘‘EFGH’’; and there could be a different outcome each time P races Q in
this way!

Example 10.1 shows that just two processes sharing access to a single variable
can produce many different outcomes, and that the outcome on any one occasion
is not predictable. Think of the chaos that could result from multiple uncontrolled
accesses by dozens of processes to hundreds of variables! This is the nightmare
that the discipline of concurrent programming aims to prevent.

Some help is provided in cases like this by the ability to declare that a variable
is atomic; i.e., that it must be inspected and updated as a whole, and not piecemeal.
In JAVA, object references and variables of primitive types other than long and
double are always atomic. In ADA, any variable v can be declared atomic by
‘‘pragma atomic(v);’’, although the compiler is free to reject such a declaration
if it cannot be feasibly implemented on the target architecture. The components of
an ADA array a can be made atomic by: ‘‘pragma atomic_components(a);’’.

If the declaration ‘‘pragma atomic(s);’’ for the variable in Example 10.1
were accepted, that would reduce the number of outcomes from sixteen to just
two: a final value of ‘‘ABCD’’ and a final value of ‘‘EFGH’’.

However, this is far from a complete solution to the general problem.

EXAMPLE 10.2 A race condition despite atomicity
Suppose that two processes, P and Q, update the same Integer variable i, which is
declared to be atomic and to have initial value 0, thus:

In P: i := i + 1;

In Q: i := 2 * i;

236 Chapter 10 Concurrency

The programmer reasons as follows. One outcome is that P gains access to i before Q, so
that i is first incremented, then multiplied, with result 2. Another outcome is that Q gains
access to i before P, so that i is first multiplied, then incremented, with result 1. Therefore
i must finally contain either 1 or 2.

But there is a third possible outcome. Bear in mind that most computer architectures
implement an assignment by firstly evaluating the expression in a CPU register, and then
copying the result from the register into the destination cell. Now consider this train of
events: P loads i into a register; Q loads i into a register; P adds 1 and yields 1; Q multiplies
by 2 and yields 0; P stores its register into i; Q stores its register into i. The result of this
interleaving of P and Q is to leave i with the value 0!

10.3.3 Deadlock

Deadlock is a situation in which two or more processes are unable to make any
further progress because of their mutually incompatible demands for resources.
Deadlock can occur if, and only if, the following conditions all hold.

• Mutual exclusion: A process may be given exclusive access to resources.

For example, if a process were reading data from a keyboard, it would make
no sense to allow another process to use the keyboard at the same time.

• Incremental acquisition: A process continues to hold previously acquired
resources while waiting for a new resource demand to be satisfied.

For example, if a process must wait for a DVD drive to be allocated, it would
be senseless to take away a scanner that had previously been acquired in
order to copy data from it on to the DVD.

• No preemption: Resources cannot be removed from a process until it
voluntarily relinquishes them.

For example, if a process has opened a file for writing, it must be allowed
to keep it until it has completed. Forcibly removing the file would be
tantamount to killing the process, and might leave the contents of the file in
a corrupted state.

• Circular waiting: There may be a cycle of resources and processes in which
each process is awaiting resources that are held by the next process in
the cycle.

For example, process P holds a DVD drive; the DVD drive is needed by
process Q; Q holds a scanner; and the scanner is needed by process P.

So: P cannot proceed until it gets the scanner; the scanner will not become
available until Q completes and frees it; Q will not complete until after
it gets the DVD; the DVD will not become available until P completes
and frees it; P will not complete until after it gets the scanner; and so on
ad infinitum.

There are several approaches to the problem of deadlock.
The simplest approach is to ignore it and hope that it will not happen often

enough to have a serious effect on reliability. When deadlock does strike, the

10.3 Problems with concurrency 237

system’s users must deal with it as best they can (probably by restarting the
whole system).

A more principled approach is to allow deadlocks to take place, but undertake
to detect them and to recover from them automatically, so that the system as a
whole keeps running. This involves killing some of the processes involved, and
should be done in such a way as to minimize the cost of the work lost. In
an embedded system, especially, this might not be a feasible strategy, for the
processes to be killed might be critical to its mission. An alternative is to roll
back the execution of some processes to a point before the problem arose. This
is done by restoring the processes to the state they were in when it was recorded
at an earlier checkpoint. Execution can then be resumed, but this time suspending
the rolled-back processes until the danger has passed. Again, this strategy is not
always workable.

A third approach is to prevent deadlocks by removing one or more of the
preconditions. As we have seen, some resources must be granted for exclusive use,
and since forcible removal of resources may be equivalent to killing the process
involved, just two possibilities remain:

(a) Eliminate the incremental acquisition condition by requiring every pro-
cess to request, at once, all the resources it will need.

(b) Eliminate the circular waiting condition by imposing a total ordering on
resources and insisting that they be requested in that order.

Method (a) can lead to poor utilization of resources if processes are forced to
acquire them prematurely. Method (b) may be better in this respect, if the total
ordering is well chosen, but it requires considerable programming discipline, and
cannot be appropriate for good utilization in all cases.

A fourth possible approach is to make the schedulers of the system actively
avoid deadlock by timing the allocation of requested resources, in such a way that
deadlock cannot occur. The maximum resource requirement must be declared
to the schedulers in advance, but need not be reserved at once. The banker’s
algorithm (to be discussed in Section 13.3.4) is such a scheduler.

10.3.4 Starvation

A concurrent program has the liveness property if it is guaranteed that every
process will make some progress over a sufficiently long (but finite) span of
time. To meet this condition the system must be (a) free of deadlock, and
(b) scheduled fairly.

Scheduling is the allocation of resources to processes over time, aiming to
further some objective, such as good response time or high CPU utilization. Fair
scheduling ensures that no process needing a resource is indefinitely prevented
from obtaining it by the demands of competing processes.

An example of a fair scheduling rule is to make the processes that need a
resource queue for it, in first-come first-served order. This guarantees that, if the
resource becomes available often enough, a process needing it will eventually
make its way to the head of the queue and so gain access. An example of an unfair

238 Chapter 10 Concurrency

rule is one that gives preferential access to high-priority processes, for it might
indefinitely delay a low-priority process should there always be a high-priority
demand waiting to be serviced. The term starvation is used when a process is
indefinitely prevented from running by unfair scheduling.

10.4 Process interactions
Section 3.7.4 introduced the notation ‘‘B;C’’ for the sequential composition of
commands B and C, and Section 3.7.5 gave the notation ‘‘B,C’’ for their collateral
composition. The difference is that in sequential composition all of the steps of B
must be completed before any of the steps of C are begun; whereas, in collateral
composition, the steps of B and C may be interleaved arbitrarily.

However, neither notation admits the possibility that the commands B and C
may be executed simultaneously. A parallel command specifies that two (or more)
commands may be executed concurrently. We write ‘‘B || C’’ to mean that B and
C may be executed simultaneously or interleaved arbitrarily. (The symbol ‘‘||’’
is used to suggest parallelism.) Note that ‘‘B || C’’ does not require simultaneity,
but does permit it. Concurrent composition also permits collateral execution and
sequential execution, each a special case of reduced concurrency.

Concurrent programs are distinguished from sequential programs, not only by
the presence of concurrent composition, but also by the presence of operations that
cause interactions between processes. We now consider the kinds of interaction
that may take place between commands that are composed concurrently.

10.4.1 Independent processes
Commands B and C are independent if no step of B can affect the behavior of any
component step of C, and vice versa. If B and C are independent, it follows that
any step of B may be executed either before, or after, or at the same time as, any
step of C. In particular, all the steps of B can be executed either before or after
all the steps of C, so ‘‘B;C’’ and ‘‘C;B’’ are both equivalent to ‘‘B || C’’ (and so
is ‘‘B,C’’). It follows that the concurrent composition of independent processes is
deterministic.

This is an important result, because it provides the basis for multiaccess
server systems that run many jobs by multiprogramming one or more processors.
Provided only that the jobs are independent, the users of such a system need take
no special precautions arising from the concurrency.

Unfortunately, it is undecidable, in general, whether commands B and C
actually are independent. However, a sufficient condition is that neither command
can update a variable that the other inspects or updates. This criterion has the
advantage that it can be (at least partially) checked at compile-time, so long as
there is no aliasing. However, we have to define variable in its widest sense, as any
component of the system whose state may be changed.

10.4.2 Competing processes
Commands B and C compete if each needs exclusive access to the same resource
r for some of its steps. Let B be the sequence ‘‘B1; B2; B3’’, and let C be the

10.4 Process interactions 239

sequence ‘‘C1; C2; C3’’. We assume that B1, C1, B3, and C3 are independent, none
of them accessing r. However, B2 and C2 must not take place simultaneously nor
overlap in time, for both require exclusive access to r. They are called critical
sections with respect to r.

‘‘B || C’’ may be executed in either of the following ways:

. . .; B2; . . .; C2; . . .

or:

. . .; C2; . . .; B2; . . .

but not:

. . .; B2 || C2; . . .

So ‘‘B || C’’ has two possible outcomes, which are exactly the outcomes of the
sequences ‘‘B ; C’’ and ‘‘C ; B’’ respectively. If the effects of the critical sections
depend on the state of r when it is acquired, and if they change that state, then
‘‘B || C’’ is nondeterministic in general – its outcome depends on the relative
speeds at which B and C are executed.

A concurrent program is said to have the safety property if its critical sections
never overlap in time. (It is safe in the sense that all of the commands it applies to
a resource will have their normal, sequential, effect.)

EXAMPLE 10.3 Nondeterminism despite mutual exclusion

Suppose that two processes, P and Q, update the same Integer variable i, assumed to
be atomic and to have initial value 0. Assume also that arrangements have been made for
P and Q to mutually exclude each other’s assignment command in its entirety:

In P: i := i + 1;

In Q: i := 2 * i;

If P executes its assignment before Q, the final value of i is 2. If Q executes its assignment
before P, the final value of i is 1. There is a race between P and Q, but these are its only
possible outcomes.

Example 10.3 illustrates bounded nondeterminism: the outcome is not pre-
dictable, but belongs to a known, fixed set of outcomes, all of which may be
equally acceptable.

10.4.3 Communicating processes

Again, let B be the sequence ‘‘B1; B2; B3’’, and let C be the sequence ‘‘C1; C2; C3’’.
There is communication from B to C if B2 produces data that C2 consumes, so
that B2 must complete before C2 starts. In this situation, ‘‘B || C’’ has the same
outcome as ‘‘B ; C’’.

240 Chapter 10 Concurrency

It is useful to extend this to a cascade of processes, each consuming the output
of the preceding process and producing input for the next. In software, as in
hardware, such a cascade is commonly known as a pipeline.

EXAMPLE 10.4 UNIX and MS-DOS pipelines

The UNIX operating system’s command language provides the notation ‘‘B | C’’. This means
that the commands B and C are executed concurrently, with the output from command
B becoming the input to C. The notation can easily be extended to a longer pipeline,
‘‘A | . . . | Z’’. In this way, commands that were written independently may be composed,
contributing much to the power of the command language.

The MS-DOS operating system’s command language also provided this notation, but
did not support concurrent execution. It therefore implemented the command ‘‘B | C’’ as
if the user had issued the sequence of two commands ‘‘B > f ; C < f ’’, where B writes its
output (in its entirety) to a temporary file f , then C runs and reads its input from that
temporary file.

Processes B and C intercommunicate if there is communication in both direc-
tions. This makes the possible outcomes of ‘‘B || C’’ very much more numerous.
We are therefore forced to impose a severe discipline on the forms of intercom-
munication permitted, if we want to preserve the intellectual manageability of
our programs.

The designers of concurrent programming languages have invented many con-
cepts and notations for concurrency. The choice of concurrent control structures is
therefore somewhat controversial. The remainder of this chapter focuses on con-
cepts in the mainstream of concurrent programming, including both concurrency
primitives (Section 10.5) and high-level constructs (Section 10.6).

10.5 Concurrency primitives

In this section we consider a set of low-level operations that affect concurrency,
by creating it, by destroying it, or by controlling it. An understanding of these
operations is valuable because it provides a basis for understanding the higher-
level constructs of concurrent programming languages, and because it shows how
these higher-level constructs might be implemented.

But first, a clarification about our use of the term process. Up to now, we have
used it to mean nothing more specific than a flow of control through a program,
but the word carries more baggage than that. Let us now unpack it.

A conventional, heavyweight, process is the execution of a program. To
support that execution, an operating system normally provides an address space,
an allocation of main storage, and a share of the CPU time, as well as access
to files, input/output devices, networks, and so on. This amounts to a substantial
overhead, so that the creation of a process takes a non-trivial amount of the
computer’s resources, and context switching the computer from one process to

10.5 Concurrency primitives 241

another takes a significant time. Implementing a concurrent system by means of
many processes therefore incurs a penalty: poor execution efficiency.

A thread is a lightweight alternative. Like a heavyweight process, a thread
is a flow of control through a program, but it does not possess independent
computational resources. Instead, a thread exists within a process and depends on
the resources of the process. Switching the computer from thread to thread is a
matter of swapping the contents of its working registers. The rest of the execution
environment remains the same, so thread-to-thread context switching can be very
rapid. (The thread concept originated in the real-time world, where the term task
is more often used. True to their origins, ADA uses ‘‘task’’ terminology while JAVA

goes with ‘‘thread’’.)
In what follows we are interested primarily in the semantics of concurrent

programming concepts, and only secondarily in their pragmatic qualities (such as
efficiency). For that reason, we will use the term process neutrally to mean a flow
of control, when what is being said applies equally well to heavyweight processes
and to lightweight threads (as it usually does).

10.5.1 Process creation and control

The primitive operations on processes are the following:

• create a new, dormant, child process;
• load the program code to be executed by a process;
• start the execution of a process;
• suspend the execution of a process (temporarily);
• resume the execution of a (suspended) process;
• let a process stop itself at the end of its execution;
• let its creator wait for the process to stop;
• destroy a stopped process, freeing any resources allocated to it.

It is often convenient to combine create, load, and start into one
operation, usually called fork. When this is done, wait and destroy may be
combined into a single operation, join. The fork operation is often defined so
that the child process’s program is an exact copy of its parent’s. There must be
a means by which the parent process and its child can subsequently be made to
follow different paths through this program. One method is to give a code address
as a parameter to fork, so that the parent continues at the instruction following
the fork, whereas the child continues at the given address. An alternative method
that is more convenient for use in a high-level language is employed in the UNIX

operating system. The UNIX fork operation is a parameterless function that
returns an integer. In the parent process this integer is an identification number
for the newly created child process, but in the child process it is zero.

These primitives are quite general, letting us create any desired system of
concurrently active processes. In this they resemble jumps, which allow us to set up
any sequential control flow. They have a similar disadvantage: a scan of the static
program text does not easily reveal the control flow, which develops dynamically.

242 Chapter 10 Concurrency

EXAMPLE 10.5 Forking a new process in UNIX

A common fragment of a UNIX concurrent program is the following:

child_id := fork;
if child_id = 0 then

perform the child process’s program code;
else

continue with the parent process’s program code;
end if;

Here fork is a parameterless function that returns either the child process’s identification
number or zero.

So much for process creation and termination. We also need operations to
enable orderly competition and communication. Initially we will present these in
rather an abstract manner; later we will describe various alternative realizations.

To make the critical sections of competing processes disjoint in time, we need
primitive operations for mutual exclusion. These are:

• acquire(r), to gain exclusive access to resource r;

• relinquish(r), to give up exclusive access to resource r.

If resource r is already allocated, acquire(r) blocks the process that calls
it, i.e., holds it up so that (for the time being) the acquire operation makes
no progress. When relinquish(r) is called, r is made free for reallocation.
Processes waiting to gain control of r are unblocked and rescheduled. One of them
will be able to complete the call of its acquire(r) operation and so get exclusive
access to r.

A similar pair of operations provides inter-process communication. The
most basic communication operation sends the smallest possible amount of
information – the fact that some condition c now exists. Typical conditions that
a receiver might be interested in are, for instance ‘‘an input/output operation
has completed’’, or ‘‘CPU 2 has rebooted’’. We can view conditions as values
of an abstract type, in which each value represents a different condition to be
communicated. The primitive operations for communication are:

• transmit(c), called by a sender to notify an occurrence of the condition c;

• receive(c), called by a receiver to wait for an occurrence of c.

An important issue in the design of communication primitives is how selective
the transmission is. Some implementations of transmit communicate with a
specific receiving process. Others are ‘‘broadcast’’ operations that make the
transmission available to any interested receiver. Another issue concerns what is
to happen when no process is waiting to receive at the time of transmission. In
some designs the transmission is lost. In others the transmission is stored until a
receive operation is performed.

10.5 Concurrency primitives 243

10.5.2 Interrupts

The end of a concurrent input/output operation is a relatively infrequent condition
to which the CPU should respond quickly. It would not normally be efficient to
test repeatedly for this, so, when parallel input/output transfers were introduced,
the end of each input/output operation was made to cause an interrupt. That is
to say, a signal from the input/output hardware forces an asynchronous call to
a routine that will deal with the new situation. So an interrupt is, in effect, an
invisible procedure call inserted at a random point in the program!

If we view the activity of an input/output device as an external process, we
can treat the interrupt as a mechanism for inter-process communication. This
is extended, in many operating systems, to a facility whereby one (internal)
process can interrupt another, a well-known example being the UNIX kill system
call. Using this mechanism for reliable inter-process communication is every
bit as tricky as the idea of an invisible, random, procedure call might suggest.
Unfortunately, it is one of the most-used mechanisms for communication between
application code and graphical user interfaces.

In many computer systems there is only one CPU, and concurrency is
supported by switching the CPU rapidly from one process to another (context
switching). This happens whenever a blocked process, of higher priority than the
process currently running, becomes unblocked and ready to run. A process can
therefore give itself exclusive use of the CPU by ensuring that no context switch is
possible. Since context switches are driven by interrupts, it suffices to ensure that
no interrupt can occur. How this is done depends on the computer architecture,
but it is usually possible to defer acting on interrupt requests until a later time.
A process that gains exclusive control of the CPU, by this means, prevents every
other process from accessing any resource whatever. This gives it exclusive access
to the whole system, including the one resource it actually needs. So, deferring
interrupts implements the acquire operation for any resource, and restoring
them implements relinquish.

Acquiring all resources in order to use just one of them is a heavy-handed way
of gaining exclusivity, and has disadvantages. If a computer inhibits interrupts too
often, or for too long, it will be unresponsive. Many computer architectures classify
interrupts into several priority levels, depending on the urgency of communication
with the external device. This makes it possible to inhibit only those interrupts
that may lead to conflict over a particular resource. Designing software to exploit
such an interrupt system effectively requires considerable expertise and finesse.

10.5.3 Spin locks and wait-free algorithms

On a multiprocessor, several processes may be executing simultaneously. Manip-
ulating the interrupt system of such a machine does not provide a means of mutual
exclusion, for preventing one CPU from responding to interrupts does nothing to
exclude access to a shared resource by processes running on the other CPUs.

In these circumstances a different mechanism must be used. A spin lock is a
‘‘busy-waiting loop’’, in which a process waits for access to a shared resource by
repeatedly testing a flag that indicates whether the resource is free.

244 Chapter 10 Concurrency

Spin-lock algorithms depend upon the fair serialization of concurrent load and
store operations by the CPU/store interface. That is, they assume that accesses
to the same storage location initiated concurrently are performed sequentially,
and that no process is starved of storage cycles. Given these properties it is
possible to program fair spin locks – algorithms that implement acquire(r) and
relinquish(r) operations without starving any competing process of access to
resource r.

This is no small feat, as we shall see. It was first achieved in Dekker’s algorithm,
and presented by Dijkstra (1968a) with an illuminating preamble, in the form of a
series of incorrect attempts that illustrate the subtle problems that arise. Here we
shall follow that development. We assume that there are two processes, numbered
1 and 2, and that each is executing a program of the following form, with a cyclic
pattern of accesses to resource r (self is the number of the executing process):

loop
noncritical code for process self;
acquire(r);
critical section for process self;
relinquish(r);
exit when process self is finished;

end loop;

Theacquire(r) operation, although stated as an action on r, actually focuses
on locking out the competing process.

The first idea is to use a variable turn, initialized to either 1 or 2, that indicates
which of the two processes has permission to enter its critical section. Each process
implements the exclusion primitives as follows, where other is 1 when self is 2, and
vice versa:

acquire(r) ≡
while turn = other loop null; end loop;

relinquish(r) ≡
turn := other;

This certainly guarantees that only one of the processes can enter its critical
section. However, it is too rigid, because they are forced to enter their critical
sections alternately. Should either be held up, or stop, the other will be locked out
of its critical section after at most one more cycle.

A second attempt uses an array claimed, with one boolean component for
each process, indicating whether that process has claimed the right to enter its
critical section. Both components of claimed are initialized to false. Each process
self implements the exclusion primitives as follows:

acquire(r) ≡
while claimed(other) loop null; end loop;
claimed(self) := true;

relinquish(r) ≡
claimed(self) := false;

This fails if process 1 (say) is held up between finding claimed(2) to be false and
setting claimed(1) to true. A ‘‘window of opportunity’’ then opens for process

10.5 Concurrency primitives 245

2 to enter its loop and discover claimed(1) to be still false. Both processes will
now set their components of claimed to true and go on to enter their critical
sections concurrently. Thus mutual exclusion is not guaranteed.

We might attempt to rectify this fault as follows:

acquire(r) ≡
claimed(self) := true;
while claimed(other) loop null; end loop;

But now a problem arises if process 1 (say) is held up after setting claimed(1)
to true, but before entering the loop. This allows process 2 to do the same.
Now both processes will discover that the other is claiming the shared resource.
Consequently both must loop indefinitely and neither can ever enter its criti-
cal section.

To correct this fault we allow each process, while looping, to withdraw its
claim temporarily. This gives the other process an opportunity to go ahead:

acquire(r) ≡
claimed(self) := true;
while claimed(other) loop
claimed(self) := false;
while claimed(other) loop null; end loop;
claimed(self) := true;

end loop;

This idea works (albeit rather inefficiently) in most circumstances, but it has one
fatal flaw. If both processes run at exactly the same speed, and perfectly in phase,
they may execute the code in lock step, in which case neither will ever discover
that the other process has offered it a chance to proceed. This attempt fails, by
being speed-dependent.

Dekker’s algorithm combines the best features of these four failed attempts.
It uses both turn and claimed, initialized as before:

acquire(r) ≡
claimed(self) := true;
while claimed(other) loop
if turn = other then
claimed(self) := false;
while turn = other loop null; end loop;
claimed(self) := true;

end if;
end loop;

relinquish(r) ≡
turn := other;
claimed(self) := false;

This overcomes the previous objection: the if-command uses turn as a tie-
breaker, forcing the processes out of phase, so that one of them must find itself
able to proceed.

Dekker’s algorithm is rather complex, and is hard to generalize to more
than two processes while preserving fairness. Peterson’s algorithm is free of
these defects:

246 Chapter 10 Concurrency

acquire(r) ≡
claimed(self) := true;
turn := other;
while claimed(other) and (turn = other)
loop null; end loop;

relinquish(r) ≡
claimed(self) := false;

That it took almost twenty years to discover so simple an algorithm speaks volumes
about the difficulty we find in understanding concurrent systems.

There is a serious problem with all of the spin-lock code above. Many compilers
optimize accesses to a variable inside a loop by pre-loading the variable into a
register, and accessing the register instead of the variable (because a register can be
accessed much faster than a storage cell). If turn in Dekker’s algorithm is treated
in this way, the innermost loop would never exit, because a relinquishing process
would update the storage cell, while the acquiring process uselessly re-examined
an unchanging value in a register!

To prevent this, it is necessary to tell the compiler that a variable may
be updated by more than one process. This is done by declaring it to be
volatile. The compiler then ensures that inspections and updates are always
directed to its storage cell. In C, C++, and JAVA, the volatile qualifier may
be included in a type. In JAVA, long and double variables declared volatile are
also thereby made atomic (variables of other types are always atomic, whether
volatile or not). However, the volatility of a pointer to an object does not extend
to the object itself. If variable components of the object need to be volatile,
they must themselves be declared as such. Similarly, the volatility of an array
does not extend to the array’s components, and there is no way in JAVA to
make them volatile. In ADA, a variable declared to be atomic is automatically
volatile. A variable v that cannot be atomic can be made volatile by ‘‘pragma
volatile(v);’’. The components of an array a can be made volatile by ‘‘pragma
volatile_components(a);’’.

Spin locks are wasteful of CPU time. Unless the waiting time is short, it
would be better for an acquiring process to give up the CPU each time around
the loop, and wait until there is a better chance of being able to continue.
But this is not always possible. Consider the CPU scheduler’s own data struc-
tures, which must be modified under mutual exclusion. To avoid an infinite
regress, spin locks used by the scheduler cannot contain calls on scheduler oper-
ations (such as those a process uses to make itself wait). These non-blocking
spin locks may be significant bottlenecks, limiting the performance of a highly
concurrent system.

A way of reducing this overhead is to use wait-free algorithms, which have
been proven correct, despite the fact that they apply no locking. Some of these
algorithms need hardware support, in the form of special instructions that atom-
ically update more than one storage cell. But Simpson’s algorithm (1990) creates
an atomic shared variable of type T (in effect), using just four atomic flag variables
and an array of four volatile components of type T. The remarkable thing about
Simpson’s algorithm is that it neither blocks nor spins.

10.5 Concurrency primitives 247

EXAMPLE 10.6 Simpson’s algorithm

The following code implements an atomic shared variable of arbitrary type T, equipped
with update and inspect operations, using a wait-free algorithm.

data_bank : array (Boolean, Boolean) of T;
pragma volatile_components(data_bank);

data_col : array (Boolean) of Boolean
:= (false, false);

pragma atomic_components(data_col);

last_row_inspected : Boolean := false;
pragma atomic(last_row_inspected);

last_row_updated : Boolean := false;
pragma atomic(last_row_updated);

procedure update (item : in T) is
row : constant Boolean := not last_row_inspected;
col : constant Boolean := not last_row_updated;

begin
data_bank(row, col) := item;
data_col(row) := col;
last_row_updated := row;

end update;

function inspect return T is
row : constant Boolean := last_row_updated;
col : Boolean;

begin
last_row_inspected := row;
col := data_col(row);
return data_bank(row, col);

end inspect;

Now for the skeleton in the closet! A basic assumption of most shared-
variable algorithms is that an update to a variable v by one process is immediately
observable by any other process that uses v. A necessary condition for this is that
v be declared volatile, so that each access goes to v’s storage cell, and not a copy
in an internal CPU register. But that is not sufficient. The great disparity in speed
between CPU and storage means that many computer designs rely on complicated
buffering schemes to reduce the delay on access to storage. These schemes keep
copies of data in transit between a CPU and storage. For example, it is common
to keep a per-CPU copy of recently accessed data in a cache. Caching is normally
transparent to a single process, but can cause major difficulties with variables
shared between two or more processes.

Consider a multiprocessor computer that uses write-back caches, so that an
update to v in one CPU’s cache does not reach v’s cell in common storage until
its cache entry is re-allocated to another variable. An update to v by CPU A need
not be observable to CPU B until some time after it is observable to all processes
running on A. So A can see data inconsistent with that seen by B. To prevent this,

248 Chapter 10 Concurrency

A must flush v from its cache, so that its storage cell is updated; and B must also
flush v from its cache, so that the next inspection by B fetches the updated value
from v’s storage cell.

Ensuring that this will happen is error-prone, inefficient, and non-portable.
No major programming language provides operations to flush buffered copies of
shared variables. So programs using shared variables, on such computers, must
use machine-dependent and extra-linguistic means to coordinate their accesses
properly. This creates yet another obstacle to correct and reusable programming
with shared variables. Bear this in mind throughout the following discussion of
low-level concurrency primitives. A huge advantage of supporting concurrency
in a programming language is that it enables the compiler to handle these
difficult implementation issues transparently and portably, with little or no explicit
programming effort.

10.5.4 Events

An event is an entity that represents a category of state changes. We can view events
e as values of an abstract type that is equipped with operations event_wait(e)
and event_signal(e), where:

• event_wait(e) always blocks, and unblocks only when the next signaled
occurrence of an event of category e occurs;

• event_signal(e) unblocks all processes that are waiting for e.

The operations event_wait and event_signal provide implementations
of the transmit and receive primitives, where we make a unique event
represent each condition.

EXAMPLE 10.7 A blocking spin lock

Events can be used to program a blocking version of the spin-lock operation acquire(r).
With each resource r we associate an event r_freed that is signaled by every process
relinquishing r. Then (using Peterson’s algorithm) we have:

acquire(r) ≡
claimed(self) := true;
turn := other;
while claimed(other) and (turn = other) loop
event_wait(r_freed);

end loop;

Considered as communication primitives, events have important drawbacks.
Firstly, the net effect of a pair of wait and signal operations depends on

the order in which they execute, so they are not commutative. For example,
the sequence:

10.5 Concurrency primitives 249

(1) process Q waits for e

(2) process P signals e

unblocks Q, as intended, whereas the sequence:

(1) process P signals e

(2) process Q waits for e

leaves Q waiting for a signal that has come and gone. If the signaling of e
is not repeated, Q gets stuck. This makes code that uses events liable to be
speed-dependent.

Secondly, event_signal(e) awakens all processes blocked on event e, so
this implementation of the transmit operation is interpreted as ‘‘broadcast’’.
One-to-one transmission requires auxiliary data to identify the intended recipient.
All awakened processes must test this data, note whether the signal is for them,
and repeat the wait if it is not. Selective waiting therefore suffers significant
context-switching overhead.

Thirdly, events are not useful for mutual exclusion, so separate provision must
be made for that (such as spin locks or interrupt management).

Despite their various disadvantages, it is worth noting that the combination
of interrupt management and events provided the original basis for process
management in the very successful UNIX family of operating systems.

10.5.5 Semaphores

The abstract type semaphore has the three operations: sema_initialize(s,
n), sema_wait(s), and sema_signal(s), where:

• sema_initialize(s, n) must be called to initialize the semaphore s
with the integer n, before any other operation is applied to s;

• sema_wait(s) may either block or complete, depending on the state of s;
• sema_signal(s) unblocks at most one process that is waiting on s.

To be more specific, these operations are defined in terms of their effects on
three integer values associated with s: s.waits is the number of completed calls to
sema_wait(s); s.signals is the number of completed calls to sema_signal(s);
and s.initial is the value of n in the single allowed call to sema_initialize(s,
n). The integer n is the number of calls by which sema_wait can lead
sema_signal. For example, if n is 0, the first call to sema_wait is forced
to block until there has been a call to sema_signal; whereas if n is 1, the first
call to sema_wait will complete without blocking.

Any sequence of sema_wait and sema_signal operations on s must leave
invariant the relation:

0 ≤ s.waits ≤ s.signals + s.initial (10.1)

To achieve this, a process is blocked within a wait operation until it can
complete without violating (10.1). So, if a process calls sema_wait(s) when
s.waits = s.signals + s.initial, then it will be blocked. It will not resume until

250 Chapter 10 Concurrency

some other process completes a call to sema_signal(s), increasing the value of
s.signals.

If several processes are waiting on the semaphore s, it is not defined which
of them will be resumed by a signal operation on s. This provides a degree of
freedom that can be exploited to implement an appropriate scheduling criterion
for the application. We require only that this be fair. (This is the usual strong
semaphore. Some researchers have described a weak semaphore that does not
guarantee fairness.)

By contrast with events, semaphore operations are commutative, because
unawaited signals are remembered by virtue of the semaphore invariant. If a
process P signals s when no process Q is waiting on s, the occurrence of the signals
is noted in s.signals, and is taken into account if Q later waits on s. Semaphore-
based synchronization is therefore much less susceptible to speed-dependent
programming errors than the use of events.

Again unlike events, the semaphore signal operation awakens only one
process, so that this version of transmit is more like ‘‘send a telegram’’
than ‘‘broadcast’’. Highly selective and efficient communication is therefore
possible. (Admittedly, it is less easy to broadcast using semaphores, if that is what
is required.)

A further major advantage of semaphores is that they can be used both for
mutual exclusion and for communication.

To program mutual exclusion we associate with each shared resource r a
semaphore r_mutex. Every process using r must bracket its critical sections with
calls to sema_wait(r_mutex) and sema_signal(r_mutex), doing duty for
acquire(r) and relinquish(r), respectively.

Simple communication is effected in the same way. We associate a semaphore
c_semwith each condition c to be transmitted. Thetransmitandreceiveoper-
ations become sema_signal(c_sem) and sema_wait(c_sem), respectively.
This reveals a deep connection between mutual exclusion and communica-
tion that was not apparent with events, because event operations are not
commutative.

EXAMPLE 10.8 A shared buffer

Using semaphores, it is easy to write code that efficiently communicates an arbitrary
amount of data, by means of a buffer variable shared between the sending and receiving
processes. Here we show a simple protocol that ensures (a) that a receiver never tries
to take old data from an empty buffer, and (b) that a sender never tries to overwrite a
full buffer with new data. The semaphores full and empty are used to transmit the
information that the buffer has been filled or emptied, respectively.

In their parent process:

sema_initialize(full, 0);
sema_initialize(empty, 1);

10.5 Concurrency primitives 251

In a sender:

loop
sema_wait(empty);
place data in the buffer;
sema_signal(full);

end loop;

In a receiver:

loop
sema_wait(full);
take data from the buffer;
sema_signal(empty);

end loop;

When the buffer is empty, as initially, a receiver blocks at its wait operation, because
full.waits = full.signals + full.initial (the latter being 0). The receiver does not
resume, nor access the buffer, until a sender has placed data there and signaled full.
Conversely, because empty.waits < empty.signals + empty.initial, a sender does not
wait, but immediately places data in the buffer, signals full, and loops round.

When the buffer is full, after a sender has signaled full, a receiver does not wait, but
immediately takes data from the buffer, signals empty, and loops round. A sender is then
symmetrically forced to wait for the receiver.

Note that this works for any number of concurrent sending and receiving processes.

Semaphores do have a serious disadvantage, which is shared by events and
indeed by all of the low-level primitives we have discussed. This disadvantage is
that the connection between any given resource or condition and the associated
semaphore operations is merely conventional. The convention works only if the
programmer remembers to call these operations at all necessary points, but this
cannot be ensured by compile-time checking. It is too easy to forget a wait or
signal operation, with disastrous results.

The problem is that all these primitives are at a very low level of abstraction,
and allow a badly structured program to be written as easily as a well-structured
one. Semaphores are appropriately treated as machine-level operations, and
indeed some computer architectures have included semaphore instructions that
were competitive with interrupts for communication with input/output devices.
Semaphores implemented in software (e.g., using spin locks) incur a greater
cost, perhaps much greater, depending on whether operating system intervention
is required.

10.5.6 Messages

In a distributed system, processes run on a network of computers that do not
share primary storage, so that spin locks, events, and semaphores cease to be
appropriate. Instead, the network provides a data communication service that

252 Chapter 10 Concurrency

supports process interaction by the exchange of messages. Message passing can be
the basis for communication in shared-storage systems as well, and this is attractive
because it simplifies later porting to a distributed system. Indeed, the first known
message-based operating system was for a single-CPU computer, described in
Brinch Hansen (1973). But message passing does involve greater overheads than
(say) the use of semaphores, and this can be a deciding factor when shared-storage
interaction is an option.

Message passing requires a channel that can carry a message from process
to process. Such a channel may either be explicitly identified, or implied by the
identities of the sender and receiver processes. An explicitly identified channel
may be known as a message queue, a buffer, or the like; such a channel may
allow communication between an arbitrary number of senders and receivers. An
implicitly identified channel can support only one-to-one communication. There
is also a question of whether the channel supports communication in one direction
only (simplex), or in both directions (duplex).

The lifetime of a channel may be bounded by the activation of the communi-
cation procedure (local), by the lifetime of the communicating processes (global),
or by operations outside these processes (persistent).

The primitive operations on a channel include:

• connect a process to a channel;

• disconnect a process from a channel;

• send a message on a channel;

• receive a message from a channel, or wait for its arrival;

• test for the existence of an incoming message on a channel.

A message may contain either a copy of data belonging to the sender, or
a pointer to shared data. The former is more common in distributed systems
and the latter in shared storage systems. Messages may be fixed or variable in
length, and channels may have a fixed capacity or be able to expand and contract
to meet demand. When a sender has dispatched a message, it may be blocked
pending a reply, so that communication proceeds synchronously. Alternatively, a
sender may be free to continue after a send operation, so that communication is
asynchronous.

The designer of a message-based system thus has a great number of alternatives
to explore, and such systems have indeed been very diverse.

10.5.7 Remote procedure calls

A disadvantage of basing a design on message passing is that the division of the
system into processes is strongly reflected in the program text. Operations within
the same process are invoked by procedure calls, and operations in other processes
by message passing. This poses a maintenance problem when the distribution of
functions among processes is changed.

It is possible to avoid this, and retain the advantages of procedural notation,
by exploiting the remote procedure call. The run-time environment determines

10.6 Concurrent control abstractions 253

the site where a procedure is located, and communicates with that site to
invoke it.

The site that provides the procedure, on receiving a remote call, may create a
process to implement the operation. Alternatively, a server process at the remote
site may receive all calls for a procedure and provide that service to each caller
in turn. If more concurrency would be beneficial, the server may fork threads to
serve concurrent callers. The choice is determined by the relative costs of process
or thread creation as against communication, and by the degree of concurrency
desired. These are pragmatic issues, rather than questions of principle.

10.6 Concurrent control abstractions
Good programmers make great efforts to ensure that a program expresses clearly
what it means. The concern is to make obvious in its source code the essential
relationships between the parts of a program. These include data flow relation-
ships, and the properties of types, as well as control flow relationships. We also
observe the principle that simple relationships are both technically sufficient and
psychologically preferable.

Programming language designers have largely succeeded in creating abstrac-
tions that facilitate sequential programming of this quality. Attention has increas-
ingly turned to the problems raised by concurrency and distribution. This section
presents some of the more significant language design concepts in mainstream
concurrent programming.

10.6.1 Conditional critical regions
The conditional critical region is a composite command that provides both
mutual exclusion and communication. The key idea is that every variable shared
between processes must be declared as such. A variable not so declared is local
to one process, and a compiler can easily check that no such variable is accessed
by any other process. At a stroke this removes one of the main sources of error in
concurrent programming.

The conditional critical region takes the form (in pseudo-ADA syntax):

region v do
C

end region;

The subcommand C is a critical section with respect to the shared variable
v. A shared variable may be accessed only within such a conditional critical
region, which again is easy for the compiler to check. At most one process at a
time is allowed to execute in a particular conditional critical region, this being
readily implemented with a semaphore. So mutually exclusive access to all shared
variables is automatic.

Within the conditional critical region, the await command ‘‘await E’’ blocks
until the expression E (which accesses the shared variable v) yields the value
true. While waiting, a process relinquishes its exclusive use of the shared variable.
When it resumes, its exclusivity is reacquired.

254 Chapter 10 Concurrency

EXAMPLE 10.9 Conditional critical regions

The following pseudo-ADA code illustrates a bounded buffer type:

type Message_Buffer is
shared record
size : Integer range 0 .. capacity;
front, rear : Integer range 1 .. capacity;
items : array (1 .. capacity) of Message;

end record;

procedure send_message (item : in Message;
buffer : in out Message_Buffer) is

begin
region buffer do
await buffer.size < capacity;
buffer.size := buffer.size + 1;
buffer.rear := buffer.rear mod capacity + 1;
buffer.items(buffer.rear) := item;

end region;
end send_message;

procedure receive_message (item : out Message;
buffer : in out Message_Buffer) is

begin
region buffer do
await buffer.size > 0;
buffer.size := buffer.size - 1;
item := buffer.items(buffer.front);
buffer.front := buffer.front mod capacity + 1;

end region;
end receive_message;

As Example 10.9 shows, the conditional critical region highlights the points
of interaction between processes, with a minimum of conceptual and nota-
tional clutter:

• Both mutual exclusion and communication are provided in full generality,
with no need for auxiliary flags or variables.

• Mutual exclusion is guaranteed at compile-time.

• Transmission of conditions is automatic and implicit. A process that estab-
lishes a condition need not be aware that it is of interest to any other process.

• Reception is simple, explicit, and commutes with transmission.

These properties lend clarity to programs written in terms of conditional
critical regions. But they come at the cost of some busy waiting: the command
‘‘await E;’’ must be implemented in terms of a loop that re-evaluates E at least
as often as any process leaves a critical section that updates the variables accessed
by E.

10.6 Concurrent control abstractions 255

10.6.2 Monitors

Despite their advantages, conditional critical regions were trumped by another
notation that quickly became a standard feature of concurrent programming
languages.

The argument is simple: processes should be coupled as loosely as possible to
any variables they share. Chapter 6 showed how we can achieve loose coupling by
encapsulating each shared variable in a package equipped with suitable operations
to access it. We can go further and arrange for automatic mutual exclusion on
calls to these operations.

The monitor is a kind of package, combining encapsulation with mutual
exclusion and communication. CONCURRENT PASCAL, described in Brinch Hansen
(1977), and MODULA, described in Wirth (1977), were two influential PASCAL-like
languages that promoted monitors as the way to structure concurrency.

MODULA monitors ensure mutual exclusion for the operations of an abstract
type. However, unlike conditional critical regions, they do not support automatic
signaling. Instead, a predefined type signal is provided with send and wait
operations. A signal is implemented as a queue of processes waiting to proceed
within the monitor. The wait operation blocks the running process and places
it on the nominated signal’s queue. While waiting on a signal, a process gives up
its exclusive use of the monitor. The send operation unblocks the process at the
head of the nominated signal’s queue. When the latter process resumes, it regains
its exclusive use of the monitor.

EXAMPLE 10.10 A MODULA monitor

The following monitor, coded in MODULA, implements a bounded buffer object. For all
its rather dated appearance, it exemplifies important techniques that some more modern
languages, such as JAVA, fail to exploit effectively.

INTERFACE MODULE BufferMonitor;

DEFINE sendMessage, receiveMessage; (* public *)

TYPE MessageBuffer =
RECORD
size : 0 .. capacity;
front, rear : 1 .. capacity;
items : ARRAY 1 .. capacity OF Message

END;

VAR
buffer : MessageBuffer;
nonfull, nonempty : signal;

PROCEDURE sendMessage (item : Message);
BEGIN
IF buffer.size = capacity THEN wait(nonfull);
buffer.size := buffer.size + 1;
buffer.rear := buffer.rear MOD capacity + 1;

256 Chapter 10 Concurrency

buffer.items[buffer.rear] := item;
send(nonempty)
END;

PROCEDURE receiveMessage (VAR item : Message);
BEGIN
IF buffer.size = 0 THEN wait(nonempty);
buffer.size := buffer.size - 1;
item := buffer.items[buffer.front];
buffer.front := buffer.front MOD capacity + 1;
send(nonfull)
END;

BEGIN (* initialization of buffer *)
buffer.size := 0;
buffer.front := 1;
buffer.rear := 0
END BufferMonitor;

Like semaphores and events, signals are associated with conditions only by a
convention that must be respected in the logic of the monitor. Signals allow a more
efficient implementation of inter-process communication than is possible with the
conditional critical region, but at the cost of more work for the programmer and
more opportunity for error. For example, one danger is this: the programmer
might assume that a pre-condition established before waiting still holds true
after resuming. That will be the case if, and only if, all other processes that call
operations of the monitor take care to re-establish that pre-condition. This couples
the logic of those processes very tightly indeed, and in that sense is a serious failure
of modularity.

By contrast, the conditional critical region await command specifies an arbi-
trary predicate, and the programmer can be confident that the process will
not continue until that predicate is fully satisfied. The result is much greater
logical clarity.

10.6.3 Rendezvous
The difficulties associated with shared variables have led many researchers to
concentrate on well-structured message passing as an alternative. Hoare (1978)
proposed the notation that has come to be called CSP (Communicating Sequential
Processes). The essential feature of CSP is that processes interact only by means of
unbuffered (synchronous) communication, or rendezvous. In order to rendezvous,
each process executes a command indicating its willingness to communicate with
the other. This is, in effect, a kind of input command in the receiver, and a kind
of output command in the sender. Each process blocks if the other one has not
yet reached its rendezvous point. When both processes are ready, a message is
copied from the sender to the receiver; then both are unblocked and continue
independently.

CSP was more of a thought experiment than a practical tool, but it inspired
many later developments, including the languages OCCAM and ADA.

10.6 Concurrent control abstractions 257

ADA was the first major programming language to incorporate high-level
concurrent programming features. A task module is in some ways similar to a
package, but its body is executed as a new process. Global variables are accessible
by a task body, as a normal consequence of ADA’s scope rules, so tasks may interact
by their effect on shared variables. However, ADA provides little support for this,
and the programmer is responsible for ensuring that sharing global variables has
no harmful effects.

Instead, the preferred mode of communication between tasks is the ren-
dezvous, which is encouraged by a rich set of language features. A task module
may declare public entries, which resemble procedures. (In fact, entries are the
only public components of a task module.) A calling task communicates by means
of an entry call, which is syntactically similar to a procedure call, and may pass
parameters to the entry. A called task communicates by means of an accept
command, a composite command that has access to the arguments of an entry
call. A caller blocks until its entry call is served, and waits in a queue. A called
task blocks at an accept command for an entry with no queued calls. Additional
language features allow for bounded nondeterminism in accepting calls, and offer
the option not to wait if no rendezvous can be achieved (either immediately, or
after a specified time limit).

Since rendezvous takes place only when it suits the called task, it is possible
to ensure that communication always follows a strict protocol. An entry call can
have no effect on a task until the latter chooses to respond to it. This is a big
advantage of rendezvous over both messages and remote procedure calls, which
may arrive in an uncontrolled order that the server process must always be ready
to cope with.

Like a package, an ADA task module has both a specification and a body.
The specification declares the entries it makes public. The body contains private
declarations, and the implementation of the public entries in terms of accept
commands. Unlike a package, a task module can be either a single task or a task
type that can be used to create many tasks with the same interface.

EXAMPLE 10.11 Rendezvous in ADA

The following ADA task type implements a single-slot buffer abstract type:

task type Message_Buffer is
entry send_message (item : in Message);
entry receive_message (item : out Message);

end Message_Buffer;

task body Message_Buffer is
buffer : Message;

begin
loop
accept send_message (item : in Message) do
buffer := item;

end;
accept receive_message (item : out Message) do

258 Chapter 10 Concurrency

item := buffer;
end;

end loop;
end Message_Buffer;

The variable declaration:

urgent, pending : Message_Buffer;

creates two tasks of type Message_Buffer. Each of these tasks runs concurrently with
the process that elaborated the declaration. They can now be called independently to store
and fetch messages:

msg : Message;
. . .

pending.send_message(msg);
pending.receive_message(msg);
urgent.send_message(msg);

where, for example, ‘‘pending.send_message(msg);’’ is a call to the entry
send_message in the task pending, passing the value of msg as an argument.

Note how the control structure of Message_Buffer ensures that messages
are alternately stored and fetched, so that any attempt by a caller to fetch when
the buffer is empty is automatically forced to wait until the buffer is refilled.

Note also the absence of explicit signaling and mutual exclusion constructs.
The latter are not needed, because variables local to a task body (such as buffer)
can be accessed only by that task, which therefore does so safely.

Summary
Sequential programs do one thing at a time, but concurrent programs can do many things
at a time. This provides performance and flexibility, but at the cost of greatly increased
logical complexity. In this chapter:

• We have seen how concurrency leads to problems of determinism, liveness (starvation
and deadlock), and safety (mutual exclusion) that do not exist in sequential programs.

• We have seen how concurrency is created, destroyed and controlled at the most
primitive level encountered in a modern programming language.

• We have seen how concurrency can be managed using high-level control abstractions.

Further reading

The theory of communicating processes was given a
firm foundation by HOARE (1986). There is a wide-ranging
anthology of original papers on concurrent programm-
ing in GEHANI and McGETTRICK (1988). An extended
introduction to concurrency in ADA95 is given in COHEN

(1995). A full treatment is given in BURNS and WELLINGS

(1998), and a similar depth of coverage for concurrency
in JAVA can be found in LEA (2000). Distributed sys-
tems are treated in depth by COULOURIS et al.
(2000).

Exercises 259

Exercises

Exercises for Section 10.3

10.3.1 Despite what is said in Section 10.3.1, most programmers have seen sequential
programs behave unpredictably, test runs with the same input data giving
different results. Explain why this happens, and why it does not contradict
Section 10.3.1.

Exercises for Section 10.4

10.4.1 Processes that share variables must (normally) arrange for time-wise disjoint
access to them.

(a) Give a simple example of what can go wrong without mutual exclusion.

(b) Show a problem that cannot be corrected by using the atomic qualifier in
ADA or the volatile qualifier in JAVA.

(c) Give a simple example of concurrent operation on an atomic shared variable
that does not require mutual exclusion.

Exercises for Section 10.5

10.5.1 Consider the variable claimed, used in Dekker’s and Peterson’s algorithms.

(a) Should it, or its components, be atomic and/or volatile? Write any neces-
sary declarations in ADA.

(b) What problem arises in JAVA?

*10.5.2 This exercise looks at Simpson’s algorithm more closely (see Example 10.6).

(a) Explain why the local variables row and col in update need not be
declared atomic.

(b) Explain why the local variable col in inspect need not be declared
atomic.

(c) Give an argument for the correctness of Simpson’s algorithm.

10.5.3 In Example 10.7, what would happen if a process that relinquished resource r
failed to signal the event r_freed?

10.5.4 Sketch code, along the lines of Example 10.9, to implement a buffer with
capacity for n data items, using the semaphores mutex, free_slots, and
full_slots, initialized as follows:

sema_initialize(mutex, 1);
sema_initialize(free_slots, n);
sema_initialize(full_slots, 0);

10.5.5 A program contains many shared variables of the type T:

type T is
record

initialized : Boolean := false;
. . .

end record;

260 Chapter 10 Concurrency

The programmer, worried about the inefficiency of semaphore operations,
tries to initialize these variables safely, without mutual exclusion, as follows:

procedure initialize (v : in out T) is
begin

if not v.initialized then
. . . ; -- give v its initial value
v.initialized := true;

end if;
end initialize;

(a) Explain the race condition that prevents it from working reliably.

(b) Recognizing the mistake, the programmer does some research and learns
about double-checked locking, a technique that uses mutual exclusion only
when necessary, and rewrites initialize as follows:

sema_initialize(mutex, 1);
. . .

procedure initialize (v : in out T) is
begin

if not v.initialized then
sema_wait(mutex);
if not v.initialized then

. . . ; -- give v its initial value
v.initialized := true;

end if;
sema_signal(mutex);

end if;
end initialize;

Explain the programmer’s reasoning in thinking that this solves the mutual
exclusion problem efficiently.

(c) Unfortunately, it actually fails to be safe. Explain why. What can be done
to make it work reliably?

*10.5.6 The hypothetical primitive ‘‘start C’’ (not part of ADA) causes the subcom-
mand C to be executed in a new thread, concurrent with the one that executes
the start primitive. The new thread shares all presently existing variables with
its parent, but subsequently created variables are not shared.

(a) Using the start primitive, modify the following sequential procedure so
that as many components as possible of sum are computed concurrently:

type Matrix is array (1 .. n, 1 .. n) of Float;
procedure add (a, b : in Matrix;

sum : out Matrix) is
begin

for i in 1 .. n loop
for j in 1 .. n loop

sum(i,j) := a(i,j) + b(i,j);
end loop;

end loop;
end add;

How many processes can be active concurrently in your version? Assume
that starting a process takes time T, and that executing the assignment
takes time t. In what circumstances would the concurrent version be faster?

Exercises 261

(b) Using the start primitive, modify the following procedure so that as
many as possible of the nodes of the tree atree are visited concurrently.

type TreeNode;
type Tree is access TreeNode;
type TreeNode is

record
datum : T; left, right : Tree;

end record;

procedure traverse (atree : Tree; . . .) is
begin

if atree.left /= null then
traverse(atree.left, . . .);

end if;
if atree.right /= null then
traverse(atree.right, . . .);

end if;
. . . -- process atree.datum here

end traverse;

What kinds of processing operations could be performed in the sequential
version that could not be performed in the concurrent version?

Exercises for Section 10.6
10.6.1 How do the wait and send operations of MODULA compare with event

operations, and with semaphore operations? What does that say about the
liability of MODULA-like monitors to speed-dependent faults?

10.6.2 Show that it is not possible, in Example 10.11, for more than one caller to obtain
a copy of any one message.

PART IV

PARADIGMS

Part IV surveys the major programming paradigms:

• imperative programming

• object-oriented programming
• concurrent programming
• functional programming
• logic programming
• scripting.

Each chapter identifies the key concepts that characterize a particular paradigm,
discusses the pragmatics of programming in that paradigm, and illustrates that
paradigm by case studies of major languages.

263

Chapter 11

Imperative programming

In this chapter we shall study:

• the key concepts that characterize imperative programming languages;

• the pragmatics of imperative programming;

• the design of two major imperative languages, C and ADA.

11.1 Key concepts

Imperative programming is so called because it is based on commands that update
variables held in storage. (The Latin verb imperare means ‘‘to command’’.) In
the 1950s, the first programming language designers recognized that variables
and assignment commands constitute a simple but useful abstraction from the
memory fetch and update of computers’ instruction sets. This close relationship
with computer architecture enables imperative programs to be implemented very
efficiently, at least in principle.

Imperative programming remained the dominant paradigm until the 1990s,
when it was challenged by object-oriented programming. The vast majority of
commercial software currently in use was written in imperative languages, as is
much of the software currently being developed. Most of today’s professional
programmers are skilled largely or exclusively in imperative programming.

The key concepts of imperative programming are classically:

• variables
• commands
• procedures

and, more recently:

• data abstraction.

Variables and commands are key concepts of imperative programming for
the following reason. Many programs are written to model real-world processes
affecting real-world entities, and a real-world entity often possesses a state that
varies with time. So real-world entities can be modeled naturally by variables, and
real-world processes by commands that inspect and update these variables.

For example, consider an aircraft flight control program. The aircraft has a
state consisting of its position, altitude, speed, payload, fuel load, and so on. In
order to perform its function, the flight control program must model the aircraft’s

265

266 Chapter 11 Imperative programming

state. Since the state changes with time, it is most naturally modeled by a group
of variables.

Variables are also used in imperative programming to hold intermediate
results of computations. However, variables used in this way are not central to
imperative programming, and indeed they can often be eliminated by reprogram-
ming.

For example, we could write both iterative and recursive versions of a
procedure to compute bn. The iterative version needs local variables to control
the iteration and to accumulate the product. The recursive version needs no local
variables at all. (See Exercise 11.1.1.)

Ideally, variables would be used only to model states of real-world entities.
However, to avoid any need for variables to hold intermediate results, the
imperative language must have a rich repertoire of expressions, including block
expressions, conditional expressions, and iterative expressions, as well as recursive
functions. In practice, the major imperative languages (such as C and ADA) are
not sufficiently rich in this respect.

Procedures are a key concept of imperative programming because they
abstract over commands. We can distinguish between a procedure’s observable
behavior and the algorithm (commands) by which the procedure achieves its
behavior, a useful separation of concerns between the procedure’s users and its
implementer.

Data abstraction is not strictly essential in imperative programming, and
indeed it is not supported by classical imperative languages such as C and PASCAL,
but it has become a key concept in the more modern imperative languages
such as ADA. We can distinguish between an abstract type’s properties and its
representation, between the observable behavior of the abstract type’s operations
and the algorithms by which these operations achieve their behavior, again a useful
separation of concerns between the abstract type’s users and its implementer.

11.2 Pragmatics

The key concepts of imperative programming influence the architecture as well as
the coding of imperative programs. By the architecture of a program we mean the
way in which it is decomposed into program units, together with the relationships
between these units.

The quality of a program’s architecture is important to software engineers
because it directly affects the cost of implementing and later maintaining the
program. One important measure of quality is coupling, which means the extent
to which program units are sensitive to changes in one another. A group of
program units are tightly coupled if modifications to one are likely to force major
modifications to the others, while they are loosely coupled if modifications to one
are likely to force at most minor modifications to the others. Ideally, all program
units of a program should be loosely coupled. A program with this quality is
likely to be easier (and less costly) to maintain in the long run, since an individual
program unit can be modified when required without forcing major modifications
to other program units.

11.2 Pragmatics 267

P procedure named P

P1

P1 calls P2

P2

V global variable named V

V

P

P accesses V

Notation:

get-
word

put-
word

main

is-
known

add-to-
ignored

load-
dict

add-to-
dict

save-
dict

clear-
ignored

main-dict ignored

process-
document

consult-
user

in-doc out-doc

Figure 11.1 Architecture of an imperative program with global variables.

A traditional imperative program consists of procedures and global variables.
Figure 11.1 shows the architecture of such a program, which consists of several
procedures, and several global variables that are accessed by these procedures. The
procedures call one another, but this creates only loose coupling: a modification
to the implementation of one procedure is unlikely to affect its callers. However,
access to the global variables creates tight coupling: any modification to a global
variable’s representation is likely to force modifications to all the procedures that
access it; moreover, each procedure is sensitive to the way that the global variable
is initialized, inspected, and updated by other procedures.

Larger programs with architectures similar to that of Figure 11.1 will be
difficult and costly to maintain. The maintenance programmer will be unable to
understand any individual procedure without also understanding the role of each
global variable that it accesses, and the roles of other procedures that access the
same global variable. Any modification to a procedure could trigger a cascade of
modifications to other procedures.

Problems such as these explain why data abstraction has become a key
concept in the more modern imperative languages (and, indeed, why object-
oriented programming has become important in its own right). The program units
of a well-designed imperative program are now procedures and packages (or
abstract types).

Figure 11.2 illustrates the architecture of such a program. There are no global
variables, only local variables and parameters (not shown). Two abstract types

268 Chapter 11 Imperative programming

P procedure named P

P1

P1 calls P2

P2

abstract type named
T, with operations
named O1, …, Om

T

O1
…
Om

Notation:

main

process-
document

consult-
user

put-word
get-word

WordDictionary

clear
add

contains
load
save

Figure 11.2 Architecture of an imperative program with data abstraction.

have been designed, each equipped with operations sufficient for this application.
Now all the program units are loosely coupled to one another. The maintenance
programmer will be able to understand each unit individually, and can modify it
without fearing a cascade of modifications to other units. In particular, since the
representation of each abstract type is private, the maintenance programmer can
safely modify the representation without forcing modifications to other units.

11.2.1 A simple spellchecker

In order to illustrate imperative programming in this chapter (and other paradigms
in later chapters), we shall use a simple spellchecker as a running example.

The spellchecker uses a dictionary of known words, which will be loaded from
a file into main storage when the program is run. The spellchecker is required
to copy words and punctuation from an input document to an output document,
interactively consulting the user about each unknown word. If the user chooses
to accept the unknown word, the word must be added to the dictionary. If the
user chooses to ignore the unknown word, this and all subsequent occurrences
of the same word must be ignored. If the user chooses to replace the unknown
word, a new word entered by the user must replace the unknown word in the
output document.

11.3 Case study: C 269

Figure 11.1 in fact shows a possible architecture for the spellchecker. The
global variable ‘‘main-dict’’ contains the dictionary that has been loaded from
its file (and which will later be saved to the same file). The global variable
‘‘ignored’’ contains a temporary dictionary of words that the user has chosen
to ignore. The global variables ‘‘in-doc’’ and ‘‘out-doc’’ refer to the input and
output documents. The lowest-level procedures (‘‘load-dict’’, . . . , ‘‘put-word’’)
operate on the global variables. The higher-level procedures (‘‘consult-user’’,
‘‘process-document’’, ‘‘main’’) work largely by calling the lower-level procedures.

Figure 11.2 shows an alternative architecture for the spellchecker, based on
abstract types. The abstract type Word is equipped with operations for reading and
writing words from and to documents. The abstract type Dictionary is equipped
with operations for loading, saving, clearing, adding to, and searching dictionaries.
The two dictionaries ‘‘main-dict’’ and ‘‘ignored’’ are now local variables of ‘‘main’’,
and are passed as parameters to ‘‘process-document’’ and ‘‘consult-user’’.

11.3 Case study: C

C was originally designed in the early 1970s by Dennis Ritchie, primarily for
writing the UNIX operating system and its associated compilers and utilities. An
internationally-recognized standard was developed in the 1980s; this smoothed
off some (but by no means all) of the original language’s many rough edges. The
latest (1999) C standard includes many new features, but has not yet been widely
adopted; these new features are not considered here.

C is characterized by the presence of low-level operations and weak type
checking. It also lacks modern concepts such as data abstraction, generic abstrac-
tion, or exceptions. Nevertheless, expert C programmers can use it to write very
efficient systems software, the continuing success of the UNIX family of operating
systems being testimony to that fact.

C is popular in its own right, and it is an ancestor of two other popular
languages (C++ and JAVA). It makes an instructive case study, illustrating both
good and bad design.

11.3.1 Values and types

C has a limited repertoire of primitive types: enumeration types, integer types
(with various ranges, both signed and unsigned), and floating point types (with
single- or double-precision). There is no specific boolean type: false and true are
conventionally represented by zero and nonzero integers. There is also no specific
character type: characters are conventionally represented by values of type char
but, despite the type’s name, these values are just small integers.

C has a reasonable repertoire of composite types: array types, structure types,
and union types. Unions are untagged; thus the onus is on the programmer to add
an explicit tag field if it is necessary to know the current state of a union. (See
Example 2.15.)

C does not support recursive types directly. Instead, programmers must
declare recursive types using pointers.

270 Chapter 11 Imperative programming

EXAMPLE 11.1 C linked list

Consider the following C type definitions:

struct IntNode;
typedef IntNode* IntPtr;
struct IntNode {

int elem;
IntPtr succ;

};

The values of type IntPtr are pointers to nodes of a linked list. Each node will contain
an integer elem and a pointer succ to the node’s successor, except the last node, which
will contain a null pointer (conventionally represented by 0).

C complies poorly with the Type Completeness Principle. Only primitive
values, pointers, and structures are first-class values: they may be assigned, passed
as arguments, and returned as function results. Arrays are not first-class values:
only pointers to arrays can be assigned, passed as arguments, and returned as
function results. Similarly, strings (which are represented by character arrays) are
not first-class values.

C’s expression repertoire includes function calls and conditional expressions,
but not iterative expressions. Array and structure constructions (whose compo-
nents must all be literals) may be used to initialize global variables, but not in any
other syntactic context.

A C assignment ‘‘V = E’’ is actually an expression, yielding the value of
E as well as assigning that value to the variable V. C also allows ordinary
binary operators to be combined with assignment: if ⊗ is a binary operator, then
‘‘V⊗= E’’ is a concise alternative to ‘‘V = V ⊗ E’’. Still more concise are C’s pre-
and post-increment operators, both named ‘‘++’’: if V is an integer or pointer
variable, ‘‘++V’’ increments V and yields its new value, while ‘‘V++’’ increments
V and yields its original value. C similarly provides pre- and post-decrement
operators named ‘‘--’’.

C’s type system is extremely weak. A pointer can be cast to an integer, an
integer can be cast to a pointer, and a pointer of one type can be cast to a
different pointer type; in effect, integers and pointers of different types can be
used interchangeably. Another serious weakness is that certain function calls are
not type-checked, as we shall see in Section 11.3.5.

If p is a pointer, ‘‘*p’’ denotes the variable to which p points. Conversely, if v
is a global or local variable, ‘‘&v’’ yields a pointer to that variable. If v is a local
variable, that pointer will become a dangling pointer on exit from the block in
which v was declared.

If p is a pointer to a structure or union variable that has a field named f , we
can access that field using the notation ‘‘p->f ’’, which is just an abbreviation for
‘‘(*p).f ’’.

C allows pointer arithmetic, even without resort to casts. If p is a pointer and
i is an integer, ‘‘p+i’’ and ‘‘p-i’’ are legal expressions, yielding pointers (which,

11.3 Case study: C 271

however, are not necessarily meaningful). The array-indexing notation ‘‘a[i]’’ is
just an abbreviation for ‘‘*(a+i)’’, since a is interpreted as a pointer to the array
component with index 0.

EXAMPLE 11.2 Concise programming in C (1)

The following code copies all characters from standard input to standard output, stopping
when a NUL character (0) is read:

char ch;
while ((ch = getchar()) != 0)
putchar(ch);

The expression ‘‘ch = getchar()’’ reads a character (by calling the library function
getchar), assigns that character toch, and yields that character. The enclosing expression
‘‘(. . .) != 0’’ compares that character with the NUL character. Note how using an
assignment as a subexpression enables us to write very concise code.

The following alternative code takes advantage of the fact that C’s while-command
treats any nonzero integer as true:

char ch;
while (ch = getchar())
putchar(ch);

This version is even more concise, but also extremely cryptic. (Moreover, it is very confusing
for programmers more familiar with programming languages in which ‘‘=’’ is the equality
test operator, not the assignment operator!)

EXAMPLE 11.3 Concise programming in C (2)

Consider the following C function:

int palindromic (char s[], int n) {
/* Return nonzero if and only if the sequence of characters in s[0], . . . ,
* s[n-1] is a palindrome.
*/
int l, r;
l = 0; r = n-1;
while (l < r) {

if (s[l++] != s[r--])
return 0;

}
return 1;

}

Note that the result type is int, although the result is logically a boolean. Note also
the use of post-increment and post-decrement operators to make the loop body concise
and efficient.

Now consider the following alternative version:

int palindromic (char s[], int n) {
char* lp, rp;

272 Chapter 11 Imperative programming

lp = &a[0]; rp = &a[n-1];
while (lp < rp) {

if (*lp++ != *rp--)
return 0;

}
return 1;

}

This replaces the integer variables l and r (which were used to index the array s) by
pointer variables lp and rp (which point to components of the array s). The expression
‘‘*lp++’’ yields the character that lp points to, and then increments lp (making it point
to the next component of s). The expression ‘‘*rp--’’ likewise yields the character that
rp points to, and then decrements rp (making it point to the previous component of s).
The expression ‘‘lp < rp’’ tests whether the component that lp points to precedes (is
leftwards of) the component that rp points to.

This second version is perfectly legal, but much more difficult to understand than the
first version. However, it illustrates a programming idiom that experienced C programmers
learn to recognize.

Examples 11.2 and 11.3 capture much of the essence of C programming. Its
many critics cite such examples as proof of C’s awfulness; its many fanatics cite
the same examples as proof of C’s power! A more measured judgment would be
that C is a powerful tool in the hands of an expert programmer, but a dangerous
weapon in the hands of a novice.

11.3.2 Variables, storage, and control

C supports global and local variables. It also supports heap variables in a low-level
manner. Its allocator is a function malloc whose argument is the size of the heap
variable to be allocated:

IntNode* ptr;
ptr = malloc(sizeof IntNode);

The expression ‘‘sizeof T’’ yields the size (in bytes) of a value of type T.
C has some of the characteristics of an expression language. As we have seen,

an assignment is an expression. A function call is also an expression (even if the
result type is void). Given any expression E, we can write a command ‘‘E;’’; its
effect is to evaluate E and then discard its value, leaving only its side effects. Thus
‘‘V = E;’’ is effectively an assignment command, and ‘‘F(. . .);’’ is effectively a
proper procedure call.

The fact that C assignments are expressions, and that all C procedures are
functions, actually forces programmers to write expressions with side effects. C
programmers must exercise considerable self-discipline to avoid writing unread-
able code.

Apart from those already mentioned, C’s repertoire of commands includes
a skip command, sequential commands, conditional commands (if- and switch
commands), iterative commands (while-, do-while-, and for-commands), and

11.3 Case study: C 273

block commands. If- and loop conditions are actually integer expressions; zero is
interpreted as false, and any other integer as true.

C’s break, continue, and return sequencers allow single-entry multi-exit con-
trol flows to be programmed as easily as single-entry single-exit control flows.
C also supports jumps, but they are essentially redundant because the other
sequencers are sufficient for all practical purposes. C does not support exceptions.

C’s switch command usually has the form:

switch (E) {
case v1: C1

. . .

case vn: Cn
default: C0

}

The expression E must yield an integer value. If that value equals one of the
values vi, the corresponding subcommand Ci is chosen. If not, C0 is chosen. (If
‘‘default: C0’’ is omitted, C0 is taken to be a skip.) If the values vi are not all
distinct, the first match is chosen, so the choice is deterministic.

A bizarre feature of C’s switch command is that control flows from the
chosen subcommand Ci to the following subcommands Ci+1, . . . , Cn, and C0.
Nearly always, however, we want control to flow from Ci to the end of the switch
command. To make that happen, each subcommand (except the last) must include
a break sequencer.

EXAMPLE 11.4 C switch command
In the following C switch command, choice is based on a value of the enumeration type
Month (Example 3.2):

Month m;
. . .

switch (m) {
case jan: printf("JAN"); break;
case feb: printf("FEB"); break;
case mar: printf("MAR"); break;
. . .

case dec: printf("DEC");
}

C’s for-command is actually syntactic shorthand for a while-command, conve-
niently gathering the loop initialization code (C1), loop condition (E1), and loop
continuation code (E2) together in one place:

for (C1 E1; E2) C2 ≡ C1

while (E1) {
C2

E2;
}

274 Chapter 11 Imperative programming

Thus C’s for-command supports indefinite iteration. (In most imperative languages,
the for-command supports definite iteration.)

EXAMPLE 11.5 C for-command
Recall the type IntPtr defined in Example 11.1. Values of type IntPtr are pointers to
nodes of a linked list whose elements are integers.

The following C function uses a for-command to iterate over all the nodes of such a
linked list:

int list_sum (IntPtr first) {
/* Sum the elements of the linked list to which first points. */

int sum; IntPtr p;
for (p = first; p != 0; p = p->succ)
sum += p->elem;

return sum;
}

The expression ‘‘p != 0’’ is legal here because 0 is a valid literal in all pointer types;
it denotes the null pointer.

11.3.3 Bindings and scope
A C program consists of global type definitions, global variable declarations, and
function definitions. One of these functions must be named main, and that is the
main program.

Inside a function or block command, we may declare local types, local
variables, and static variables. Local variables have shorter lifetimes than global
variables, and unlike global variables are not a cause of tight coupling between
functions.

A static variable is global in the sense that its lifetime is the program’s entire
run-time, but local in the sense that its scope is the function or block command
within which it is declared.

11.3.4 Procedural abstraction
C supports function procedures only. However, we can achieve the effect of a
proper procedure by writing a function whose result type is void.

C supports only one parameter mechanism, the copy-in parameter. That is to
say, each formal parameter behaves like a local variable that is initialized to the
corresponding argument value. However, we can achieve the effect of a reference
parameter by passing a pointer to a variable as an argument.

EXAMPLE 11.6 C function with pointer arguments
Consider the following C function:

void minimax (int[] a, int n, int* min, int* max) {
/* Set *min to the minimum, and *max to the maximum, of the integers in

11.3 Case study: C 275

* a[0], . . . ,a[n-1].
*/
*min = *max = a[0];
int i;
for (i = 1; i < n; i++) {
int elem = a[i];
if (elem < *min) *min = elem;
else if (elem > *max) *max = elem;

}
}

Here is a possible call to the function:

int[] temps = {13, 15, 20, 18, 21, 14, 12};
int low, high;
. . .

minimax(temps, 7, &low, &high);

The formal parameters min and max are in effect reference parameters. The corre-
sponding arguments are pointers to variables.

C functions are not first-class values. In particular, a function F1 cannot be
passed as an argument to another function F2. However, we can achieve the same
effect by passing a pointer to F1 as an argument to F2.

11.3.5 Independent compilation
Independent compilation means that a large program is broken into several
distinct parts, called compilation units, which are compiled (and recompiled)
independently of one another. After all compilation units have been compiled,
they must be linked together to build a single executable program.

A C compilation unit is a group of type definitions, global variable declarations,
function specifications, and function definitions.

A function specification states only the function’s identifier, result type, and
formal parameter types. A function definition states the function’s identifier, result
type, formal parameter types and identifiers, and body. Function specifications
are important in the context of independent compilation.

A C compilation unit U must be self-contained, in the following sense:

• U must not refer to any global variable declared in another compilation unit,
unless that variable’s declaration (with the keyword extern) is reproduced
in U.

• U must not refer to any type defined in another compilation unit, unless
that type’s definition is reproduced in U.

• U must not refer to any function defined in another compilation unit, unless
that function’s specification is reproduced in U. The presence of that func-
tion specification allows the compiler to type-check calls to that function.

Independent compilation facilitates development of a large program: its
compilation units can be developed separately. It also facilitates maintenance:
only modified compilation units need be recompiled.

276 Chapter 11 Imperative programming

A serious weakness of independent compilation is that type checking across
compilation units is compromised. In C, if several compilation units are meant
to use the same type T, the definition of T must be included in each of these
compilation units; but there is no check that these definitions are equivalent.
Similarly, if several compilation units are meant to call the same function F, the
specification of F must be included in each of these compilation units; but there is
no check that these specifications are equivalent. We could start a programming
project by pasting common type definitions and function specifications into each
of the compilation units; however, the programmer developing one compilation
unit might find some reason to modify the common code, but forget to ensure
that the code is modified consistently in all the other compilation units. A partial
solution to this problem will be mentioned in Section 11.3.6.

EXAMPLE 11.7 C independent compilation
Consider a program consisting of two compilation units. The first defines a function:

/* Compilation unit 1 */

int funk (int a, float b, float c) {
. . .

}

The second defines the main program, which calls funk:

/* Compilation unit 2 */

int funk (int, float, float);

void main () {
int n;
float p, q;
. . .

. . . funk(n, p, q);
. . .

}

Note the specification of funk, which is needed to make the second compilation unit self-
contained. The compiler type-checks each call to funk against that function specification.

But now suppose that the programmer responsible for compilation unit 1 changes
funk ’s type (i.e., changes its result type, changes a parameter type, removes a parameter,
or adds a new parameter), and then recompiles compilation unit 1; but forgets to ensure
that the function specification and calls in compilation unit 2 are modified consistently.
The C compiler will not detect the inconsistency, because it compiles each compilation
unit independently of all the others. The linker will not detect the inconsistency, because
it does not have the necessary type information. So the program will run, but will fail in
some unpredictable manner when it first calls funk.

11.3.6 Preprocessor directives
A characteristic feature of C is its preprocessor. This is a special language pro-
cessor that supports text inclusion, text expansion, and conditional compilation.

11.3 Case study: C 277

The preprocessor is driven by preprocessor directives, which are lines starting
with ‘‘#’’.

EXAMPLE 11.8 C preprocessor directives

The following directive:

#include "common.h"

includes the whole text contained in file common.h, at this point in the code.
The following directives:

#define FALSE 0
#define TRUE 1

cause all subsequent occurrences of FALSE to be replaced by 0, and all subsequent
occurrences of TRUE to be replaced by 1. These directives are the nearest equivalent of
constant definitions in C.

The following directive:

#define UNTIL(COND) while (!(COND))

causes a subsequent occurrence of the code ‘‘UNTIL(i >= n)’’ (say) to be replaced by
the code ‘‘while (!(i >= n)’’. This directive defines a text expansion.

The following directives:

#ifdef X
. . . /* version 1 code */
#endif

#ifndef X
. . . /* version 2 code */
#endif

include the version 1 code only if the symbol X has been defined by a previous #define
directive, or the version 2 code only if X has not been so defined. These directives achieve
the effect of conditional compilation: they allow us to maintain two versions of a piece of
code (which might be quite lengthy) within the same source text.

The#includedirective helps to address the problem of reproducing common
code in several compilation units. We place the common code in a header file
named common.h (say), and place ‘‘#include common.h’’ in each compilation
unit. Any change to the header file will then affect all these compilation units. This
is only a partial solution, however, since the C compiler cannot enforce systematic
and consistent use of header files.

11.3.7 Function library
The C programming language comes with a modest function library, including
character handling functions, string handling functions, mathematical functions,
date and time functions, storage allocation functions, signal handling functions,

278 Chapter 11 Imperative programming

input/output functions, and so on. For each group of functions there is a header
file that contains the relevant function specifications together with related type
definitions. In particular, for the input/output functions there is a header file
named stdio.h.

The C function library is pre-compiled. The application program’s compilation
units must be linked with the library functions needed by the application.

11.3.8 A simple spellchecker

To conclude this overview of imperative programming in C, let us examine a
C implementation of the simple spellchecker specified in Section 11.2.1. The
program’s architecture is shown in Figure 11.1. The program consists of several
compilation units, and is shown in Programs 11.1–11.4.

#include <stdio.h>

typedef . . . Word;

typedef . . . Dictionary;

extern Dictionary main_dict;
extern Dictionary ignored;

extern FILE* in_doc;
extern FILE* out_doc;

int get_word (Word*);
/* Read the next word from in_doc, copying any preceding punctuation to

out_doc. Return nonzero if there is no next word to be read. */

void put_word (Word);
/* Write the given word to out_doc. */

void load_dict (char*);
/* Load main_dict from the named file. */

void save_dict (char*);
/* Save main_dict to the named file. */

void add_to_dict (Word);
/* Make the given word a member of main_dict. */

int is_known (Word);
/* Return nonzero if and only if the given word is a member of either main_dict or

ignored. */

void clear_ignored ();
/* Make ignored empty. */

void add_to_ignored (Word);
/* Make the given word a member of ignored. */

Program 11.1 Header file in C (spellchecker.h).

11.3 Case study: C 279

#include <stdio.h>
#include "spellchecker.h"

FILE* in_doc;
FILE* out_doc;

int get_word (Word* wd) {
. . .

}

void put_word (Word wd) {
. . .

}

Program 11.2 Declarations of file variables and definitions of word functions in C
(in outline).

#include "spellchecker.h"

Dictionary main_dict, ignored;

. . . /* auxiliary functions */

void load_dict (char* filename) {
. . .

}

void save_dict (char* filename) {
. . .

}

void add_to_dict (Word wd) {
. . .

}

int is_known (Word wd) {
. . .

}

void clear_ignored () {
. . .

}

void add_to_ignored (Word wd) {
. . .

}

Program 11.3 Declarations of dictionary variables and definitions of dictionary functions
in C (in outline).

Program 11.1 gathers together all the type definitions, global variable declara-
tions, and function specifications that will be needed in this program. This code is
placed in a header file named spellchecker.h, and that header file is included
in each compilation unit that refers to any of these types, variables, or functions.

280 Chapter 11 Imperative programming

Program 11.2 shows declarations of the global variablesin_docandout_doc,
and outlines definitions of the get_word and put_word functions that access
these variables. The standard input/output library is needed here, so its header file
stdio.h is included. Note that the get_word function returns a status flag to
indicate whether it has read a word or reached the end of the input document.

Program 11.3 shows declarations of the global variables main_dict and
ignored, and outlines definitions of the functions that access these variables.

Program 11.4 outlines definitions of the high-level functions consult_user,
process_document, and main. Note that process_document repeatedly
calls get_word within a loop, each time testing its status flag; if that flag indicates
that the end of the document has been reached, the loop is terminated.

#include <stdio.h>
#include "spellchecker.h"

void consult_user(Word* wd) {
/* Ask the user what to do with the word, which is unknown.

If the user chooses to accept the word, make it a member of main_dict.
If the user chooses to ignore the word, make it a member of ignored.
If the user chooses to replace the word, get the user to enter a replacement word,
and update the word. */

. . .

}

void process_document () {
/* Copy all words and punctuation from the input document to the output document,

but ask the user what to do with any words that are unknown (i.e., not in
main_dict or ignored). */
Word current_word;
in_doc = fopen("indoc.txt", "r");
out_doc = fopen("outdoc.txt", "w");
for (;;) {
if (get_word(¤t_word) != 0)

break;
if (! is_known(current_word))

consult_user(¤t_word);
put_word(current_word);

}
fclose(in_doc); fclose(out_doc);

}

int main () {
load_dict("dict.txt");
clear_ignored();
process_document();
save_dict("dict.txt");

}

Program 11.4 Definitions of the consult_user, process_document, and main
functions in C (in outline).

11.4 Case study: ADA 281

11.4 Case study: ADA

ADA was designed in the late 1970s to be a general-purpose imperative and
concurrent programming language, suitable in particular for implementation of
large-scale and embedded systems. The ADA design team was large, and received
inputs from a still larger number of interested persons, but the design effort
was dominated by Jean Ichbiah. (Too many programming languages bear the
hallmarks of design by committee: a proliferation of badly-integrated features,
attempting to satisfy the conflicting demands of all the committee members.
Ichbiah’s firm control ensured that ADA largely avoided that fate.)

As a consequence of the way it was developed, ADA is a large but reasonably
coherent language. It supports nearly all the concepts described in this book.
In particular, unlike classical imperative languages such as C and PASCAL, ADA

supports data abstraction, generic abstraction, and exceptions.
ADA was extended in the early 1990s, primarily to support object-oriented

programming. Where necessary to distinguish between the two versions of the
language, we refer to them as ADA83 and ADA95, respectively.

This section is an overview of the imperative parts of ADA. We shall turn to the
object-oriented and concurrent parts of ADA in Chapters 12 and 13, respectively.

11.4.1 Values and types

ADA has a full repertoire of primitive types: Boolean, Character, enumeration
types, and numeric types (integer, floating-point, and fixed-point). Unusually,
ADA allows programmers to declare their own numeric types, which is good for
portability.

ADA has an adequate repertoire of composite types: array types, record types,
and discriminated record types (disjoint unions).

ADA does not support recursive types directly. Instead, programmers must
declare recursive types using pointers.

ADA complies well with the Type Completeness Principle. Constants, vari-
ables, parameters, and function results can be of any type. The equality-test
operations ‘‘=’’ and ‘‘/=’’, and the assignment operation ‘‘:=’’, can be applied to
operands of any type (unless the programmer chooses otherwise by declaring a
type to be limited).

ADA supports subtypes systematically in the sense that all types can have
subtypes (see Section 8.1.1). However, an ADA subtype is not itself a type. In
particular, an ADA type declaration creates a new and distinct type, but an
ADA subtype declaration merely names a subtype of an existing type. A type is
compatible with any of its subtypes.

EXAMPLE 11.9 ADA types and subtypes

Natural is a subtype of Integer:

subtype Natural is Integer range 0 .. Integer'last;

282 Chapter 11 Imperative programming

The following function’s second parameter is of subtype Natural:

function power (b: Float; n: Natural) return Float;

In a function call to power, the compiler merely checks that the second argument’s
type is compatible with Natural (i.e., its type is Integer or a subtype of Integer).
However, a run-time check may be needed to ensure that the argument’s value is in the
subtype Natural.

Finally, consider the following proper procedure:

procedure inc (i: in out Integer);

In a procedure call to inc, the compiler merely checks that the argument’s type is
compatible with Integer (i.e., its type is Integer or a subtype of Integer). No
run-time check is needed.

ADA’s expression repertoire includes record and array constructions and
function calls. It does not include conditional expressions, iterative expressions,
or block expressions. Thus programmers are forced to use function calls for
computations that are too complicated for this rather limited expression repertoire.
The point is that an ADA function’s body is syntactically a command, and so may
contain loops, exception handlers, and so on. By the same token, however, function
calls potentially have side effects.

11.4.2 Variables, storage, and control
ADA supports global, local, and heap variables. A heap variable of type T is
allocated by an expression of the form ‘‘new T’’, or alternatively ‘‘new T'(. . .)’’
which also initializes the heap variable.

ADA’s repertoire of commands is conventional for a modern imperative
language: a skip command, assignment commands, procedure calls, sequential
commands, conditional commands (if- and case commands), iterative commands
(while- and for-commands, and basic loops), block commands, and exception-
handling commands.

ADA’s exit and return sequencers allow single-entry multi-exit control flows
to be programmed as easily as single-entry single-exit control flows. ADA also
supports jumps, although they are redundant.

ADA was the first major language to provide a secure form of exception
handling. An ADA83 exception could not carry a value. An ADA95 exception can
carry a string, enabling the handler to receive additional information about the
abnormal situation represented by the exception (but that information has to be
encoded as a string before the exception is thrown, and decoded by the handler
after it is caught).

11.4.3 Bindings and scope
An ADA program consists of program units: procedures, packages, and generic
units. The programmer specifies which of these procedures is to be treated as the
main program.

11.4 Case study: ADA 283

Within a program unit or block command we declare anything: types and
subtypes, constants and variables, exceptions, tasks, and even other program units.

Procedures, packages, and generic units are major program units and are
normally declared either globally or inside other program units. Although it is
legal in ADA to declare a program unit inside an inner block, that would allow
the program unit to access variables declared in outer blocks, giving rise to
tight coupling.

11.4.4 Procedural abstraction

ADA supports both proper procedures and function procedures.
ADA supports three parameter modes, which emphasize the direction of data

flow (into and/or out of the procedure) rather than the underlying parame-
ter mechanisms.

• In-parameter: the formal parameter is a constant, and is bound to the
argument (a first-class value).

• In-out-parameter: the formal parameter is a variable, and permits both
inspection and updating of the argument (also a variable).

• Out-parameter: the formal parameter is a variable, and permits only updat-
ing of the argument (also a variable).

For primitive types, ADA insists that the above effects are achieved by copy-in,
copy-in-copy-out, and copy-out mechanisms, respectively (Section 5.2.1).

For composite types, ADA allows the compiler to choose whether the above
effects are achieved by copy or reference mechanisms. Reference mechanisms
(Section 5.2.2) introduce the risk of aliasing, but are usually more efficient than
copy mechanisms for large records and arrays.

An ADA function procedure has in-parameters only. Thus a function procedure
cannot update variables supplied as arguments, but this is really only a half-hearted
attempt to discourage side effects. The function’s body can update global variables,
a concealed and therefore more dangerous source of side effects.

ADA supports context-dependent overloading of procedures. In other words,
two or more procedures may share the same identifier in the same scope
provided only that they differ in their parameter or result types. Also, ADA

treats its operators exactly like functions: we may overload any existing oper-
ator by providing an additional definition. (But we cannot invent new opera-
tor symbols.)

ADA procedures are not first-class values. In particular, a procedure P1 cannot
be passed as an argument to another procedure P2. However, we can achieve
essentially the same effect by passing a pointer to P1 as an argument to P2.

11.4.5 Data abstraction

ADA supports data abstraction principally by means of packages, as we saw in
Section 6.1. Each package consists of a specification and a body. The package
specification serves to declare the package’s public components, and thus specify

284 Chapter 11 Imperative programming

the package’s API. The package body serves to provide implementation details:
definitions of any public procedures, and declarations of any private components.

In general, the components of an ADA package may be anything that can be
declared in the language: types and subtypes, constants and variables, exceptions,
procedures, generic units, inner packages, and so on. Moreover, any subset of
these components may be public. Thus ADA packages support encapsulation.

An important special case is a package that defines an abstract type. In this
case the package specification declares the abstract type itself, and specifies the
public procedures that operate on the abstract type. The name of the abstract type
is public, but its representation is private. The package body defines the public
procedures, and declares any private (auxiliary) procedures.

EXAMPLE 11.10 ADA abstract type

Program 11.6(a) shows the specification of a package named Dictionaries. This
declares an abstract type Dictionary, and specifies public procedures that will operate
on that abstract type.

Program 11.6(b) outlines the corresponding package body, which defines all the public
procedures. The omitted details depend on the chosen representation for the abstract type
(which could be a search tree, for instance).

Application code could use the Dictionaries package as follows:

use Dictionaries;
dict: Dictionary;
current_word: Word;
. . .

load(dict);
loop

. . .

if not contains(dict, current_word) then
. . .

end if;
. . .

end loop;

Values of type Dictionary can be manipulated only by calling the public operations
of the Dictionaries package. The ADA compiler will prevent any attempt by the
application code to access the Dictionary representation. Thus, without having to rely
on the application programmer’s self-discipline, the application code can be maintained
independently of the package.

All ADA types, including abstract types, are by default equipped with the
language’s assignment and equality test operations, except for types defined as
limited. Assignment of a static data structure (one constructed without pointers)
entails copying all its components, which is copy semantics. On the other hand,
assignment of a dynamic data structure (one constructed using pointers) entails
copying the pointers but not their referents, which is reference semantics. This

11.4 Case study: ADA 285

inconsistency creates a dilemma when we design an abstract type, since the type’s
representation is hidden and is not supposed to influence the behavior of the
application code. Only if we are confident that the abstract type will always be
represented by a static data structure should we declare it as simply private. If
the abstract type might conceivably be represented by a dynamic data structure,
we should declare it as limited private. (And if the abstract type needs
assignment and/or equality test operations, we should make the package provide
its own.)

Where a package defines an abstract type, the private part of the package
specification defines the abstract type’s representation. It would be more logical
for the representation to be defined in the package body, along with the other
implementation details. The reason for this design illogicality is that the ADA

compiler must decide, using the package specification alone, how much storage
space will be occupied by each variable of the abstract type. (Declarations of such
variables might be compiled before the package body is compiled.) This is an
example of a design compromise motivated by implementation considerations.

11.4.6 Generic abstraction

As we saw in Sections 7.1.1 and 7.2.1, ADA allows any package to be made generic,
and then it can be parameterized with respect to values, variables, types, and
procedures on which it depends. Here we give one further example.

EXAMPLE 11.11 ADA generic package with type and function parameters

Consider the following generic package specification:

generic
type Row is private;
type Key is private;
with function row_key (r: Row) return Key;

package Tables is

type Table is limited private;
-- A Table value contains a number of rows, subject to the constraint
-- that no two rows have the same key.

exception table_error;

procedure clear (t: out Table);
-- Make table t contain no rows.

procedure add (t: in out Table; r: in Row);
-- Add row r to table t. Throw table_error if t already contains
-- a row with the same key as r.

function retrieve (t: Table; k: Key) return Row;
-- Return the row in table t whose key is k. Throw table_error if
-- t contains no such row.

private

286 Chapter 11 Imperative programming

capacity: constant Positive := . . .;

type Table is
record
size: Integer range 0 .. capacity;
rows: array (1 .. capacity) of Row;

end record;

end Tables;

The generic package is parameterized with respect to the type Row, the type Key, and the
function row_key.

The package body will userow_key to implement theaddandretrieveoperations:

package body Tables is

procedure clear (t: out Table) is
begin
t.size := 0;

end;

procedure add (t: in out Table; r: in Row) is
k: Key := row_key(r);

begin
for i in 1 .. t.size loop

if row_key(t.rows(i)) = k then
raise table_error;

end if;
end loop;
t.size := t.size + 1;
t.rows(t.size) := r;

end;

function retrieve (t: Table; k: Key) return Row is
begin
for i in 1 .. t.size loop

if row_key(t.rows(i)) = k then
return t.rows(i);

end if;
end loop;
raise table_error;

end;

end Tables;

Since both the type parametersRow andKey are declared asprivate, they are guaranteed
to be equipped with assignment and equality-test operations.

Application code could use this generic package as follows:

subtype Short_Name is String(1 .. 6);
subtype Phone_Number is String(1 .. 12);
type Phone_Book_Entry is

record
name: Short_Name; number: Phone_Number;

end record;

function entry_name (e: Phone_Book_Entry)
return Short_Name is

11.4 Case study: ADA 287

begin
return e.name;

end;

package Phone_Books is new Tables(
Phone_Book_Entry, Short_Name, entry_name);

use Phone_Books;
phone_book: Table;
. . .

add(phone_book, "David", "+61733652378");

The instantiation generates an ordinary package by substituting Phone_Book_Entry for
Row, Short_Name for Key, and entry_name for row_key. The generated package is
named Phone_Books.

As well as a package, we can often make an ordinary procedure generic. A
generic procedure gives us an extra level of abstraction.

EXAMPLE 11.12 ADA generic procedure with a type parameter

The following declares a swapping procedure, parameterized with respect to the type Item
of the values being swapped:

generic
type Item is private;

procedure swap (x, y: in out Item);

And here is the corresponding procedure body:

procedure swap (x, y: in out Item) is
z: constant Item := x;

begin
x := y; y := z;

end;

We instantiate this generic procedure by supplying an argument type to be bound to
the type parameter Item:

procedure swap_characters is new swap(Character);

procedure swap_integers is new swap(Integer);

Each instantiation of swap generates an ordinary (non-generic) procedure. The sec-
ond instantiation generates an ordinary procedure named swap_integers, with two
in-out-parameters of type Integer. The generated procedure can be called in the
usual manner:

a: array (. . .) of Integer;
. . .

swap_integers(a(i), a(j));

288 Chapter 11 Imperative programming

Note that an ADA generic procedure must first be instantiated to generate
an ordinary procedure, before the latter can be called. ADA does not allow the
instantiation and call to be combined. (But see Exercise 11.5.)

11.4.7 Separate compilation

Separate compilation is similar to independent compilation (see Section 11.3.5),
but with the important difference that type checking across compilation units is
not compromised.

We have seen that an ADA package is declared in two parts: a package
specification and a package body. Similarly, a procedure can be declared in two
parts: a procedure specification (its heading) and a procedure body. In each case,
the package or procedure has a specification of its interface, and a body containing
implementation details.

An ADA compilation unit may be a single procedure specification, procedure
body, package specification, or package body. Each compilation unit must name
(in a with-clause) every separately compiled procedure or package on which
it depends.

A procedure or package specification must be compiled before the cor-
responding procedure or package body, and before any compilation unit that
depends on it. The ADA compiler ensures that compilation units are compiled
(and recompiled) in a correct order. It also performs full type checks across
compilation units, by the simple expedient of remembering the contents of every
procedure and package specification.

EXAMPLE 11.13 ADA separate compilation

Consider an application program that uses the Dictionaries package of Program 11.6.
Suppose that there are three compilation units: the package specification, the package
body, and the application code. The application code might look like this:

with Dictionaries; use Dictionaries;

procedure main is
dict: Dictionary;

begin
load(dict);
. . .

end;

We compile the Dictionaries package specification first, followed (in any order)
by the Dictionaries package body and the application code.

If we subsequently modify the package specification (an API change), then we
must recompile not only the package specification but also the package body and the
application code.

If instead we modify the package body only (an implementation change), then we need
recompile only the package body. Neither the package specification nor the application
code is affected.

11.4 Case study: ADA 289

Notice that we derive this benefit only because the package is split into specification
and body. If the whole package were a single compilation unit, then even a minor
implementation change would force the whole package and the application code to
be recompiled.

11.4.8 Package library

The ADA programming language comes with a modest package library. This
supports character handling, string handling, dates and times, numerical (including
complex) functions, input/output, storage deallocation, low-level programming,
and so on.

The ADA package library is pre-compiled. The application program’s compi-
lation units must be linked with the library packages on which they depend.

11.4.9 A simple spellchecker

To conclude this overview of imperative programming in ADA, let us examine an
ADA implementation of the simple spellchecker specified in Section 11.2.1. The
program’s architecture is shown in Figure 11.2. The program consists of several
compilation units, and is outlined in Programs 11.5–11.7.

Program 11.5(a) shows the Words package specification, which declares the
abstract type Word together with its operations. Program 11.5(b) outlines the
Words package body, which defines these operations. Note that the package
specification is prefixed by ‘‘with Ada.Text_IO;’’, because it depends on that
library package.

with Ada.Text_IO; use Ada.Text_IO;

package Words is

type Word is private;
-- Each Word value is a single word.

procedure get_word (in_doc, out_doc: in out File_Type;
wd: out Word);

-- Read the next word from in_doc into wd, copying any preceding punctuation
-- to out_doc. Raise end_error if there is no next word to be read.

procedure put_word (out_doc: in out File_Type;
wd: in Word);

-- Write wd to out_doc.

private

type Word is . . .; -- representation

end Words;

Program 11.5(a) Specification of the Words package in ADA (in outline).

290 Chapter 11 Imperative programming

package body Words is

. . . -- auxiliary procedures

procedure get_word (in_doc, out_doc: in out File_Type;
wd: out Word) is

begin
. . .

end;

procedure put_word (out_doc: in out File_Type;
wd: in Word) is

begin
. . .

end;

end Words;

Program 11.5(b) Body of the Words package in ADA (in outline).

with Words; use Words;

package Dictionaries is

type Dictionary is limited private;
-- Each Dictionary value is a set of words.

procedure clear (dict: out Dictionary);
-- Make dict empty.

procedure add (dict: in out Dictionary; wd: in Word);
-- Make wd a member of dict.

function contains (dict: Dictionary; wd: Word)
return Boolean;

-- Return true if and only if wd is a member of dict.

procedure load (dict: out Dictionary;
filename: in String);

-- Load dict from filename.

procedure save (dict: in Dictionary;
filename: in String);

-- Save dict to filename.

private

type Dictionary is . . .; -- representation

end Dictionaries;

Program 11.6(a) Specification of the Dictionaries package in ADA (in outline).

11.4 Case study: ADA 291

package body Dictionaries is

. . . -- auxiliary procedures

procedure clear (dict: out Dictionary) is
begin

. . .

end;

procedure add (dict: in out Dictionary; wd: in Word) is
begin

. . .

end;

function contains (dict: Dictionary; wd: Word)
return Boolean is

begin
. . .

end;

procedure load (dict: out Dictionary;
filename: in String) is

begin
. . .

end;

procedure save (dict: in Dictionary;
filename: in String) is

begin
. . .

end;

end Dictionaries;

Program 11.6(b) Body of the Dictionaries package in ADA (in outline).

Program 11.6(a) shows the Dictionaries package specification, which
declares the abstract type Dictionary together with its operations. Program
11.6(b) outlines the Dictionaries package body, which defines these opera-
tions. Note that the package specification is prefixed by ‘‘with Words;’’, because
it depends on that package.

Program 11.7 outlines the high-level procedures consult_user, pro-
cess_document, and main. The consult_user and process_document
procedures are nested inside the main procedure. (Instead, they could have
been compilation units in their own right.) Note that process_document
repeatedly calls get_word within a loop; if get_word throws end_error, the
corresponding exception handler exits the loop.

Compare this ADA program with its C counterpart (Programs 11.1–11.4).
There is no doubt that the ADA program is better-engineered in every respect. It
has a better architecture, due to its use of abstract types. It is more robust, due to
its use of exceptions. It is less concise, but far more easily maintainable.

292 Chapter 11 Imperative programming

with Ada.Text_IO; use Ada.Text_IO;
with Words; use Words;
with Dictionaries; use Dictionaries;

procedure main is

procedure consult_user (current_word: in out Word;
main_dict, ignored: in out Dictionary) is

-- Ask the user what to do with current_word, which is unknown.
-- If the user chooses to accept the word, make it a member of main_dict.
-- If the user chooses to ignore the word, make it a member of ignored.
-- If the user chooses to replace the word, get the user to enter a replacement word,
-- and update current_word.
begin

. . .

end;

procedure process_document (
main_dict, ignored: in out Dictionary) is

-- Copy all words and punctuation from the input document to the output
-- document, but ask the user what to do with any words that are unknown (i.e.,
-- not in main_dict or ignored).
in_doc, out_doc: File_Type;
current_word: Word;

begin
open(in_doc, in_file, "indoc.txt");
open(out_doc, out_file, "outdoc.txt");
loop

get_word(in_doc, out_doc, current_word);
if not contains(main_dict, current_word) and then

not contains(ignored, current_word) then
consult_user(current_word, main_dict, ignored);

end if;
put_word(out_doc, current_word);

end loop;
exception
when end_error =>

close(in_doc); close(out_doc);
end;

main_dict, ignored: Dictionary;
begin
load(main_dict, "dict.txt");
clear(ignored);
process_document(main_dict, ignored);
save(main_dict, "dict.txt");

end;

Program 11.7 Definitions of the consult_user, process_document, and main
procedures in ADA (in outline).

Summary

In this chapter:

• We have identified the key concepts of imperative programming: variables, com-
mands, procedural abstraction, and (more recently) data abstraction.

Exercises 293

• We have studied the pragmatics of imperative programming, comparing the dis-
advantages of programming with global variables with the advantages of data
abstraction.

• We have studied the design of two major, but very different, imperative programming
languages, C and ADA.

• We have compared two imperative implementations, in C and ADA, of a simple
spellchecker.

Further reading

The classic text on C is KERNIGHAN and RITCHIE (1989),
which served as a de facto standard that lasted until an
internationally-recognized standard was developed. The
most recent version of the standard is ISO/IEC (1999), and
is covered in the textbook by HARBISON and STEELE (1995).

C has been heavily criticized for its idiosyncratic syntax,
and for its many unsafe features such as weak type check-
ing and pointer arithmetic. The dangers facing unwary C
programmers are described in detail in KOENIG (1989).

The standard description of ADA83 is ICHBIAH (1983), and
that of ADA95 is ISO/IEC (1995). Unusually, and com-
mendably, the original ADA design team also published
a design rationale (ICHBIAH 1979), which explores many

important areas of programming language design and dis-
cusses the design decisions underlying the contemporary
version of ADA.

ADA was designed to meet requirements set out by the
US Department of Defense (1978). Their intention was
to make ADA mandatory for all new software contracts
(pure data processing software excepted). Unsurprisingly
in view of ADA’s predestined importance, the debate that
accompanied and followed the design process was vigor-
ous, sometimes generating more heat than light. Some of
the more notable contributions were by HOARE (1981),
LEDGARD and SINGER (1982), and WICHMANN (1984).

Exercises

Exercises for Section 11.1
11.1.1 Using your favorite imperative language, write both an iterative version and a

recursive version of a function procedure that computes bn, given b and n as
arguments. What local variables do you need in each version?

Exercises for Section 11.2
*11.2.1 Choose a small or medium-sized imperative program that you have designed

with global variables but without abstract types.
(a) Draw a diagram of your program’s architecture, along the lines of

Figure 11.1.

(b) Redesign your program systematically using abstract types. Draw a dia-
gram of your program’s new architecture, along the lines of Figure 11.2.

Exercises for Section 11.3
11.3.1 Consider the following C code:

p = 1; m = n; a = b;
while (m > 0) {

if (m % 2 != 0) p = p * a;
m = m / 2;
a = a * a;

}

294 Chapter 11 Imperative programming

Write a more concise version of this code. Is the concise version more or
less readable?

11.3.2 In a C switch command, control flows from the chosen subcommand to the
following subcommand (unless prevented by a break or other sequencer).
Can you think of a practical application where this feature is genuinely
useful?

*11.3.3 Independent compilation compromises type checking of a C program, par-
ticularly if the program’s compilation units are being developed by different
members of a programming team. Explain how disciplined use of #include
directives can mitigate the worst dangers of independent compilation. Could
the discipline be enforced by suitable software management tools?

**11.3.4 C does not support data abstraction or generic abstraction. Nevertheless, it
is possible to build a library of C program units that achieves some of the
benefits of data abstraction and generic abstraction.

(a) Show how you would write a C program unit that achieves the effect of
an abstract type. The program unit should provide a named type (such
as Date), together with some operations on that type, without revealing
how that type is defined.

(b) Now suggest how you might achieve the effect of a generic abstract type.
You must enable a program unit that implements a generic abstract type
(such as List) to be instantiated as required.

Application programmers should be able to link these program units to their
programs. What software management tools would be needed, in addition to
the C compiler?

11.3.5 Finish the coding of the C spellchecker of Programs 11.1–11.4.

11.3.6 Modify the C spellchecker of Programs 11.1–11.4 to use a third dictionary,
the user dictionary. Any unknown words accepted by the user are to be added
to the user dictionary, which must be saved when the program finishes. The
main dictionary is no longer to be updated.

Exercises for Section 11.4

11.4.1 ADA formal parameter declarations do not directly reveal the underlying
parameter mechanisms. What do they reveal? Summarize the advantages
and disadvantages of this design decision.

11.4.2 An ADA package is divided into a package specification and a package body.
Summarize the advantages and disadvantages of this design decision.

11.4.3 Consider the Dictionaries package of Program 11.6(a) and (b). Assume
the following representation of the Dictionary type:

capacity: constant Positive := 1000;
type Dictionary is

record
size: Integer range 0 .. capacity;
words: array (1 .. capacity) of Word;

end record;
-- The words are stored in ascending order in words(1..size).

Exercises 295

(a) Ifd1 andd2 areDictionary variables, andw is aWord variable, which
of the following ADA commands would be legal in the application code?

d1.words(1) := w;
add(d1, w);
d2 := (d1.size, d1.words);
d2 := d1;
if d1 = d2 then . . . end if;
if d1.size > 0 then . . . end if;

(b) How would your answers to (a) be affected if Dictionary were a
private type rather than a limited private type?

*11.4.4 ADA insists that generic procedures are instantiated before being called.

(a) In principle, we could allow a generic proper procedure to be instantiated
in the procedure call itself, e.g.:

swap(Integer)(a(i), a(i+1));

where swap is the generic procedure of Example 11.12. ADA does not
actually allow this, but the same effect can be achieved (less concisely)
by an ADA block command. Show how.

(b) A similar effect cannot be achieved for a generic function procedure.
Why not?

(c) Investigate why ADA insists that generic procedures are instantiated
before being called.

**11.4.5 When ADA was first designed, all of the following features were controversial:
(a) exceptions; (b) overloading; (c) generic units. Was each feature well
designed, or could it have been better designed, or should it have been
omitted altogether?

11.4.6 Finish the coding of the ADA spellchecker of Programs 11.5–11.7.

11.4.7 Modify the ADA spellchecker of Programs 11.5–11.7 to use a user dictionary,
as in Exercise 11.3.6. How easy are these modifications to make, compared
to those of Exercise 11.3.6?

Chapter 12

Object-oriented programming

In this chapter we shall study:

• the key concepts that characterize object-oriented programming languages;

• the pragmatics of object-oriented programming;

• the design of two major object-oriented languages, C++ and JAVA;

• the object-oriented features of ADA95.

12.1 Key concepts
In Chapter 11 we saw that data abstraction has become an important concept in
modern imperative languages. In fact, we can design entire programs in terms of
abstract types or classes. If we go one step further and introduce class hierarchies,
we reach a distinct programming paradigm, object-oriented programming.

The key concepts of object-oriented programming are:

• objects
• classes and subclasses
• inheritance
• inclusion polymorphism.

An object has one or more variable components, and is equipped with methods
that operate on it. The object’s variable components are typically private, and thus
can be accessed only by the object’s methods.

Objects give us a natural way to model real-world entities. Recall the example
of an aircraft flight control program from Section 11.1. The aircraft’s state includes
its position, altitude, speed, payload, fuel load, and so on. Note that physical laws
do not allow the aircraft’s state to change suddenly: its position, altitude, and speed
change gradually during flight, its fuel load decreases gradually, and (if it is an
airliner) its payload does not change at all. The aircraft’s state could be modeled
by an object, equipped with methods that allow it to change only in accordance
with physical laws. This is more reliable than modeling the aircraft’s state by a
group of ordinary variables, which the program could update arbitrarily.

Objects also give us a natural way to model cyber-world entities such as files,
databases, Web pages, and user interface components. Consider a Web page that
presents economic data derived from a database. The individual pieces of data are
not supposed to be changed independently (because of the risk of inconsistency),

297

298 Chapter 12 Object-oriented programming

and the fixed contents of the page (such as captions) are not supposed to change
at all. The page could be modeled by an object equipped with methods to ensure
that it is always updated atomically and with consistent data.

Classification of objects is a key characteristic of object-oriented languages.
A class is a family of objects with similar variable components and methods.
A subclass extends a class with additional components and/or additional (or
overriding) methods. Each subclass can have its own subclasses, so we can build a
hierarchy of classes.

Inheritance is also characteristic of object-oriented languages. A subclass
inherits (shares) all the methods of its superclass, unless the subclass explicitly
overrides any of these methods. Indeed, a whole hierarchy of classes can inherit
methods from an ancestor class. Inheritance has a major impact on programmer
productivity.

Inclusion polymorphism is a key concept, enabling an object of a subclass
to be treated like an object of its superclass. This allows us, for instance, to
build a heterogeneous collection of objects of different classes, provided that the
collection is defined in terms of some common ancestor class.

Object-oriented programming has proved to be enormously successful, becom-
ing the dominant programming paradigm in the 1990s. The reasons for its success
are clear, at least in hindsight. Objects give us a very natural way to model both
real-world and cyber-world entities. Classes and class hierarchies give us highly
suitable (and reusable) units for constructing large programs. Object-oriented
programming fits well with object-oriented analysis and design, supporting the
seamless development of large software systems.

12.2 Pragmatics
The program units of an object-oriented program are classes. Classes may be
related to one another by dependency (operations of one class call operations of
another class), by inclusion or extension (one class is a subclass of another class),
or by containment (objects of one class contain objects of another class).

A class is akin to a type, whose representation is determined by the class’s
variable components. If the variable components are public, they can be accessed
directly by other classes, giving rise to tight coupling. If the variable components
are private, the class is akin to an abstract type, ensuring loose coupling; a change
to the class’s representation will have little or no effect on other classes.

However, the inclusion relationship is a potential source of tight coupling,
peculiar to object-oriented programs. If a subclass can access its superclass’s
variable components directly, the two classes are tightly coupled, since any change
to the superclass’s variable components will force changes to the subclass’s
implementation. (On the other hand, if the subclass cannot access its superclass’s
variable components directly, it must operate on them indirectly by calling the
superclass’s methods, which is an overhead.) In a large hierarchy of classes, the
problem of tight coupling is significant: any change to an ancestor class’s variable
components could force changes to all of its subclasses’ implementations.

Figure 12.1 illustrates the architecture of a (small) object-oriented program,
showing dependency and inclusion relationships. Compare this with Figure 11.2,

12.3 Case study: C++ 299

contains

Word-Set

Word-Set()
add

SpellChecker

main
process-document

consult-user

save

Dictionary

load
Dictionary()

Word

get-word
put-word

C1 calls an
operation of
C2

class named C,
with operations
named O1, …,
Om

C

O1

…
Om

Notation: C1

…

C2

…

C2 is a
subclass
of C1

C1

…

C2

…

Figure 12.1 Architecture of an object-oriented program.

which shows the architecture of an imperative program with data abstraction.
The major difference is that an object-oriented program may contain subclasses.
A minor difference is that a (pure) object-oriented program consists entirely
of classes, so the individual procedures of an imperative program become class
methods in an object-oriented program.

12.3 Case study: C++

C++ was designed by Bjarne Stroustrup, who started in 1979 by extending C
with classes. Thereafter, C++ gradually evolved by the addition of subclasses,
overridable (‘‘virtual’’) functions, overloading, and many other features. An
internationally-recognized standard version of C++ was agreed in 1998. Stan-
dardization of C++ was coordinated with the contemporary standardization of C,
ensuring that C remains a subset of C++ in all but a few minor respects (meaning
that most C programs are also C++ programs).

It is notoriously difficult to extend an existing programming language suc-
cessfully. The joins tend to be clearly visible. In this case, C++’s high-level data
abstraction features sit uneasily with (and are indeed undermined by) the low-level
features of C. Nevertheless, C++ has proved highly successful in practice, being
widely used for both system and application programming, and introducing many
imperative programmers to object-oriented programming.

300 Chapter 12 Object-oriented programming

We have already seen an overview of C in Section 11.3. To avoid repetition,
the overview of C++ in this section concentrates on where it differs from C.

12.3.1 Values and types

C++ takes its primitive types largely from C. C++ does have a boolean type, bool,
but it is classified as an integer type (with values 0 and 1), and it seems to be
underused in practice.

C++ also takes its composite types largely from C. In addition C++ supports
objects, but in fact it makes little distinction between structures and objects. Both
structures and objects may be equipped with methods, but only objects support
encapsulation.

C++’s expression repertoire is similar to C’s. C++ is also an expression-
oriented language.

C++’s type system is rather more complex, supporting inclusion polymorphism
and overloading. Moreover, C++ has stronger type checking than C. In particular,
C++ function calls are always type-checked, even if the called function is in a
different compilation unit. Pointer arithmetic remains, however, and undermines
type checking. For example, if p is of type char*, the legal expression p+7 is also
of type char*, but the result could be a pointer to a variable of any type!

12.3.2 Variables, storage, and control

Like C, C++ supports global and local variables. Unlike C, C++ also explicitly
supports heap variables, which are created by the new allocator and destroyed by
the delete deallocator.

C++ includes all C’s commands and sequencers. In addition, C++ supports
exceptions, which are ordinary objects. Typically, an exception object is con-
structed just before being thrown; when the exception is caught, the handler can
inspect it to determine what value it carries.

A C++ function may specify which classes of exceptions it may throw. A
function with no exception specification could throw any exception. It is not
possible to specify that a function never throws an exception.

12.3.3 Bindings and scope

A C++ program consists of declarations of global types, global variables, func-
tions, classes, and generic units (‘‘templates’’). The main program is a function
named main.

Within a C++ class declaration, we declare that class’s components: variables,
constructors, and methods.

Within a C++ function, constructor, or method, we may declare formal
parameters, local variables, and local types.

A C++ parameter or variable may be declared with the specifier const, in
which case it may be inspected but not updated. (Moreover, a pointer type may
specify its referents const, in which case the referents may be inspected but
not updated.)

12.3 Case study: C++ 301

12.3.4 Procedural abstraction

C++ supports function procedures, constructors, and methods. Methods differ
from ordinary functions only in that they are attached to objects. The result type
of a function or method may be void or any other type.

C++ supports both copy-in and reference parameters. Unlike C, C++ does not
force us to pass an explicit pointer to achieve the effect of a reference parameter.

EXAMPLE 12.1 C++ function with reference parameters

In the following C++ function, min and max are reference parameters:

void minimax (int a[], int n, int& min, int& max) {
// Set min to the minimum, and max to the maximum, of the integers in
// a[0], . . . ,a[n-1].

min = max = a[0];
int i;
for (i = 1; i < n; i++) {
int elem = a[i];
if (elem < min) min = elem;
else if (elem > max) max = elem;

}
}

Here is a possible call to this function:

int[] temps = {13, 15, 20, 18, 21, 14, 12};
int low, high;
. . .

minimax(temps, 7, low, high);

The third and fourth arguments are (references to) the variables low and high, not
their values.

Compare this example with Example 11.6.

C++ supports context-independent overloading of functions (and constructors
and methods). In other words, two or more functions may share the same identifier
in the same scope provided only that they differ in their parameter types or
numbers. Also, C++ treats its operators exactly like functions: we may overload
any existing operator by providing an additional definition. (But we may not
invent new operator symbols.)

EXAMPLE 12.2 C++ overloaded functions

The following C++ functions are overloaded:

void put (ostream str, int i);
void put (ostream str, double r);

302 Chapter 12 Object-oriented programming

But it would be illegal to add the following overloaded function, because it differs from the
second function above only in its result type:

int put (ostream str, double r); // illegal!

EXAMPLE 12.3 C++ overloaded operators

The C++ library class ostream overloads the operator ‘‘<<’’ as follows:

class ostream : . . . {
// An ostream object is a text output stream.

. . .

public:
ostream& operator<< (char c); // Write c to this stream.
ostream& operator<< (int i); // Write i to this stream.
ostream& operator<< (double r); // Write r to this stream.
. . .

}

Using this class we can write:

ostream out;
int n;
. . .

out << (n/100); out << '%';

or, even more concisely:

out << (n/100) << '%';

12.3.5 Data abstraction

C++ supports data abstraction by means of classes. A class declaration names the
class itself and its superclass(es), and declares the class’s variable components and
operations (constructors and methods).

In C++’s terminology, a subclass is called a ‘‘derived class’’, a superclass is
called a ‘‘base class’’, and a method is simply called a ‘‘function’’.

A class declaration need only declare the class’s operations. The class declara-
tion may also define these operations, but more usually they are defined elsewhere.

The class declaration must also distinguish between public, private, and
protected components. A public component can be accessed anywhere. A private
component can be accessed only by the operations of the class itself. A protected
component can be accessed only by operations of the class itself and its subclasses,
and by ‘‘friend’’ functions of these classes. Full encapsulation is achieved by
making the variable components private or protected, and making only the
operations public.

The class declaration also distinguishes between two kinds of variable compo-
nents: class variables and instance variables. An instance variable is a component
of every object of the class, and a distinct copy of the instance variable exists for
every object of that class. A class variable (distinguished by the specifier static)

12.3 Case study: C++ 303

is global in the sense that it exists throughout the program’s run-time, and only
one copy of the class variable exists in the program.

Likewise, the class declaration distinguishes between two kinds of methods:
instance methods and class methods. An instancemethod is attached to a particular
object of the class, can access that object’s instance variables, and thus operates
on that object. A class method (also distinguished by the specifier static) is
not attached to a particular object, and so cannot access the instance variables;
however, it can access the class variables.

A constructor initializes a newly-created object of the class. Each con-
structor is named after the class to which it belongs. Overloading allows a
class to have several constructors with the same name but different parameter
types.

A C++ object may be a global, local, or heap variable. C++ adopts copy
semantics for all values, including objects. However, the effect of reference
semantics can be achieved by using pointers to objects.

EXAMPLE 12.4 C++ local and heap objects

Consider the following C++ class declaration (which defines all its operations):

class Person {

private:

char* surname, forename;
bool female;
int birth_year;

public:
Person (char* sname, char* fname, char gender,

int birth) {
surname = sname;
forename = fname;
female = (gender == 'F' || gender == 'f');
birth_year = birth;

}

char[] get_surname () {
return surname;

}

void change_surname (char* sname) {
surname = sname;

}

virtual void print () {
. . . // print this person’s name

}

}

304 Chapter 12 Object-oriented programming

The following code declares three local Person variables:

{ Person pc("Curie", "Pierre", 'M', 1859);
Person ms("Sklodowska", "Marie", 'F', 1867);
Person mc;
mc = ms;
mc.change_surname(pc.get_surname());

}

The first declaration declares a local object pc (of class Person), and initializes it by
calling the Person constructor with suitable arguments. The second declaration similarly
declares a local object ms. The third declaration declares a local object mc, but does not
initialize it. The assignment ‘‘mc = ms;’’ copies the object ms into mc. The subsequent
call ‘‘mc.change_surname(. . .);’’ updates mc, but not ms.

The following code declares three pointers to Person variables:

{ Person* ppc =
new Person("Curie", "Pierre", 'M', 1859);

Person* pms =
new Person("Sklodowska", "Marie", 'F', 1867);

Person* pmc;
pmc = pms;
pmc->change_surname(ppc->get_surname());
pms->print();

}

The first declaration allocates a heap object (of class Person), initializes it by calling
the Person constructor, and makes the variable ppc point to that object. The second
declaration similarly makes the variable pms point to a newly-allocated heap object. The
third declaration declares a pointer variable pmc, but does not initialize it. The assignment
‘‘pmc = pms;’’ makes pmc point to the same object as pms (achieving the effect of
reference semantics). The subsequent call ‘‘pmc->change_surname(. . .);’’ updates
the object that both pms and pmc point to.

Although data abstraction is supported by C++ classes, it is undermined
by other C++ features. For instance, if o is an object with a private variable
component v, a malicious programmer who knows how the object is represented
can access o.v by pointer arithmetic, starting with a pointer to o itself.

C++ supports multiple inheritance: a class may have any number of super-
classes. A conceptual problem arises if a class inherits synonymous (but distinct)
components from two or more superclasses: any references to such components
will be ambiguous (or at least misleading). Moreover, multiple inheritance is
awkward to implement efficiently. On the other hand, multiple inheritance is
natural in some applications. The concept of multiple inheritance is therefore
controversial.

C++ supports inclusion polymorphism in the sense that an object of a sub-
class can be treated like an object of its superclass when they are accessed
through pointers.

12.3 Case study: C++ 305

EXAMPLE 12.5 C++ inclusion polymorphism

Consider the Person class from Example 12.4 and the following subclass:

class Student : public Person {

private:

int student_id;
char* degree;

public:

Student (char* sname, char* fname, char gender,
int birth, int id, char* deg) {

surname = sname;
forename = fname;
female = (gender == 'F' || gender == 'f');
birth_year = birth;
student_id = id;
degree = deg;

}

void change_degree (char* deg) {
degree = deg;

}

virtual void print () {
. . . // print this student’s name and id

}

}

The following code declares and uses an array of Person objects:

Person p[10];
Person dw("Watt", "David", 'M', 1946);
Student jw("Watt", "Jeff", 'M', 1983, 0100296, "BSc");
p[0] = dw;
p[1] = jw; // illegal!

The latter assignment is illegal because the types Person and Student are incompatible.
However, compare the following code, which declares and uses an array of pointers to

Person objects:

Person* pp[10];
Person* pdw = new Person("Watt", "David", 'M', 1946);
Student* pjw = new Student("Watt", "Jeff", 'M', 1983,

0100296, "BSc");
pp[0] = pdw;
pp[1] = pjw; // legal
for (int i = 0; i < 2; i++)

pp[i]->print(); // safe

The assignment to pp[1] is legal because the types Person* and Student* are
compatible. Moreover, the method call ‘‘pp[i]->print()’’ is safe, and will call either

306 Chapter 12 Object-oriented programming

the Person class’s print method or the Student class’s print method, depending on
the class of the object that pp[i] points to. This is dynamic dispatch.

12.3.6 Generic abstraction

As we saw in Sections 7.1.2 and 7.2.2, C++ supports generic classes. A generic
class can be parameterized with respect to values, variables, types, and functions
on which it depends. Here we give one further example, this time illustrating a
function parameter.

EXAMPLE 12.6 C++ generic class with type and function parameters

The following generic class supports priority queues, where the queue elements are of any
type equipped with a less function:

template
<class Element,
bool less (Element x, Element y)
>

class Priority_Queue {

// A Priority_Queue object is a priority queue, where the queue
// elements are of any type Element equipped with a less function.

private:

. . . // representation

public:

Priority_Queue ();
// Construct an empty priority queue.

void add (Element e);
// Add e to this priority queue.

Element remove ();
// Remove and return the least element from this priority queue.

}

The class is parameterized with respect to the type Element and the function less. The
definitions of the add and remove methods will use less to compare two Element
values.

Application code could instantiate this package as follows:

struct Print_Job {
int owner_id;
int timestamp;
char* ps_filename;

}

bool earlier (Print_Job job1, Print_Job job2) {
return (job1.timestamp < job2.timestamp);

12.3 Case study: C++ 307

}

typedef Priority_Queue<Print_Job, earlier>
Print_Queue;

This type definition generates an ordinary class, named Print_Queue, from the generic
class by substituting Print_Job for Element, and earlier for less.

C++ also supports generic functions. A generic function gives us an extra level
of abstraction.

EXAMPLE 12.7 C++ generic function with a type parameter

The following defines a swapping function that is parameterized with respect to the type
Item of the values being swapped:

template
<class Item>

void swap (Item& x, Item& y) {
Item z = x;
x = y; y = z;

}

We can call this function without first instantiating it:

int a[];
. . .

swap(a[i], a[j]);

Here swap is called with two arguments of type int&. The C++ compiler infers that the
generic function must be instantiated with int substituted for Item.

12.3.7 Independent compilation and preprocessor directives

C++ inherits independent compilation and preprocessor directives from C. How-
ever, C++ implementations have found ways to mitigate the worst of the problems
mentioned in Section 11.3.5. In particular, type checking between compilation
units can be achieved by encoding type information in each function’s name.
Programmers are still expected to use #include directives in a disciplined way,
but accidental or deliberate departures from such discipline are not necessarily
detected by the C++ compiler.

12.3.8 Class and template library

Like other object-oriented languages, C++ is well suited for writing class libraries.
The C++ standard library comprises classes supporting general utilities, strings,
numerical (including complex) computation, and input/output. There are also

308 Chapter 12 Object-oriented programming

classes needed to support the language itself: storage allocation and deallocation,
and exception handling.

There is also a C++ standard template library, which comprises generic
container classes (stacks, queues, priority queues, lists, vectors, sets, multisets,
maps, and multimaps) and generic functions (searching, sorting, merging, copying,
and transforming).

12.3.9 A simple spellchecker

To conclude this overview of object-oriented programming in C++, let us examine
a C++ implementation of the simple spellchecker specified in Section 11.2.1. The
program consists of several compilation units, and is shown in Programs 12.1–12.4.
Its architecture resembles Figure 12.1, except that its top-level program units are
independent functions rather than methods.

Program 12.1(a) shows a header file for the Word class, which is equipped
with a constructor and two class methods. Program 12.1(b) outlines definitions of
the constructor and class methods. Note that get_word returns a status flag to
indicate whether it has read a word or reached the end of the input document.
(An alternative design would have been to make get_word throw an exception
on reaching the end of the input document, but that would have been inconsistent
with the design of C++’s input/output library.)

Program 12.2(a) shows a header file for theWord_Set class, which is equipped
with a constructor and two methods. Program 12.2(b) outlines definitions of the
Word_Set constructor and methods.

#include <fstreamio.h>

class Word {

// Each Word object is a single word.

private:

. . . // representation of a word

public:

Word (String spelling);
// Construct a word with spelling.

static int get_word (ifstream& in_doc,
ofstream& out_doc, Word& wd);

// Read the next word from in_doc, copying any preceding punctuation to
// out_doc. Return nonzero if there is no next word to be read.

static void put_word (ofstream& out_doc, Word wd);
// Write wd to out_doc.

};

Program 12.1(a) Header file for Word class in C++ (Word.h).

12.3 Case study: C++ 309

#include <fstreamio.h>
#include "Word.h"

Word::Word (String spelling) {
. . .

}

int Word::get_word (ifstream& in_doc,
ofstream& out_doc, Word& wd) {

. . .

}

void Word::put_word (ofstream& out_doc, Word wd) {
. . .

}

Program 12.1(b) Definitions of Word operations in C++ (in outline).

class Word_Set {

// Each Word_Set object is a set of words.

private:

. . . // representation of a set of words

public:

Word_Set ();
// Construct an empty set of words.

void add (Word wd);
// Make wd a member of this set of words.

bool contains (Word wd);
// Return true if and only if wd is a member of this set of words.

};

Program 12.2(a) Header file for Word_Set class in C++ (Word_Set.h).

Program 12.3(a) shows a header file for the Dictionary subclass, which is
equipped with its own constructor and methods as well as methods inherited from
its superclassWord_Set. Program 12.3(b) outlines definitions of theDictionary
constructor and methods.

Program 12.4 outlines the high-level functions consult_user,
process_document, and main. Note that process_document tests the status
flag returned by get_word, exiting the loop if the status flag indicates that the
end of the input document has been reached.

310 Chapter 12 Object-oriented programming

#include "Word.h"
#include "Word_Set.h"

. . . // auxiliary functions

Word_Set::Word_Set () {
. . .

}

void Word_Set::add (Word wd) {
. . .

}

bool Word_Set::contains (Word wd) {
. . .

}

Program 12.2(b) Definitions of Word_Set operations in C++ (in outline).

class Dictionary : public Word_Set {

// Each Dictionary object is a set of words that can be loaded and saved.

public:

Dictionary ();
// Construct an empty dictionary.

void load (char* filename);
// Load this dictionary from filename.

void save (char* filename);
// Save this dictionary to filename.

};

Program 12.3(a) Header file for Dictionary class in C++ (Dictionary.h).

#include "Word_Set.h"
#include "Dictionary.h"

. . . // auxiliary functions

Dictionary::Dictionary () {
. . .

}

void Dictionary::load (char* filename) {
. . .

}

void Dictionary::save (char* filename) {
. . .

}

Program 12.3(b) Definitions of Dictionary operations in C++ (in outline).

12.4 Case study: JAVA 311

#include <fstreamio.h>
#include "Word.h"
#include "Word_Set.h"
#include "Dictionary.h"

void consult_user(Word& current_word,
Dictionary& main_dict,
Dictionary& ignored) {

// Ask the user what to do with current_word, which is unknown.
// If the user chooses to accept the word, make it a member of main_dict.
// If the user chooses to ignore the word, make it a member of ignored.
// If the user chooses to replace the word, get the user to enter a replacement word,
// and update current_word.

. . .

}

void process_document (Dictionary& main_dict,
Dictionary& ignored) {

// Copy all words and punctuation from the input document to the output document,
// but ask the user what to do with any words that are unknown (i.e., not in
// main_dict or ignored).
Word current_word;
ifstream in_doc(. . .);
ofstream out_doc(. . .);
for (;;) {
if (Word::get_word(in_doc, out_doc, current_word)

!= 0)
break;

if (! main_dict.contains(current_word) &&
! ignored.contains(current_word))

consult_user(current_word, main_dict, ignored);
Word::put_word(out_doc, current_word);

}
in_doc.close(); out_doc.close();

}

int main () {
Dictionary main_dict;
Dictionary ignored;
main_dict.load("dict.txt");
process_document(main_dict, ignored);
main_dict.save("dict.txt");

}

Program 12.4 Definitions of consult_user, process_document, and main
functions in C++ (in outline).

12.4 Case study: JAVA

JAVA was designed in the mid-1990s by a SUN Microsystems team led by Bill
Joy. Although originally intended for embedded system applications, JAVA soon
evolved into a language suitable for Web applications. In particular, JAVA is well

312 Chapter 12 Object-oriented programming

suited for writing applets. An applet is an application program located on a Web
server; when selected by a user, the applet is downloaded and run on the user’s
(client) computer.

This application area imposes stringent requirements on both the program-
ming language and its implementation. An applet must behave predictably and
consistently on all computers. Even more importantly, it must be guaranteed safe.
If malicious applets could disrupt other programs or corrupt files on the user’s
computer, the user would quickly learn not to trust any applets.

JAVA meets these stringent requirements. Although it is a descendant of
C and C++, JAVA ruthlessly excludes unsafe and unpredictable features. Static
type checking and dynamic checks (on array indexing, for example) ensure
that erroneous operations are not performed. There are no explicit pointers.
Unreachable objects are automatically deallocated. Moreover, JAVA is usually
implemented in such a way (programs are compiled into virtual machine code)
that even the object code is portable.

JAVA experienced explosive growth during the later 1990s, paralleling the
growth of the Web itself. It is still used mainly for Web applications. Although
the JAVA language is also suitable for general-purpose programming, the usual
implementation makes execution of object code too slow for many applications.

Unlike C++, JAVA is a rather pure object-oriented language: all composite
values are objects, and a program consists entirely of classes. JAVA also supports
concurrent and distributed programming, although even these are built on object-
oriented concepts. (See Section 13.4.)

12.4.1 Values and types

JAVA’s primitive types are similar to those of C and C++. One important difference
is that their representations and operations are precisely stipulated by JAVA. For
instance, JAVA stipulates that int values are 32-bit two’s complement integers. (C
and C++ both allow their compilers to implement int in terms of the computer’s
native word length and arithmetic, insisting only that int has a wider range than
short int but a narrower range than long int.) Similarly, JAVA stipulates
that float values are IEEE standard 32-bit floating-point numbers.

All composite values in JAVA are objects. Even arrays are objects, although
C-like notation is retained for constructing and indexing arrays. JAVA does not
support records as such, but we can achieve the same effect by declaring a class
with public instance variables. Likewise, JAVA does not support disjoint unions as
such, but we can achieve the same effect by declaring a class and several subclasses
(one subclass for each variant). JAVA supports recursive classes: an object of a
given class may have variable component(s) of the same class.

JAVA complies only partially with the Type Completeness Principle. Constants,
variables, parameters, and method results can be of any type. However, there
are clear inconsistencies in the treatment of primitive values and objects. One
inconsistency, which shows up in assignment and parameter passing, is that copy
semantics is adopted for primitive values, while reference semantics is adopted
for objects. The following example illustrates another inconsistency.

12.4 Case study: JAVA 313

EXAMPLE 12.8 JAVA primitive values and objects

Consider the following method:

static boolean search (Object[] a, Object x) {. . .}
// Return true if and only if the array a contains an object that equals x.

Since every JAVA class is a subclass of Object, we can pass an array of objects of any class
to this method:

String[] words = {"a", "aardvark", . . .};
String word;
. . .

if (search(words, word)) . . .

We can even pass a heterogeneous array containing objects of different classes. But we
cannot pass an array of type int[] to this method, since int values are not objects.
Instead we must pass an array of type Integer[]:

Integer[] ints = {new Integer(2), new Integer(3),
new Integer(5), new Integer(7), . . .};

int n;
. . .

if (search(ints, new Integer(n))) . . .

Here ‘‘new Integer(n)’’ wraps the value of n in an Integer object. (Conversely,
‘‘intobj.intValue()’’ would unwrap the Integer object intobj to extract its int
value.)

Since JAVA now provides a wrapping coercion, we can actually abbreviate the above
code to:

Integer[] ints = {2, 3, 5, 7, . . . };
int n;
. . .

if (search(ints, n)) . . .

Here underlining shows the expressions where wrapping coercions take place.

JAVA provides a ‘‘wrapper’’ class for each of its eight primitive types:Integer
for int, Float for float, and so on. Thus any primitive value can be wrapped in
an object, and subsequently unwrapped. These wrapper objects can be used like
any other objects, but wrapping and unwrapping are time-consuming.

JAVA’s expression repertoire includes array constructions, constructor and
method calls, and conditional expressions, but no iterative expressions or block
expressions. An array construction allocates and initializes an array object, but is
allowed only on the right-hand side of a constant or variable declaration, as in
Example 12.8.

12.4.2 Variables, storage, and control

JAVA supports global, local, and heap variables. However, the only global variables
in a JAVA program are class variables, which will be discussed in Section 12.4.5.

314 Chapter 12 Object-oriented programming

Heap variables are objects created by the new allocator; these are destroyed
automatically when no longer reachable. Automatic deallocation (implemented
by a garbage collector) simplifies the programmer’s task and eliminates a common
source of errors.

JAVA inherits all C++’s commands and sequencers, except jumps. JAVA excep-
tions are objects of a subclass of Exception.

A JAVA method may specify which classes of exceptions it may throw;
a method with no exception specification may not throw any exception. The
compiler rigorously checks this information: if a method M (or a method called by
M) might throw an exception of class C, then either M must contain a handler for C
or M’s exception specification must include C. (At least, that is the basic principle.
In practice, the JAVA designers believed that it would be counterproductive to
insist on compile-time checking of low-level exceptions, such as those thrown by
arithmetic and array indexing operations. So they decided on a design compromise:
exceptions classified as low-level (‘‘unchecked exceptions’’) may be omitted from
exception specifications, and the compiler does not check them at all.)

12.4.3 Bindings and scope

A JAVA program consists of a number of class declarations, which may be grouped
into packages. The user must designate a class equipped with a method named
main, and that is the main program.

Within each class declaration we declare that class’s variable components,
constructors, methods, and inner classes. Within a constructor or method we may
declare local variables.

Any JAVA variable may be declared with the specifier final, allowing it to
be inspected but not updated. In effect it is a constant rather than a variable. The
specifier final may also be used when declaring a method, indicating that the
method is not overridable, or when declaring a class, indicating that the class may
not have subclasses.

12.4.4 Procedural abstraction

JAVA supports constructors and methods, which are always components of a par-
ticular class. Unlike C++, JAVA does not support procedures that are independent
of any class.

JAVA supports copy-in parameters only. In other words, the formal parameter
acts like a local variable that is initialized with the argument value. Where the
argument is a primitive value, it can be inspected but not updated. Where the
argument is an object, however, it is accessed through a pointer; the pointer
cannot be updated, but the object itself can. This gives us the effect of a reference
parameter mechanism for objects only.

A JAVA method has a single result (unless its type is void). This, together with
the copy-in parameter mechanism, makes it awkward to express a procedure with
two or more results. In Example 12.1 we saw a procedure that computes both the
minimum and the maximum of a given array of numbers. In most programming

12.4 Case study: JAVA 315

languages we could write a procedure with two copy-out or reference parameters;
in JAVA we are forced into circumlocution. (See Exercise 12.4.2.)

JAVA supports context-independent overloading of methods. This must not be
confused with method overriding. Suppose that a superclass and a subclass both
define methods with the same name. If the methods have the same parameter
types, the superclass’s method is overridden by the subclass. If the methods have
different parameter types, however, they are overloaded, and the superclass’s
method is inherited by the subclass.

12.4.5 Data abstraction

JAVA supports data abstraction by means of classes. A class declaration names
the class itself and its superclass (Object by default), declares the class’s variable
components, and defines its constructors and methods.

Like C++, JAVA distinguishes between instance variables and class variables,
and also between instance methods and class methods. Class variables and methods
are distinguished by the specifier static.

A constructor initializes a newly-created object of the class. In JAVA each
constructor is named after the class to which it belongs. Overloading allows a class
to have several constructors with the same name but different parameter types.

The class declaration must distinguish between public, private, and protected
components. A public component can be accessed anywhere. A private component
can be accessed only by the operations of the class itself. A protected component
can be accessed only by operations of the class itself, its subclasses, and other
classes in the same package. Full encapsulation is achieved by making the variable
components private (or at least protected), and making only the constructors and
methods public.

All JAVA objects are heap variables. Unlike C++, a JAVA object cannot be a
local or global variable.

JAVA supports inclusion polymorphism without restriction: an object of a
subclass can be treated like an object of its superclass in all circumstances.

EXAMPLE 12.9 JAVA inclusion polymorphism

Consider the following class:

class Person {

private String surname, forename;
private bool female;
private int birthYear;

public Person (String sname, String fname,
char gender, int birth) {

surname = sname;
forename = fname;
female = (gender == 'F' || gender == 'f');
birthYear = birth;

316 Chapter 12 Object-oriented programming

}

public String getSurname () {
return surname;

}

public void changeSurname (String sname) {
surname = sname;

}

public void print () {
. . . // print this person’s name

}

}

and the following subclass:

class Student extends Person {

private int student_id;
private String degree;

public Student (String sname, String fname,
char gender, int birth, int id,
String deg) {

. . .

}

void changeDegree (String deg) {
degree = deg;

}

void print () {
. . . // print this student’s name and id

}

}

The following code declares and uses an array of Person objects:

Person p = new Person[10];
Person dw = new Person("Watt", "David", 'M', 1946);
Student jw = new Student("Watt", "Jeff", 'M', 1983,

0100296, "BSc");
p[0] = dw;
p[1] = jw; // legal
for (int i = 0; i < 2; i++)

p[i].print(); // safe

The assignment to p[1] is legal because types Person and Student are compatible.
Moreover, the method call ‘‘p[i].print()’’ is safe, and will call either the Person
class’s print method or the Student class’s print method, depending on the class of
the object yielded by p[i]. This is dynamic dispatch.

12.4 Case study: JAVA 317

12.4.6 Generic abstraction

Until 2004 JAVA did not support generic abstraction. This was a notable weak-
ness, forcing programmers into over-reliance on inclusion polymorphism, as the
following example illustrates.

EXAMPLE 12.10 JAVA collection class

Consider the following class:

class Stack {

// A Stack object represents a stack whose elements are objects.

private Object[] elems;
private int depth;

public Stack () { depth = 0; }

public void push (Object x) { elems[depth++] = x; }

public Object pop () { return elems[--depth]; }

public boolean isEmpty () { return (depth == 0); }

}

Since every JAVA class is a subclass of Object, a Stack object may contain objects of any
class. It may even be heterogeneous, containing objects of different classes:

Stack stack = new Stack();
String s1 = . . .; Date d1 = . . .;
stack.push(s1);
stack.push(d1);
. . .

Date d2 = (Date)stack.pop();
String s2 = (String)stack.pop();

But now consider the following code:

Stack stack = new Stack();
for (. . .) {

String s = . . .;
stack.push(s);

}
while (! stack.isEmpty()) {

String s = (String)stack.pop();
. . .

}

A human reader can easily see that only String objects are pushed on to stack, so only
String objects can be popped. But the compiler cannot see that; it can infer only that the

318 Chapter 12 Object-oriented programming

type of the method call ‘‘stack.pop()’’ is Object, hence the need to cast the result to
type String.

Instead, we can implement stacks using a generic class, as follows:

class Stack <Item> {

// A Stack<Item> object represents a stack whose elements are objects
// of class Item.

private Item[] elems;
private int depth;

public Stack () { depth = 0; }

public void push (Item x) { elems[depth++] = x; }

public Item pop () { return elems[--depth]; }

public boolean isEmpty () { return (depth == 0); }

}

Now the above application code would be written as follows:

Stack<String> stack = new Stack<String>();
for (. . .) {

String s = . . .;
stack.push(s);

}
while (! stack.isEmpty()) {

String s = stack.pop();
. . .

}

12.4.7 Separate compilation and dynamic linking
A JAVA program is always compiled one class at a time. Each class is said to
import the other classes on which it depends. (Classes in the same package are
automatically imported, as are classes in the java.lang package. All other
classes must be explicitly named in an import clause.) When a class is compiled,
it is type-checked against the imported classes, which must have been compiled
previously. Thus the entire program is statically type-checked. Type checking of
a JAVA program includes enforcement of protections, for instance preventing any
class from accessing the private variables and methods of an imported class.

JAVA implementations employ dynamic linking. Consider an applet consisting
of several compiled classes, located on some Web server. Initially only one class’s
object code is downloaded from the server, namely the class containing the
main program, which immediately starts running. Each other class’s object code
is downloaded and linked to the running program only when (and if) needed.
Dynamic linking spreads the overhead of downloading the classes that constitute
the program. (Potentially it will reduce the overhead, if some of the classes are not
needed in a particular run of the program.)

Unfortunately, dynamic linking undermines the security of static type check-
ing, since there is no guarantee that the run-time environment (consisting of the

12.4 Case study: JAVA 319

classes that may be linked into the running program) is the same as the compile-
time environment (consisting of the imported classes against which each class was
type-checked). The JAVA dynamic linker attempts to repeat the type checks, but
is unable to do so accurately.

EXAMPLE 12.11 JAVA dynamic linking

Assume that the following class is given:

class Widget {

private . . . secret;

public Widget () {. . .} // constructor accessing secret

public . . . // methods accessing secret

}

Suppose that a malicious programmer wishes to write a main program that accesses
w.secret directly:

class Malicious {

public static void main (. . .) {
Widget w = new Widget();
. . . w.secret . . .

}

}

Fortunately, the JAVA compiler will reject this illegal attempt to access a private instance
variable.

However, if the programmer manages to obtain the Widget class’s source code, he
compiles a modified version:

class Widget {

public . . . secret; // Now secret is public!

public Widget () {. . .}

public . . . // methods

}

and then compiles Malicious importing the modified version of the Widget class.
Finally, he arranges that the original version of the Widget class is in the program’s
run-time environment. The Malicious program then successfully accesses w.secret.

12.4.8 Class library

JAVA has an enormous class library, consisting of roughly 600 classes. For con-
venience they are grouped into about 130 packages, each package comprising

320 Chapter 12 Object-oriented programming

a number of related classes and interfaces. These packages support applets,
collections, component frameworks, cryptography, database access, distributed
programming, events, exceptions, graphical user interfaces, images, input/output,
mathematics, security, sound, threads, XML, and a great deal more.

Classes are particularly good as reusable program units, and most object-
oriented languages have rich class libraries. Even so, JAVA’s class library is
exceptionally rich. In a typical JAVA program, most of the classes come from the
class library, saving programmers the tedium of repeatedly reinventing wheels.

12.4.9 A simple spellchecker

To conclude this overview of object-oriented programming in JAVA, let us examine
a JAVA implementation of the simple spellchecker specified in Section 11.2.1. The
program’s architecture is shown in Figure 12.1, and consists entirely of classes.

Program 12.5 outlines the Word class, which is equipped with a constructor
and two class methods. Note that thegetWordmethod throws anEOFException
if it reaches the end of the input document, and this class is named in the method’s
exception specification.

import java.io.*;

class Word {

// Each Word object is a single word.

private . . .; // representation of a word

public Word (String spelling) {
// Construct a word with spelling.

. . .

}

public static Word getWord (BufferedReader inDoc,
BufferedWriter outDoc)

throws EOFException {
// Read the next word from inDoc and return it, copying any preceding
// punctuation to outDoc. Throw an EOFException if there is no next word
// to be read.

. . .

}

public static void putWord (BufferedWriter outDoc,
Word wd) {

// Write word wd to outDoc.
. . .

}

}

Program 12.5 Word class in JAVA (in outline).

12.4 Case study: JAVA 321

class WordSet {

// Each WordSet object is a set of words.

private . . .; // representation of a set of words

public WordSet () {
// Construct an empty set of words.

. . .

}

public void add (Word wd) {
// Make wd a member of this set of words.

. . .

}

public boolean contains (Word wd) {
// Return true if and only if wd is a member of this set of words.

. . .

}

}

Program 12.6 WordSet class in JAVA (in outline).

Program 12.6 outlines theWordSet class, which is equipped with a constructor
and two methods.

Program 12.7 outlines the Dictionary class, which is equipped with its
own constructor and methods as well as methods inherited from its superclass
Word_Set.

Program 12.8 outlines the high-level SpellChecker class. This consists of
methods consultUser, processDocument, and main. Note that process-
Document catches any EOFException thrown by getWord, and the exception
handler exits the loop.

This JAVA program with its C++ counterpart (Programs 12.1–12.4) highlight
many of the similarities and differences between the two languages. JAVA is
closer to being a pure object-oriented language, in that the program consists
entirely of classes, all composite values are objects, objects are accessed uniformly
through pointers (which effectively makes the pointers invisible), and so on.
Thus JAVA programs tend to be easier to implement and to maintain. C++ is
a multi-paradigm language, supporting both object-oriented programming and
C-style imperative programming. Thus C++ is much more flexible than JAVA, but
C++ programs tend to be harder to implement and to maintain. Finally, both
JAVA and C++ enable programs to use exceptions to achieve robustness. While
JAVA’s class library consistently uses exceptions, however, C++’s input/output
library still uses status flags, which tends to discourage the use of exceptions in
application code.

322 Chapter 12 Object-oriented programming

class Dictionary extends WordSet {

// Each Dictionary object is a set of words that can be loaded and saved.

private . . . // auxiliary methods

public Dictionary () {
// Construct an empty dictionary.

. . .

}

public void load (String filename) {
// Load this dictionary from filename.

. . .

}

public void save (String filename) {
// Save this dictionary to filename.

. . .

}

}

Program 12.7 Dictionary class in JAVA (in outline).

12.5 Case study: ADA95

At the time when ADA83 was designed, the potential of object-oriented program-
ming was not yet widely recognized. In the 1990s, however, the ADA designers
made support for object-oriented programming a priority when they revised the
language, which became known as ADA95.

Surprisingly few new features had to be added to ADA. The designers took
the view that the key concepts of object-oriented programming (Section 12.1) are
based on even more fundamental concepts. ADA83 already supported most of
these fundamental concepts, particularly private types and subtypes. ADA95 adds
a few new features: extensible tagged record types (to represent objects) and class-
wide types (to achieve inclusion polymorphism). We can use these concepts to
write object-oriented programs in ADA95, although with more effort than writing
the corresponding object-oriented programs in C++ or JAVA.

ADA95 is a multi-paradigm language, in which we can write imperative
programs, object-oriented programs, and hybrid programs. In Section 11.4 we
examined ADA’s support for imperative programming. In this section we briefly
examine ADA95’s support for object-oriented programming.

12.5.1 Types

In ADA95, a tagged record is like an ordinary record, except that it has an implicit
tag field that can be tested at run-time. All records of a tagged record type T have
the same components and the same tag.

12.5 Case study: ADA95 323

import java.io.*;

class SpellChecker {

public static Word consultUser (Word currentWord,
Dictionary mainDict, Dictionary ignored) {

// Ask the user what to do with currentWord, which is unknown.
// If the user chooses to accept the word, make it a member of mainDict.
// If the user chooses to ignore the word, make it a member of ignored.
// In either of these cases, return the same word.
// If the user chooses to replace the word, get the user to enter a replacement word,
// and return the replacement word.

. . .

}

public static void processDocument (Dictionary mainDict,
Dictionary ignored)

throws IOException {
// Copy all words and punctuation from the input document to the output
// document, but ask the user what to do with any words that are unknown (i.e.,
// not in mainDict or ignored).

BufferedReader inDoc = new BufferedReader(. . .);
BufferedWriter outDoc = new BufferedWriter(. . .);
try {
for (;;) {
Word currentWord = getWord(inDoc, outDoc);
if (! mainDict.contains(currentWord) &&

! ignored.contains(currentWord))
currentWord = consultUser(currentWord,

mainDict, ignored);
putWord(outDoc, currentWord);

}
}
catch (EOFException e) {
inDoc.close(); outDoc.close();

}
}

public static void main () {
Dictionary mainDict = new Dictionary();
Dictionary ignored = new Dictionary();
try {
mainDict.load("dict.txt");
processDocument(mainDict, ignored);
mainDict.save("dict.txt");

}
catch (IOException e) { . . . }

}

}

Program 12.8 SpellChecker class in JAVA (in outline).

324 Chapter 12 Object-oriented programming

Tagged record types are extensible. That is to say, we can derive a new tagged
record type U by extension of an existing tagged record type T. Tagged records
of type U have all the components of tagged records of type T, plus additional
components. Moreover, tagged records of type U have a different tag from tagged
records of type T.

Of particular importance is the class-wide type T'class. The values of type
T'class are tagged records of type T or any type derived from T.

EXAMPLE 12.12 ADA95 tagged records

Consider the following tagged record type:

type Point is
tagged record

x, y: Float;
end record;

Each value of this type is a tagged tuple Point(x, y).
Now consider the following tagged record type, which is derived from Point:

type Circle is new Point with
record

r: Float;
end record;

Each value of this type is a tagged tuple Circle(x, y, r). In the notation of Section 2.3:

Point = Point(Float × Float)
Circle = Circle(Float × Float × Float)

The values of type Point'class include the values of type Point, Circle, and
indeed any other type derived (directly or indirectly) from Point. In the notation of
Section 8.1.2:

Point‡ = Point(Float × Float) + Circle(Float × Float × Float) + . . .

The values of type access Point'class are pointers to variables of type Point,
Circle, or any other type derived from Point. This is illustrated by the following code:

type Point_Access is access Point'class;
pp: Point_Access;
. . .

pp := new Point'(3.0, 4.0); -- pp points to a point
pp := new Circle'(0.0, 0.0, 5.0); -- pp points to a circle

In practice, tagged records are used to represent objects. A private tagged
record type corresponds to a class, and a private extended tagged record type
corresponds to a subclass.

Example 12.12 exposes an important difference between ADA95 and JAVA.
ADA95 distinguishes between the type Point and the type Point'class. JAVA

12.5 Case study: ADA95 325

makes no such distinction, so a JAVA programmer cannot declare a variable that
is constrained to point to an object of class Point.

12.5.2 Data abstraction

ADA95’s treatment of classes is similar to its treatment of abstract types. To
introduce a new class we declare a private type, together with public procedures,
inside a package. In the package specification we declare the public procedures,
and (after private) we define the private type’s representation, which must be
a tagged record type. In the corresponding package body we define the public
procedures, and also any private procedures, in the usual way.

Each operation of an ADA95 class is an ordinary procedure. To enable the
procedure to operate on an object, we pass that object as an ordinary argument in
an ordinary procedure call ‘‘P(. . .,O, . . .)’’. (This contrasts with C++ or JAVA, in
which that object has a distinguished position in the method call: ‘‘O-> M(. . .)’’
or ‘‘O.M(. . .)’’.)

EXAMPLE 12.13 ADA95 class

Consider the following package specification:

package Persons is

type Person is tagged private;

procedure make_person (this: in out Person;
sname, fname: in Name;
gender: in Character;
birth: in Year_Number);

function get_surname (this: Person) return Name;

procedure change_surname (this: in out Person;
sname: in Name);

procedure print (this: in Person);
-- Print this person’s name.

private

type Person is
tagged record
surname, forename: Name;
female: Boolean;
birth_year: Year_Number;

end record;

end Persons;

This declares a type Person, whose values will be objects represented by tagged records.
This is revealed by the keyword tagged in the initial declaration of Person, although
the details are (as usual) revealed only in the private part of the package specification.

326 Chapter 12 Object-oriented programming

The procedure make_person acts as a constructor. Each of the procedures
get_surname, change_surname, and print operates on a Person object supplied
as an argument.

Here is the corresponding package body:

package body Persons is

procedure make_person (this: in out Person;
sname, fname: in Name;
gender: in Character;
birth: in Year_Number) is

begin
this := (sname, fname, (gender = 'F'), birth);

end;

function get_surname (this: Person) return Name is
begin
return this.surname;

end;

procedure change_surname (this: in out Person;
sname: in Name) is

begin
this.surname := sname;

end;

procedure print (this: in Person) is
begin

. . .

end;

end Persons;

Here is some possible application code:

use Persons;
pc, ms, mc: Person;
. . .

make_person(pc, "Curie", "Pierre", 'M', 1859);
make_person(ms, "Sklodowska", "Marie", 'F', 1867);
mc := ms;
change_surname(mc, get_surname(pc));
print(mc);

Note that changing mc’s surname has no effect on ms, as a consequence of ADA’s
copy semantics.

To introduce a subclass we declare a private type, together with public
procedures, inside a package. In the package specification we declare the public
procedures, and (after private) we define the private type’s representation,
which must be an extension of the tagged record type used to represent objects of
the superclass. (However, only additional procedures, and procedures intended
to override those of the superclass, are declared in this way.) In the corresponding

12.5 Case study: ADA95 327

package body we define these public procedures, and also any private procedures,
in the usual way.

It is usual (but not obligatory) to declare each class and subclass in a separate
package. If we wish to allow a subclass’s procedures direct access to the superclass’s
representation (i.e., the components of the tagged record), we can declare the
subclass in a child package. A child package is logically contained within its
parent package. It may access any component declared in the parent package
specification, including the private part. The relationship between parent and child
package is established by naming: if two packages are named P and P.Q, then
P.Q is a child of P.

ADA95 supports inclusion polymorphism. An object of a subclass can be
treated like an object of its superclass, since the superclass’s class-wide type
includes all such objects.

EXAMPLE 12.14 ADA95 subclass

Consider the Person class of Example 12.13. The following child package specification
declares a subclass:

package Persons.Students is

type Student is new Person with private;

procedure make_student (this: in out Student;
sname, fname: in Name;
gender: in Character;
birth: in Year_Number;
id: in Student_Id;
deg: in Degree_Title);

procedure change_degree (this: in out Student;
deg: in Degree_Title);

procedure print (this: in Student);
-- Print this student’s name and id.

private

type Student is new Person with
record
student_id: Student_Id;
degree: Degree_Title;

end record;

end Persons.Students;

We can tell from its name that the Persons.Students package is a child of the
Persons package. We can also tell from its declaration that the Student type is derived
from the Person tagged record type, although the details of the additional components
are revealed only in the private part of the package specification.

Note that the Student class inherits the Person class’s get_surname and
change_surname procedures, but overrides the print procedure.

328 Chapter 12 Object-oriented programming

The following code declares and uses an array of pointers to Person objects:

use Persons, Persons.Students;
type Person_Access is access Person'class;
pp: array (1 .. 10) of Person_Access;
dw: Person;
jw: Student;
. . .

make_person(dw, "Watt", "David", 'M', 1946);
make_student(jw, "Watt", "Jeff", 'M', 1983,

0100296, "BSc");
pp(1) := new Person'(dw);
pp(2) := new Student'(jw); // legal!
for i in 1 .. 2 loop

print(pp(i).all); // safe
end loop;

The assignment to pp(2) is legal because the types access Person and access
Student are both compatible with the type access Person'class. Moreover, the
procedure call ‘‘print(pp(i).all);’’ is safe, and will call either the Person class’s
print procedure or the Student class’s print procedure, depending on the tag of the
record that pp(i) points to. This is dynamic dispatch.

Summary
In this chapter:

• We have identified the key concepts of object-oriented programming: objects, classes
and subclasses, inheritance, and inclusion polymorphism.

• We have studied the pragmatics of object-oriented programming, showing that an
object-oriented program consists primarily of classes. Many classes are reusable.

• We have studied the design of two major object-oriented programming languages,
C++ and JAVA. We have also studied the object-oriented features of the multi-
paradigm language ADA95.

• We have compared two object-oriented implementations, in C++ and JAVA, of a
simple spellchecker.

Further reading

SIMULA67 was the first programming language to introduce
the concepts of objects, classes, and inheritance. How-
ever, SIMULA67 lacks encapsulation, so application code
can access any of an object’s components directly, resulting
in tight coupling. SIMULA67 is described in BIRTWHISTLE

et al. (1979).

SMALLTALK was the first pure object-oriented language, so
pure in fact that all values are objects. Even commands are
counted as objects (of class Block), and control struc-
tures like ‘‘if’’ and ‘‘while’’ are operations of that class.
Thus SMALLTALK is very economical of concepts, but it

is idiosyncratic with its strange syntax, dynamic typing,
and dynamic scoping. See GOLDBERG and ROBSON (1989)
for a very full account of SMALLTALK, including a lan-
guage overview, programming examples, descriptions of all
predefined classes, and implementation details.

EIFFEL was the first object-oriented language to demon-
strate that the benefits of object-oriented programming
can be achieved within a language that is statically typed
and statically scoped. An overview of EIFFEL may be
found in MEYER (1989), and a detailed account in MEYER

(1988).

Exercises 329

A full description of C++ may be found in STROUSTRUP

(1997), and an extended account of its design and evolution
in STROUSTRUP (1994). C++ is not a pure object-oriented
language; indeed, it was deliberately designed to allow
ordinary C-style programming. For an account of object-
oriented programming as a discipline for programming in
C++, see BOOCH (1987).

A whole library could be filled with all the books written
about JAVA. The most accessible introduction is FLANAGAN

(2002). The definitive description of JAVA is JOY et al.
(2000).

For a fuller account of object-oriented programming in
ADA95, see COHEN (1995).

For a more general overview of object-oriented program-
ming, including its relationship to various programming
languages, see COX (1986).

Exercises
Exercises for Section 12.1

*12.1.1 Using your favorite object-oriented language, design and implement a class
Relation. Each Relation object should represent a finite binary relation,
i.e., a set of pairs of objects. (See Section 15.1 for a discussion of relations.)

Exercises for Section 12.2
*12.2.1 Choose a small or medium-sized object-oriented program that you have

designed. Diagram this program’s architecture, along the lines of Figure 12.1.

Exercises for Section 12.3
12.3.1 Consider the C++ class Person of Example 12.4, the subclass Student of

Example 12.5, and the following array:

Person* vets[100];

(a) Exactly what values may be stored in the array vets?
(b) Write a code fragment that prints the surname of every person in vets.
(c) Write a code fragment that prints the name and student id (where appro-

priate) of every person in vets.
(d) Write a code fragment that changes the degree program of every student

in vets to ‘‘BVM’’.
12.3.2 Consider the C++ generic class Priority_Queue of Example 12.6.

(a) Modify the instantiation of the generic class to change the priority. Print jobs
should be prioritized so that smaller jobs are serviced before larger ones.

(b) Using the following class:

class Date {
int m, d;

static bool before (Date date1, date2) {
return (date1.m == date2.m ?

date1.d < date2.d :
date1.m < date2.m);

}

. . .

}

330 Chapter 12 Object-oriented programming

instantiate the generic class to declare a priority queue q whose elements
are Date objects prioritized by temporal order. Write code to add a few
dates to q, in no particular order. In what order would these dates be
removed from q?

12.3.3 Consider the C++ generic function swap of Example 12.7. If i1 and i2 are
int variables, and p1 and p2 are Person variables, which of the following
function calls are legal?

swap(i1, i2);
swap(p1, p2);
swap(i1, p1);

For each legal function call, state which type is substituted for the generic
function’s type parameter Item.

12.3.4 Finish the coding of the C++ spellchecker of Programs 12.1–12.4.
12.3.5 Modify the C++ spellchecker of Programs 12.1–12.4 to use a third dictionary,

the user dictionary. Any unknown words accepted by the user are to be added
to the user dictionary, which must be saved when the program finishes. The
main dictionary is no longer to be updated.

Exercises for Section 12.4
*12.4.1 Every JAVA object is a heap variable (accessed through a pointer), while a

C++ object may be either a global or local variable (accessed directly) or
a heap variable (accessed through a pointer). What are the advantages and
disadvantages of JAVA’s inflexibility?

12.4.2 Write a JAVA method that computes both the minimum and maximum of an
array of integers, like the C++ function of Example 12.1. Why is this awkward?

12.4.3 Consider the JAVA class Person and subclass Student of Example 12.9, and
the following array:

Person[] vets = new Person[100];

(a) Exactly what values may be stored in the array vets?
(b) Write a code fragment that prints the surname of every person in vets.
(c) Write a code fragment that prints the name and student id (where

appropriate) of every person in vets.
(d) Write a code fragment that changes the degree program of every student

in vets to ‘‘BVM’’.
12.4.4 Finish the coding of the JAVA spellchecker of Programs 12.5–12.8.
12.4.5 Modify the JAVA spellchecker of Programs 12.5–12.8 to use a user dictionary,

as in Exercise 12.3.5.

Exercises for Section 12.5
12.5.1 Consider the ADA95 class Person of Example 12.13, the subclass Student of

Example 12.14, and the following array:

type Person_Access is access Person'class;
vets: array (0 .. 99) of Person_Access;

(a) Exactly what values may be stored in the array vets?
(b) Write a code fragment that prints the surname of every person in vets.

Exercises 331

(c) Write a code fragment that prints the name and student id (where appro-
priate) of every person in vets.

(d) Write a code fragment that changes the degree program of every student
in vets to ‘‘BVM’’.

*12.5.2 Design and implement an ADA95 spellchecker, along the lines of the
C++ spellchecker (Programs 12.1–12.4) or the JAVA spellchecker (Programs
12.5–12.8).

Chapter 13

Concurrent programming

Concurrent programming is still quite immature, despite being nearly as old as programming
itself, and many different approaches are being actively developed. One consequence is that
concurrent programs must often be structured to suit a particular hardware architecture.
Such programs do not usually adapt well to dissimilar architectures. Much research is
aimed at solving this problem, which is one of the main obstacles in the way of much wider
exploitation of concurrency.

This chapter presents what may be termed the ‘‘classical’’ approach to concurrent
programming:

• It discusses issues arising from the interaction between concurrency and a number
of other programming language features, particularly scope rules, exceptions, and
object-orientation.

• It builds on the ideas of competition and communication introduced in Chapter 10,
and shows how they are realized in ADA95 and JAVA.

• It illustrates the concurrency features of ADA95 in depth, by means of a case study:
an implementation of the banker’s algorithm for the avoidance of deadlock.

• It presents a number of issues in the practical implementation of concurrency on
conventional computer hardware and operating systems.

13.1 Key concepts
Concurrent programming is so called because it allows the execution of commands
to be overlapped, either by an arbitrary interleaving – multiprogramming – or by
simultaneous execution on multiple CPUs – multiprocessing. (The word concur-
rent has Latin roots that literally mean ‘‘running together’’.)

The key concepts of concurrent programming are:

• parallel execution of two or more processes;
• inter-process synchronization;
• synchronized access to shared data by inter-process mutual exclusion;
• synchronized transfer of data by inter-process communication;

and, in more recent programming languages:

• concurrent control abstractions that support the above reliably.

Parallel execution is the essential difference between sequential and concurrent
programming. Once we allow the ordering of events in the execution of a program

333

334 Chapter 13 Concurrent programming

to be weaker than a total ordering, all the consequences discussed in Section 10.3
can follow. The most profound among them are (i) the possibility that update
operations on variables might fail to produce valid results, and (ii) the loss
of determinism. These issues amplify each other, and have the potential for
complete chaos.

Synchronization enables the programmer to ensure that processes interact
with each other in an orderly manner, despite these difficulties. Lapses of synchro-
nization are usually disastrous, causing sporadic and irreproducible failures.

Mutual exclusion of access to shared variables restores the semantics of vari-
able access and update. This is achieved by synchronization operations allowing
only one process to access a shared variable at any time. These operations are
costly, and must be applied with total consistency; otherwise (eventual) program
failure is inevitable. It is therefore desirable for high-level concurrent programming
languages to offer a reliable, compiler-implemented means of mutual exclusion.

Communication provides a more general form of interaction between pro-
cesses, because it applies as well in distributed systems as in centralized systems.
Some concurrent programming languages (notably CSP and OCCAM) have been
based entirely on communication, completely avoiding shared variables and
their problems. However, in most concurrent languages, and in most language-
independent frameworks for concurrent programming, communication is based
on shared data and not vice versa.

Concurrent programming paradigms based on communication might domi-
nate in the future, if CPU technology continues to outstrip storage technology, so
that accessing a variable becomes, for all practical purposes, an exercise in data
communication. Until then shared data will continue to be preferred, not least
because it capitalizes on and extends (in a deceptively straightforward way) a
conceptual model that all sequential programmers have thoroughly internalized.

Concurrent control abstractions promote reliable concurrent programming by
taking much of the burden of synchronization into the programming language.
The conditional critical region construct provides a high-level abstraction of
both mutual exclusion and communication. The monitor construct offers similar
advantages and adds data abstraction to the mix.

In this chapter we see how these key concepts are realized in ADA95 and in
JAVA.

13.2 Pragmatics

The worst problems in concurrency arise from undisciplined access to shared
variables by two or more processes. This adds synchronization problems to the
other pragmatic issues created by tight coupling. The discussion in Section 11.2
touches on many relevant points, as they arise in the narrower context of sequential
programming.

It is always a good idea to minimize the number of potentially shared variables.
An ADA task module should be declared in the most global scope possible, so
that the smallest set of nonlocal variables is accessible from within the task. When
nonlocal data must be used within a task module, it may be possible to declare

13.2 Pragmatics 335

it constant. Since such data cannot be updated, it can always be accessed safely.
A JAVA thread in a class nested within a method may safely access constant
components and method parameters, but is not allowed to access other nonlocals.

In sequential programming the problems raised by global variables are miti-
gated by encapsulation and data abstraction.

Server processes offer services for use by other processes that are termed
clients. (Tasks that both offer and use services are also useful, for example to
delegate work on a basis of ‘‘divide and conquer’’. We might call them brokers.)
Data is safest when it is totally encapsulated inside a server task, so that only the
server has access to it and no issues of concurrent access can arise. This replaces
competition and mutual exclusion by encapsulation and communication. (See
Example 10.11.) However, the cost of running a task merely in order to serve up
a set of data, and the cost of communication by rendezvous, may be high enough
to discourage this program structure, despite its great advantages.

ADA packages (with their private types and private variables) and JAVA classes
(with their protected and private components) provide powerful mechanisms by
which encapsulation can be achieved in sequential programs. In concurrent
programs we also need to be able to ensure that operations on encapsulated
data are performed by only one process at a time. Combining encapsulation with
mutual exclusion leads to the monitor concept (see Section 10.6.2). JAVA provides
a restricted implementation of the monitor idea in the form of classes with
synchronized operations. ADA95 goes a lot further, with its protected types. (In
ADA95, the term protected implies automatic synchronization, not restricted scope
as it does in JAVA.) These intrinsically concurrent features of the two languages
are described in Sections 13.3 and 13.4, respectively.

Another issue in the design of concurrent programming languages is the treat-
ment of exceptions. In sequential programs, exceptions are synchronous – they
are thrown either explicitly, or as the immediate effect of executing a command
that encounters some abnormal situation. Concurrent language designers must
also deal with the possibility of asynchronous exceptions, thrown in one process
by a command executed in a different process. In most respects an asynchronous
exception has the properties of an interrupt, with all of the problems that implies.
For that reason they have been excluded from the design of ADA. JAVA, too,
does without asynchronous exceptions, apart from two peculiar inconsistencies
described in Section 13.4.1.

The most complex and least developed aspect of present concurrent pro-
gramming languages is the relationship between their concurrency features and
their object-oriented features. Ideally, the two would be orthogonal, and capable
of easy use in any reasonable combination. Neither ADA nor JAVA has attained
this degree of integration, and, as a result, both languages still have a number of
rough edges. Collectively, these are known as the inheritance anomaly. The main
problem is that there is no completely convincing model for inheriting synchro-
nization properties. If a class inherits from its superclass, and either or both have
synchronizing methods, it is often unclear whether that can be managed without
conflicts that might cause deadlock, or that might force some of the methods of
the superclass to be overridden, or even rewritten.

336 Chapter 13 Concurrent programming

EXAMPLE 13.1 An inheritance anomaly

Suppose that we are given a class Q. Each object of class Q is a queue, equipped with add
and remove methods, where remove throws an exception when the queue is empty.

We are now required to write a subclass WQ, with a remove method that waits until
the queue is nonempty. Necessarily, Q’s remove method must be overridden in WQ: WQ’s
remove method waits on a ‘‘queue nonempty’’ condition that must be signaled by add.
However, Q’s add method does not do any such thing, and so it must be overridden too.
With both add and remove being overridden, one might wonder whether inheriting from
Q offers any real advantage.

In ADA95 synchronization is dealt with, most naturally, using protected types.
Object classes in ADA95 are represented by tagged types, which have no intrinsic
synchronization properties. So, inheritance and mutual exclusion are disjoint
features, making it cumbersome to apply both in the same data structure.

JAVA bases its thread model firmly on object-orientation: the Thread class,
like every other, is a subclass of Object. If a class C inherits a synchronized
method, that method is also synchronized in C. So far so good. Unfortunately, this
does not preclude difficulties similar to that described in Example 13.1. And there
are other issues.

• JAVA lacks multiple inheritance, so there is a problem if a subclass of
Thread needs to inherit not only from Thread but also from a more
application-specific superclass.

• Object has (invisible) components that are used to implement synchro-
nization, and these are inherited by every object of every class. So the
language imposes an overhead on all objects, in order to provide synchro-
nization for the few that need it. This contravenes a basic principle of good
programming language design.

In short, concurrency and object-orientation in both ADA95 and JAVA are
rather like oil and water. They do not mix well, although they can be combined
with the application of some hard work and the help of some extra ingredients.

13.3 Case study: ADA95

This section describes the most important concurrent control abstractions of
ADA95: those that support the key concepts discussed in Section 13.1 – process
creation and termination, mutual exclusion, and inter-process communication.

13.3.1 Process creation and termination

In ADA, a running task is created and started simply by declaring (or allocating)
a value of a task type. A task terminates normally when it completes the last
command in its body.

13.3 Case study: ADA95 337

But server tasks often execute infinite loops, so as to be able to accept an
unbounded number of entry calls, and they never stop in this way. A task can
find out how many calls are queued on each of its entries, so a server could stop
when all its entry queues are empty. The problem is that clients might be doing
other things presently, but will later make more calls to these entries. If the server
terminates in the meantime, such calls will fail. To deal with this ‘‘distributed
termination’’ problem, ADA lets a task stipulate that, as an alternative to waiting
for an entry call, it is willing to terminate – if, and only if, all potential clients are
inactive, and therefore unable to make any further calls on its entries. All the
tasks in this ‘‘willing’’ condition then terminate together.

EXAMPLE 13.2 An event task type

A way of proving the completeness of the concurrent features of a language is to
show, somewhat perversely, that they can be used to implement the low-level concurrent
primitives described in Chapter 10. Here we have a server task module that implements
the Event type, with operations wait and signal, as defined in Section 10.5.4.

task type Event is
entry wait;
entry signal;

end Event;

task body Event is
begin
loop

(1) select
accept signal;
for i in 1 .. wait'count loop

(2) select
accept wait;

else
null;

end select;
end loop;

or
(3) terminate;

end select;
end loop;

end Event;

An Event task lets clients wait for the next occurrence of a signal, and then allows
every client waiting for that signal to proceed. This is achieved by holding clients in the
entry queue for wait. When signal is called, the wait entry queue is cleared by
accepting every call.

The selective wait command starting at point (1) has a terminate alternative at point
(3). If no potential client is active when this selective wait is executed, the terminate
alternative is chosen and the Event server halts normally.

The value of wait'count is the number of tasks queued on wait, so the loop
accepts every outstanding call. The accept command for wait is enclosed in a selective
wait starting at point (2). The selective wait’s else-part is executed if there is no outstanding

338 Chapter 13 Concurrent programming

call in the queue. In this case no action is taken. This is made necessary by the fact
that a client might time-out or be aborted, thereby withdrawing its call on wait, after
wait'count is evaluated but before its entry call is accepted.

It is sometimes necessary for a coordinator process to cancel other processes
(i.e., make them terminate). One possibility is for each task to provide an entry
that requests the task to stop. A difficulty here is that there might be pending calls
from client tasks to some of its other entries, so that stopping is deferred until
those calls are serviced. Another problem is that a rogue task might never accept
calls on its ‘‘request-stop’’ entry. To deal with these issues, some way of forcibly
terminating a task is needed.

The abort command lets one task cancel another. To prevent an aborted task
from malfunctioning in a way that damages the rest of the system – as it might,
if stopped while updating a system data structure such as an entry queue – ADA

defines a set of abort-deferred constructs. These are operations that are guaranteed
to complete before the abort takes effect. This in itself is not enough to ensure
that application-level finalization (such as the closing of all the task’s open files) is
carried out, but it does ensure that killing a task does not cause unbounded havoc
in the underlying system.

The parent of a process may need to await its completion. This is provided in
many operating systems by the low-level join primitive (see Section 10.5.1). In
ADA, each task has a master, which is the scope in which it was declared (roughly
speaking). Control does not leave a master until all its child tasks have terminated;
so task creation and termination are forced to be properly nested.

13.3.2 Mutual exclusion

ADA95 offers a powerful feature for mutual exclusion in its protected modules.
These are similar in appearance to packages and tasks, and combine most of the
advantages of monitors and conditional critical regions. Specifically, protected
modules implement both automatic mutual exclusion and implicit signaling of
conditions, together with simple encapsulation of data.

Encapsulated data may be operated on by public procedures of the protected
module. Proper procedures of a protected object may inspect and/or update its
encapsulated data, and automatically exclude each other. Function procedures
of a protected object may only inspect the encapsulated data. (In this respect
they are a much purer realization of the function concept than ordinary function
procedures in ADA.) The benefit is that multiple protected function calls can be
concurrently executed, in the same protected object, completely safely. However,
protected procedure calls exclude protected function calls, and vice versa.

A protected module can be either a single protected object or a protected
type, allowing many protected objects to be created. A protected module can
declare only public procedures and entries, and its body may contain only the
bodies of procedures and entries. The protected data is declared after private:
it is therefore accessible only within the protected module’s body.

13.3 Case study: ADA95 339

EXAMPLE 13.3 A simple protected type

The following is a simple protected type that encapsulates a variable and provides
operations to fetch and store its value. It can be used to make fetching and storing atomic,
for types that cannot be declared to be atomic. Here is the protected type’s specification:

protected type Protected_Item is

procedure store (value : in Item);

function fetch return Item;

private
variable : Item;

end Protected_Item;

And here is the protected type’s body:

protected body Protected_Item is

procedure store (value: in Item) is
begin
variable := value;

end store;

function fetch return Item is
begin
return variable;

end fetch;

end Protected_Item;

The variable declaration:

x, y : Protected_Item;

creates two variables of type Protected_Item. They can be used thus:

it : Item;
. . .

it := x.fetch;
y.store(it);
x.store(it);

Note that Protected_Item does not prevent a fetch operation on a variable that
has no value stored in it.

Despite being similar to packages in overall structure, neither tasks nor
protected objects can themselves be generic. However, they can be parameterized,
in effect, by nesting within a generic package. For example, Protected_Item
could be declared within a generic package taking Item as a parameter.

13.3.3 Admission control
Nondeterministic choice is provided in ADA by the selective wait command, which
allows a task to rendezvous by accepting a call to any of several specified entries,
with the possibility of taking alternative action when no call can be accepted.

340 Chapter 13 Concurrent programming

Many entry calls can be accepted only when a precondition has been estab-
lished. This need for admission control is met by allowing an alternative in a
selective wait to have a guard, a boolean expression whose value determines
whether the alternative is open. Only open alternatives (i.e., those with true
guards) are taken into consideration when selecting the one to be executed.
An alternative with no guard is always open. The task may execute any one
of the open alternatives, so the selective wait command introduces bounded
nondeterminism.

EXAMPLE 13.4 A semaphore task type

The following ADA task module implements a semaphore abstract type. Here is its
specification:

task type Semaphore_Task is

entry initialize (n : in Integer);

entry wait;

entry signal;

end Semaphore_Task;

And here is its body:

task body Semaphore_Task is
count : Integer;
-- On completion of each entry call, count = initial + signals − waits.

begin
accept initialize (n : in Integer) do
count := n;
-- sets initial to n, signals to 0, and waits to 0

end initialize;
loop

select
when count > 0 => accept wait;
count := count - 1;
-- increments waits

or
accept signal;
count := count + 1;
-- increments signals

end select;
end loop;

end Semaphore_Task;

After accepting the priming call to initialize, a Semaphore_Task accepts
calls to either wait or signal in any order, so long as the semaphore invariant
(waits ≤ initial + signals) would not be violated by completing the call. When count is 0,
completing a call to wait would violate the invariant; so the guard ‘‘when count > 0’’
defers acceptance of any pending calls. Calls on wait become acceptable again as soon

13.3 Case study: ADA95 341

as a call of signal is accepted that leaves count positive, making the guard condition
true.

This task type could be used as follows:

nr_full, nr_free : Semaphore_Task;
. . .

nr_full.initialize(0);
nr_free.initialize(10);
. . .

nr_free.wait;
nr_full.signal;

Example 13.4 shows how easy it is to write server tasks that safely manage
locally declared data on behalf of multiple clients. There is no need for mutual
exclusion of access to the managed data, because it is never accessed concurrently.

Protected objects, also, can declare entries. Like a task entry, a protected
entry can employ a guard to control admission. This provides automatic signaling,
and ensures that when a protected entry call is accepted, its guard condition is
true. Like a protected procedure, a protected entry operates under automatic
mutual exclusion.

EXAMPLE 13.5 A single-slot buffer protected type

The task type shown in Example 10.11 implements a single-slot buffer abstract type. Here
is the specification of a protected type with the same functionality:

protected type Protected_Buffer is

entry send_message (item : in Message);

entry receive_message (item : out Message);

private
buffer : Message;
bufferIsEmpty : Boolean := true;

end Protected_Buffer;

And here is the corresponding body:

protected body Protected_Buffer is

entry send_message (item : in Message)
when bufferIsEmpty is

begin
buffer := item;
bufferIsEmpty := false;

end send_message;

entry receive_message (item : out Message)
when not bufferIsEmpty is

342 Chapter 13 Concurrent programming

begin
item := buffer;
bufferIsEmpty := true;

end receive_message;

end Protected_Buffer;

Note how the guards, using the private state variable bufferIsEmpty, ensure that
messages are alternately stored and fetched, and that no attempt can be made to fetch from
an empty buffer. Note also the absence of explicit signaling and mutual exclusion constructs.

The variable declaration:

urgent, pending : Protected_Buffer;

creates two variables of type Protected_Buffer. They can be used to store and fetch
messages, thus:

msg : Message;
. . .

pending.send_message(msg);
pending.receive_message(msg);
urgent.send_message(msg);

where ‘‘pending.send_message(msg);’’ calls the entry send_message in the
protected object pending, passing the value of msg as an argument.

The notation for calling a protected entry is exactly the same as that for calling
a task entry. This makes it easy to replace one implementation of the abstract type
by the other, the calling code being unaffected.

As an alternative to the server task shown in Example 13.4, a semaphore can
be implemented as a protected object, with significant efficiency gains.

EXAMPLE 13.6 A semaphore protected type

The initialize and signal operations have no conditional component, so they are
implemented as protected procedures, but the wait operation must be guarded and is
therefore implemented as an entry. Here is the protected type’s specification:

protected type Semaphore_Protected_Type is

procedure initialize (n : in Integer);

entry wait;

procedure signal;

private
count : Integer := 0;
-- On completion of each entry call, count = initial + signals − waits.

end Semaphore_Protected_Type;

13.3 Case study: ADA95 343

And here is its body:

protected body Semaphore_Protected_Type is

procedure initialize (n : in Integer) is
begin
count := n;
-- sets initial to n, signals to 0, and waits to 0

end initialize;

entry wait
when count > 0 is

begin
count := count - 1;
-- increments waits

end wait;

procedure signal is
begin
count := count + 1;
-- increments signals

end signal;

end Semaphore_Protected_Type;

Unlike the task type in Example 13.4, this protected type does not enforce the
requirement that initialize be called before anywait or signal operation. (Instead,
count is given a default value.) Restoring this functionality is left as an exercise for
the reader.

This protected type is used in the same way as the semaphore task type:

nr_full, nr_free : Semaphore_Protected_Type;
. . .

nr_full.initialize(0);
nr_free.initialize(10);
. . .

nr_free.wait;
nr_full.signal;

In Example 13.6, the guard on the wait entry accesses a private variable
of the protected type. Sometimes an admission control criterion depends on the
arguments of the entry, but guards cannot access entry parameters. (Allowing this
would force the implementation to scan all of the entry queues in their entirety
every time a protected operation terminated.) Instead, a means is provided by
which an entry, having accepted a call it is unable to progress, can requeue the call
(either in its own entry queue, or on another entry with a compatible parameter
list). This provides the entry with a way of deferring the call until some later time,
when it has more chance of being able to proceed.

Again for the sake of efficiency, a further rule (the ‘‘internal progress first’’
rule) is imposed on the acceptance of entry calls. It requires all calls to open
entries that are made from inside the protected object to be accepted before any
calls made to those entries from outside. Because of this rule, simply requeuing

344 Chapter 13 Concurrent programming

a call on the same entry could lead to an infinite loop. Requeuing instead on
a private entry that exists solely to provide a ‘‘holding queue’’ is a common
expedient.

EXAMPLE 13.7 A simple scheduler protected type

A scheduler maintains data structures modeling the allocation state of the managed
resources. Processes may call scheduling operations concurrently, so it is natural to
implement a scheduler as a protected object encapsulating the resource management
data. The following package, Resource_Definitions, implements a simple scheduler,
allowing processes to acquire resources for exclusive use.

The scheduling implemented by Resource_Definitions is trivial: a ‘‘first-come
first-served’’ queuing policy is adopted, and free resources are granted on request. Requests
for a busy resource are delayed until the resource is relinquished.

Here is the package specification; since the await_change entry is intended to be
called only in the body of the scheduler, it is declared private:

package Resource_Definitions is

type Resource_Name is (floppy, dvd, modem);

protected Scheduler is

entry acquire (resource : in Resource_Name);

procedure relinquish (
resource : in Resource_Name);

private

entry await_change (resource : in Resource_Name);

acquiring : Boolean := true;

end Scheduler;

end Resource_Definitions;

Calling the acquire entry requests the allocation of a resource; if it is not available
the calling task must be blocked. This is implemented by requeuing the call on a private
entry, await_change.

The relinquish procedure releases a resource; it must unblock any task waiting
to acquire it and does this by releasing all the tasks queued on await_change, which
requeues them on acquire.

package body Resource_Definitions is

is_free : array (Resource_Name) of Boolean
:= (Resource_Name => true);

protected body Scheduler is

entry acquire (resource : in Resource_Name)
when acquiring is

13.3 Case study: ADA95 345

begin
if is_free(resource) then

is_free(resource) := false;
else

requeue await_change;
end if;

end acquire;

procedure relinquish (
resource : in Resource_Name) is

begin
is_free(resource) := true;
acquiring := false;

end relinquish;

entry await_change (resource : in Resource_Name)
when not acquiring is

begin
if await_change'count = 0 then
acquiring := true;

end if;
requeue acquire;

end await_change;

end Scheduler;

end Resource_Definitions;

Note that the is_free array is not inside the protected object. But it is encapsulated
within the package body, therefore it is accessible only to the protected operations of
Scheduler, and thus is accessed safely.

In the Scheduler protected object of Example 13.7 there is a limited
amount of busy waiting, as unsatisfied requests are shuttled from acquire
to await_change and back. The fundamental reason for this is that several
different conditions share the same acquire entry, which necessarily has a rather
unspecific guard. A way to avoid this is to have a separate acquire entry for each
resource, along the following lines:

entry acquire_floppy when is_free(floppy) is
begin
is_free(floppy) := false;

end acquire_floppy;

. . .

entry acquire_modem when is_free(modem) is
begin
is_free(modem) := false;

end acquire_modem;

In this very restricted case, with a small, fixed number of resources under
control, such a solution is of unrivaled simplicity and elegance. But it does not

346 Chapter 13 Concurrent programming

scale well, and it would not be sensible to continue in this manner for hundreds
(or even dozens) of different resources. What we need is something akin to an
array of entries.

ADA provides just such a feature in the entry family. This is in effect an array
of entries. Each entry family call computes a value that indexes the array and
thus selects a particular entry to be called. The body of the entry contains an
implicit iteration over the index range, binding a control variable to each value
of the index range in turn. Unlike an ordinary parameter of an entry, this control
variable can be used in a guard. This provides just the flexibility we need to code
a simple acquire operation without busy waiting.

EXAMPLE 13.8 A protected type with an entry family

Here we use an entry family indexed by the Resource_Name type, so that there is one
entry for each resource, however many of them there may be. (For the sake of later
explanations, the code includes comments that we will use to trace its flow of control.)
Here is the package specification (Resource_Name is the type of the acquire entry
family’s index range):

package Resource_Definitions is

type Resource_Name is (floppy, dvd, modem);

protected Scheduler is

entry acquire (Resource_Name);

procedure relinquish (
resource : in Resource_Name);

end Scheduler;

end Resource_Definitions;

And here is the corresponding package body:

package body Resource_Definitions is

is_free : array (Resource_Name) of Boolean
:= (Resource_Name => true);

protected body Scheduler is

entry acquire (for resource in Resource_Name)
-- the process bids for the resource

when is_free(resource) is
begin

is_free(resource) := false;
-- the process has the resource

end acquire;

procedure relinquish (
resource : in Resource_Name) is

13.3 Case study: ADA95 347

begin
is_free(resource) := true;
-- the process has given up the resource

end relinquish;

end Scheduler;

end Resource_Definitions;

The scheduler can now be invoked as follows:

use Resource_Definitions;
. . .

Scheduler.acquire(floppy);
Scheduler.acquire(dvd);

In summary, ADA95 task types and protected types combine and improve
upon the best properties of monitors and conditional critical regions:

• Safe use of shared data is guaranteed by a combination of encapsulation
and automatic mutual exclusion.

• Admission control is automatic, preconditions being made manifest in
guards whose evaluation is driven by updates to the relevant variables,
and without needing signaling operations that would create tight inter-
task coupling.

13.3.4 Scheduling away deadlock

This section brings many of our themes together in an extended series of examples
based on the banker’s algorithm for the scheduled avoidance of deadlock. It
provides a realistic setting in which to display the concurrent control abstractions
of ADA95.

Firstly, here is an example showing how easy it is to cause deadlock.

EXAMPLE 13.9 Inevitable deadlock

The following procedure trouble, which is intended to be called concurrently by
several tasks, uses the package Resource_Definitions of Example 13.8 to provide
mutual exclusion:

use Resource_Definitions;
procedure trouble (res1, res2 : in Resource_Name) is
begin
Scheduler.acquire(res1);
Scheduler.acquire(res2);
. . . -- here is the critical section

348 Chapter 13 Concurrent programming

Scheduler.relinquish(res2);
Scheduler.relinquish(res1);

end trouble;

The following program calls trouble and deadlocks:

procedure main is
begin

task worker1;
task worker2;

task body worker1 is
begin
-- worker 1 is getting into trouble . . .

trouble(floppy, modem);
-- . . . worker 1 is now out of trouble

end worker1;

task body worker2 is
begin
-- worker 2 is getting into trouble . . .

trouble(modem, floppy);
-- . . . worker 2 is now out of trouble

end worker2;

begin
null; -- at this point await termination of both workers

end;

The following trace is typical, and shows the program running into difficulties:

worker 2 is getting into trouble . . .

worker 1 is getting into trouble . . .

worker 2 bids for the modem
worker 1 bids for the floppy
worker 2 has the modem
worker 1 has the floppy
worker 2 bids for the floppy (but worker 1 has it)
worker 1 bids for the modem (but worker 2 has it)

Deadlock has struck!

The next example shows how to prevent deadlock by total resource
ordering.

EXAMPLE 13.10 Deadlock prevention by resource ordering
As described in Section 10.3.3, we can prevent deadlocks by imposing a total ordering on
resources and by insisting that they be acquired consistently with that ordering. Here we
adapt the trouble procedure using this idea. It first sorts res1 and res2 into r1 and
r2, which can be used compatibly with the total ordering:

13.3 Case study: ADA95 349

procedure trouble (res1, res2 : in Resource_Name) is
r1 : constant Resource_Name

:= Resource_Name'min(res1, res2);
r2 : constant Resource_Name

:= Resource_Name'max(res1, res2);
-- the canonical ordering of resources is r1 followed by r2

begin
Scheduler.acquire(r1);
Scheduler.acquire(r2);
. . . -- here is the critical section
Scheduler.relinquish(r2);
Scheduler.relinquish(r1);

end;

Here is a typical trace of this version in action:

worker 2 is getting into trouble . . .

worker 1 is getting into trouble . . .

worker 2 bids for the floppy
worker 2 has the floppy
worker 1 bids for the floppy (but worker 2 has it)
worker 2 bids for the modem
worker 2 has the modem
worker 2 has given up the modem
worker 2 has given up the floppy
worker 1 has the floppy
. . . worker 2 is now out of trouble
worker 1 bids for the modem
worker 1 has the modem
worker 1 has given up the modem
worker 1 has given up the floppy
. . . worker 1 is now out of trouble
end of run

Now the program is deadlock-free and runs to completion.

The banker’s algorithm is a more powerful resource management API than the
simple package declared in Example 13.8, being capable of resolving conflicting
demands for resources and ensuring that no deadlock results. It does this by
suspending, temporarily, processes whose demands cannot yet be met without
risking deadlock.

Program 13.1 declares the protected object Avoiding_Deadlock. It is
nested in a generic package (see Section 7.1.1) named Banker. This allows it
to be instantiated for a variety of different resource and process types, thus
maximizing its reusability. (The notation ‘‘(<>)’’ in the specification of the
generic formal type parameters Process_Id and Resource_Id indicates that
the corresponding argument types used when instantiating the package must be
discrete primitive types, such as integer or enumeration types.)

350 Chapter 13 Concurrent programming

generic
type Process_Id is (<>);
type Resource_Id is (<>);
type Inventory is array (Resource_Id) of Integer;
capital : in Inventory;
no_resource : in Resource_Id'Base; -- null id

package Banker is

-- An implementation of E.W. Dijkstra’s ‘‘banker’s algorithm” for the scheduled
-- avoidance of deadlock.

protected Avoiding_Deadlock is

procedure register (proc_id : in Process_Id;
claim : in Inventory);

-- Inform the scheduler of the maximum amount of each resource that the
-- task proc_id may claim.

entry acquire (Process_Id) (res_id : in Resource_Id;
amount : in Positive);

-- Wait, if necessary, for exclusive access to amount units of the resource
-- identified by res_id.

procedure relinquish (proc_id : in Process_Id;
res_id : in Resource_Id;
amount : in Positive);

-- Give up exclusive access to amount units of the resource
-- identified by res_id.

procedure deregister (proc_id : in Process_Id);
-- Inform the scheduler that the task proc_id is no longer in contention
-- for resources.

end Avoiding_Deadlock;

end Banker;

Program 13.1 Specification of the banker’s algorithm.

The acquire operation simulates the effect of allowing the demanded
allocation of resource. If this leads to a state that cannot deadlock, that allocation
is performed. Otherwise, the caller is suspended by a requeue operation until the
state of the system changes and the caller’s resource demand can be reconsidered.
This is repeated as often as necessary. An outline of the algorithm might be
sketched as follows:

entry acquire (for proc_id in Process_Id) (
res_id : Resource_Id;
amount : Positive)

when the claim of process proc_id should be considered is
begin

take amount of the resource res_id from the system state;

13.3 Case study: ADA95 351

if the resulting state is deadlock-free then
choose the next process with a claim to be considered;
return; -- process proc_id has got the resource

end if;
-- The claim might deadlock, so abandon this attempt:
give back amount of the resource res_id to the system state;
choose the next process with a claim to be considered;
-- N.B. process proc_id is now ineligible to be considered,
-- so the following requeue does not cause an infinite loop:
requeue acquire (proc_id); -- try again later

end acquire;

Private procedures of Banker implement the pseudocode operations invoked
above. They work on data describing the allocation state of the system that is
also private to the body of Banker, and can therefore be accessed only by its
private procedures. Since the latter can be called only via the public operations of
Avoiding_Deadlock, they work safely.

Admission control is vital in acquire. Before requeuing a call that makes
a presently unsatisfiable request, it is essential to ensure that it does not cause
an infinite loop. This is also where fairness is brought to bear. Each time a new
claim is made, or the allocation state changes, the scheduler chooses the next
eligible process in turn, setting its identifier in the variable next_contender.
(An eligible process is one that has registered and does not have a request known
to be presently unsatisfiable.)

The guard condition of acquire (proc_id = next_contender) ensures
that all processes are considered in a round-robin (which is inherently fair) and
that no requeued call is considered until all competing demands are taken into
account. See Program 13.2(a–e).

The code in Program 13.2 neither detects nor deals with a number of possible
errors that might arise. Rectifying this defect is set as Exercise 13.3.3.

Using Banker we can program a version of trouble that is guaranteed to
be deadlock-free. First we instantiate it with the types we need. See Program 13.3.

A typical trace from this version might go as follows:

worker 2 is getting into trouble . . .

worker 1 is getting into trouble . . .

worker 2 notifies its claim for floppy and modem
worker 1 notifies its claim for floppy and modem
worker 2 bids for the modem
worker 1 bids for the floppy
worker 2 has the modem
worker 1 waits for the floppy (because to grant it now might cause deadlock)
worker 2 bids for the floppy
worker 2 has the floppy
worker 2 has given up the floppy
worker 1 bids for the floppy
worker 2 has given up the modem

352 Chapter 13 Concurrent programming

package body Banker is

-- Two useful, but boring, procedures:

procedure credit (quantity : in out Integer;
amount : in Positive) is

begin
quantity := quantity + amount;

end credit;

procedure debit (quantity : in out Integer;
amount : in Positive) is

begin
quantity := quantity - amount;

end debit;

-- The following data describe the system’s current allocation state:

none : constant Inventory := (Resource_Id => 0);

type Process_Account is
record
claim : Inventory := none;
-- sets a bound on the amount of each resource that the process may
-- have on loan at any time
loan : Inventory := none;
-- gives the amounts allocated to the process
can_complete : Boolean := false;
-- true if the process can terminate

end record;

type Current_Account is
array (Process_Id) of Process_Account;

type System_State is
record
balance : Inventory := capital;
-- gives the amounts not presently on loan
exposure : Current_Account;
-- gives the position of every process

end record;

system : System_State;

procedure take_out_loan (proc_id : in Process_Id;
res_id : in Resource_Id;
amount : in Positive) is

begin
debit(system.balance(res_id), amount);
credit(system.exposure(proc_id).loan(res_id), amount);
debit(system.exposure(proc_id).claim(res_id), amount);

end take_out_loan;

Program 13.2(a) Implementation of the banker’s algorithm.

13.3 Case study: ADA95 353

procedure give_back_loan (proc_id : in Process_Id;
res_id : in Resource_Id;
amount : in Positive) is

begin
credit(system.balance(res_id), amount);
debit(system.exposure(proc_id).loan(res_id), amount);
credit(system.exposure(proc_id).claim(res_id), amount);
end give_back_loan;

function completion_is_possible (
claim, balance : Inventory)

return Boolean is
begin
for r in Resource_Id loop
if claim(r) > balance(r) then
return false;

end if;
end loop;
return true;

end completion_is_possible;

procedure simulate_future_demands (
state : in out System_State) is

stuck : Boolean;
begin
loop
stuck := true;
for p in Process_Id loop
declare
a : Process_Account renames

state.exposure(p);
begin
if not a.can_complete and then

completion_is_possible(a.claim,
state.balance)

then
for r in Resource_Id loop
credit(state.balance(r), a.loan(r));

end loop;
a.can_complete := true;
stuck := false;

end if;
end;

end loop; -- over Process_Id
exit when stuck;

end loop;
end simulate_future_demands;

Program 13.2(b) Implementation of the banker’s algorithm (continued).

354 Chapter 13 Concurrent programming

function cannot_deadlock return Boolean is
state : System_State := system;

begin
simulate_future_demands(state);
return (capital = state.balance);

end cannot_deadlock;

type Set_Of_Process_Id is
array (Process_Id) of Boolean;

all_processes : constant Set_Of_Process_Id
:= (Process_Id => true);

no_processes : constant Set_Of_Process_Id
:= (Process_Id => false);

is_ready : Set_Of_Process_Id := all_processes;
-- indicates whether each process must wait for a resource that was unavailable
-- at its last attempt

is_registered : Set_Of_Process_Id := no_processes;
-- shows whether each process has registered a claim

next_contender : Process_Id := Process_Id'first;
-- the next process to be admitted to the scheduler

procedure choose_next_contender (
is_eligible : in Set_Of_Process_Id) is

next : Process_Id := next_contender;
begin
for p in Process_Id loop

if next = Process_Id'last then
next := Process_Id'first;

else
next := Process_Id'succ(next);

end if;
if is_eligible(next) then
next_contender := next;
return;

end if;
end loop;

end choose_next_contender;

Program 13.2(c) Implementation of the banker’s algorithm (continued).

worker 1 has the floppy (it cannot deadlock now)
. . . worker 2 is now out of trouble
worker 1 bids for the modem
worker 1 has the modem
worker 1 has given up the modem
worker 1 has given up the floppy
. . . worker 1 is now out of trouble
end of run

13.4 Case study: JAVA 355

-- The scheduler itself follows:

protected body Avoiding_Deadlock is

procedure register (proc_id : in Process_Id;
claim : in Inventory) is

begin
system.exposure(proc_id).claim := claim;
is_registered(proc_id) := true;

end register;

entry acquire (for proc_id in Process_Id) (
res_id : Resource_Id;
amount : Positive)

when proc_id = next_contender is
begin
-- Grab the resource and update the system state:
take_out_loan(proc_id, res_id, amount);
-- Return if the result is deadlock-free:
if cannot_deadlock then
-- Progress the round-robin of contenders:
choose_next_contender(is_ready and

is_registered);
return;

end if;
-- Abandon the attempt, restore the system state, and wait for a change:
give_back_loan(proc_id, res_id, amount);
is_ready(proc_id) := false;
-- Progress the round-robin of contenders:
choose_next_contender(is_ready and is_registered);
-- Put the client back in the entry queue:
requeue acquire (proc_id);

end acquire;

procedure relinquish (proc_id : in Process_Id;
res_id : in Resource_Id;
amount : in Positive) is

begin
give_back_loan(proc_id, res_id, amount);
-- Make all waiting processes eligible to compete:
is_ready := all_processes;
-- Progress the round-robin of contenders:
choose_next_contender(is_registered);

end relinquish;

Program 13.2(d) Implementation of the banker’s algorithm (continued).

13.4 Case study: JAVA

This section describes the concurrent control abstractions of JAVA. Like ADA95,
JAVA takes inspiration from monitors and conditional critical regions. Unlike
ADA95, JAVA builds its concurrency features on an object-oriented foundation.

356 Chapter 13 Concurrent programming

procedure deregister (proc_id : in Process_Id) is
begin

system.exposure(proc_id).claim := none;
is_registered(proc_id) := false;
if is_registered /= no_processes then
-- Progress the round-robin of contenders, in case process proc_id
-- was next_contender:
choose_next_contender(is_ready and

is_registered);
else
-- No processes remain in contention, so set the system back to its
-- initial state:
is_ready := all_processes;
next_contender := Process_Id'first;
return;

end if;
end deregister;

end Avoiding_Deadlock;

end Banker;

Program 13.2(e) Implementation of the banker’s algorithm (continued).

13.4.1 Process creation and termination

A JAVA thread is an object. JAVA provides a Thread class equipped with a run
method, and also a Runnable interface that specifies a run method. The class
of a thread object must be a subclass of Thread, or a class that implements the
Runnable interface; in either case, the thread’s class must define its own run
method. A thread is created like any object by the new allocator; this produces a
dormant thread t that is activated by calling t.start(), which in turn calls the
run method. The thread terminates normally when its run method returns.

A thread may be created with daemon status. The run-time environment kills
all daemon threads without further ado, if it finds that all non-daemon threads
have terminated. Nothing prevents a daemon thread from being killed when it is
performing a critical operation, such as updating a file; so this feature is potentially
very unsafe.

The t.join()method lets one thread await the termination of another thread.
As part of the recommended mechanism for cancellation, each thread has a

boolean interruption status that indicates whether an attempt has been made to
interrupt it. Normally, the method t.interrupt() has the effect of setting the
interruption status of t to true, but if t is blocked in any of the wait, sleep,
or join methods then it is forced to throw InterruptedException and its
interruption status is set to false. (A thread awaiting entry to a synchronized
construct is not so interrupted.) A thread is equipped with the interrupted()
method, which returns its own interruption status, resetting it to false as a side
effect. By checking its interruption status from time to time, and by catching

13.4 Case study: JAVA 357

package Types is
type Process_Name is (process1, process2);
type Resource_Base is (nil_id, floppy, dvd, modem);
subtype Resource_Name is

Resource_Base range floppy .. modem;
type Stock is array (Resource_Name) of Integer;
wealth : constant Stock := (1, 1, 1);

end Types;

use Types;
package Manager is new Banker(

Process_Id => Process_Name,
Resource_Id => Resource_Name,
Inventory => Stock,
capital => wealth,
no_resource => nil_id);

use Manager;
procedure trouble (res1, res2 : in Resource_Name;

proc_id : in Process_Name) is
begin
Avoiding_Deadlock.register(proc_id,

(floppy => 1, dvd => 0, modem => 1));
Avoiding_Deadlock.acquire(proc_id) (res1, 1);
Avoiding_Deadlock.acquire(proc_id) (res2, 1);
-- . . . here is the critical section
Avoiding_Deadlock.relinquish(proc_id, res2, 1);
Avoiding_Deadlock.relinquish(proc_id, res1, 1);
Avoiding_Deadlock.deregister(proc_id);

end;

Program 13.3 Using the banker’s algorithm.

InterruptedException, a thread can see whether its cancellation has been
requested, and take appropriate action.

The history of cancellation mechanisms in JAVA is not a happy one:

• Originally, JAVA proposed the t.destroy() method to kill t immediately,
but it was never implemented. Immediate termination of a thread with
exclusive access to shared data would leave the data locked. Any other
thread that later attempted exclusive access to that data would hang up.

• The t.stop() method, which forces t to throw the ThreadDeath excep-
tion, causes mutual exclusion to be prematurely relinquished. But the
atomicity afforded by mutual exclusion is thereby lost, so other threads
might see the shared data in an inconsistent state. Not surprisingly, stop
has now been ‘‘deprecated’’.

These points emphasize that concurrency has a profound effect throughout
a language. Lacking ADA’s careful integration of design concepts, cancellation in
JAVA requires the programmer to implement a nontrivial protocol, normally using

358 Chapter 13 Concurrent programming

the interrupt method. (To be fair, a programmer who wants application-level
cancellation in ADA, with careful finalization of all nonlocal data, must make a
similar effort.)

13.4.2 Mutual exclusion
Instead of providing a monitor construct, in the form of a class entailing automatic
mutual exclusion, JAVA requires programmers to lock out concurrent access at the
level of the method or the command. This is more flexible than a conventional
monitor, but it is also more error-prone. The thread safety of a class depends
on locks being consistently applied throughout all its methods. A JAVA compiler
cannot offer the simple safety guarantee that comes with ADA95 protected types.

Every JAVA class (and therefore every object) is provided with a built-in
mutual exclusion mechanism. A synchronized block is a composite command
that enforces exclusive access to a designated object, O, for the duration of
the command. It takes the form ‘‘synchronized(O) B’’, where B is a block
command. The object is locked on entering the command (after blocking, if
necessary), and unlocked when the command terminates, whether normally or by
throwing an exception.

It is usually better to synchronize a whole method. In effect:

synchronized T M (FPs) ≡ T M (FPs) {
F synchronized(this) B

}

where T is the result type of method M, and FPs are its formal parameters.
If a subclass overrides a synchronized method the programmer must remember

to respecify it as synchronized.

EXAMPLE 13.11 A synchronized variable class

Here is a simple JAVA class, analogous to Example 13.3, that encapsulates a variable and
provides operations to fetch and store its value:

class Synchronized_Item {

private Item variable;

public synchronized void store (Item value) {
variable = value;

}

public synchronized Item fetch () {
return variable;

}

}

And here is some application code:

Synchronized_Item x, y;
Item it;

13.4 Case study: JAVA 359

. . .

it = x.fetch();
y.store(it);
x.store(it);

An error-prone consequence of object-based synchronization is that locking
an object of class C does not give exclusive access to class variables of C. To achieve
this it is necessary to lock the class object itself, either by using a synchronized class
method, or in a synchronized block, thus: ‘‘synchronized(C.class){. . .}’’.

Each class has its own lock, separate from that of any other class, so a
synchronized class method declared in a subclass (which uses the subclass lock)
cannot safely access class variables of its parent class. Instead, the subclass
programmer must remember to explicitly lock its parent.

13.4.3 Admission control

JAVA uses explicit signaling to implement admission control and guarded execution.
To delay a thread until a guarding condition has been established, JAVA

provides constructs similar to events. Like its locking constructs, these are based
on a built-in feature of every object – in this case its wait set.

The method O.wait() blocks until another thread calls O.notifyAll()
to resume all threads waiting on O (if there are any). Unawaited notifications, like
unawaited events, are lost. It is legal to call O.wait() only if a lock is held on O.

Atomically, O.wait() checks whether the current thread has been inter-
rupted (throwing InterruptedException if need be); blocks the current
thread; puts it in the wait set for O; and gives up its lock on O. A call of
O.notifyAll() unblocks every thread in the wait set of O and they compete
for processor time; when the scheduler chooses one to run, it restores its lock
on O.

EXAMPLE 13.12 A single-slot buffer class

Here is a class with the same functionality as the protected type in Example 13.5.

class Synchronized_Buffer {

private Message buffer;
private boolean bufferIsEmpty = true;

public synchronized void send_message (Message item)
throws InterruptedException {

while (! bufferIsEmpty) wait();
buffer = item;
bufferIsEmpty = false;
notifyAll();

}

360 Chapter 13 Concurrent programming

public synchronized Message receive_message ()
throws InterruptedException {

while (bufferIsEmpty) wait();
bufferIsEmpty = true;
notifyAll();
return buffer;

}

}

And here is some application code:

Synchronized_Buffer urgent, pending;
Message msg;
. . .

pending.send_message(msg);
msg = pending.receive_message();
urgent.send_message(msg);

By identifying events with objects, JAVA provides less functionality than tradi-
tional monitors. Notification alone does not distinguish between the ‘‘nonempty’’
and ‘‘nonfull’’ states of a buffer, for example. This is because there is no equiva-
lent of MODULA’s signal type, which allows a program to notify several distinct
conditions separately. An object has only one wait set, so only one category of
event can be communicated to a thread waiting on it. Unblocking conveys little
information – no more, in fact, than the suggestion that there might have been a
state change of interest.

When a thread exits a wait, it must therefore examine the object to find its
new state, and block itself again if that is not yet satisfactory. The pattern is:

while (! E)
O.wait();

The loop is necessary because the guarding condition E need not be true after
unblocking. The wait might even have been unblocked by the notification of a
completely different condition!

If all threads in a program wait for exactly the same state of an object, and if
any one of them can deal with it appropriately, a possible optimization is to signal
the condition by means of O.notify(), which resumes one thread in the wait
set of O (at most).

In all other cases, programmers are well advised to play safe with notifyAll,
despite the inefficiency due to threads needlessly blocking and unblocking.

It is possible to use notify in Example 13.12, instead of notifyAll, because
the two circumstances in which notifications are issued cannot overlap. The
notification in receive_message is issued if and only if the buffer is nonempty;
in that case, and because of the locking due to the synchronized methods, the only
possible members of the wait set are threads waiting in send_message (and vice
versa). Compare this analysis with the transparency of the logic in Example 13.5.

13.5 Implementation notes 361

Classes using notify give rise to inheritance anomalies if it is later discov-
ered that their subclasses need to falsify the assumptions that justified the use
of notify.

13.5 Implementation notes
This section concerns some practical issues that bear on the semantics and
pragmatics of concurrent programming in ADA and JAVA. They are all to do with
scheduling, in one way or another. Specifically, they concern the ways in which
the actions of processes are scheduled by the underlying system, and how that can
affect the performance (or even the correctness) of concurrent programs.

You might have wondered, when looking at the example code in this chapter,
why none of the shared variables were declared volatile. The reason is that these
algorithms have been carefully designed to access shared variables only within
the synchronizing constructs of each language. The language designers have made
us this promise: all prior updates are observable to a process on entry to a
synchronized construct, and updates made within the synchronized construct are
observable to other processes when it exits. The small print is different for ADA

and for JAVA, but this is what it amounts to.
Few other languages can make comparable promises. Those that lack in-built

concurrency, such as C and C++, are necessarily silent on the issue. This makes it
very tricky indeed to write reliable, portable, concurrent code in these languages,
despite the availability of thread libraries that give access to the concurrency
features of the underlying operating system.

Shared variables accessed outside synchronized constructs are a very different
case. Apart from providing atomic and volatile facilities, ADA washes its hands
of such variables. Their timely update is the responsibility of the programmer,
who must take all relevant compiler, architecture and operating system issues into
account. This stance at least has the merit of clarity. JAVA tries to be more helpful,
and defines a memory model that says how updates to shared variables become
observable to unsynchronized accesses. The consensus among JAVA experts is
that the memory model is an honorable failure. It is so obscure that few JAVA

programmers understand it, and it significantly reduces efficiency, but it is still
unable to prevent race conditions from giving pathological results. A major effort
to improve the JAVA memory model is well under way.

The discussion of entry calls in ADA (Section 13.3.3), and the discussion of
wait-set handling in JAVA (Section 13.4.3), glossed over the issue of fairness. In
ADA, calls waiting to be admitted to an entry are put into the entry queue, and are
taken from the entry queue, in order of arrival. This is inherently fair. JAVA does
not define the policy under which threads, unblocking from a wait set, regain the
object lock. It does not even require it to be fair. This makes it more difficult to
guarantee the fairness of a concurrent algorithm in JAVA.

When more than one alternative (in a selective wait command) or more than
one entry (in a protected object) has an open guard, ADA95 does not define how
the choice between them is made. It need not be fair. However, the program’s
own admission control logic usually prevents this from being a problem. (When it
is a problem, it is possible to specify an order of preference.)

362 Chapter 13 Concurrent programming

Early operating systems for personal computers supported multiple threads
by non-preemptive scheduling. This means that once a thread gains control, it
stays in control until it voluntarily gives up the CPU. This approach has the virtue
of simplicity. It also eliminates race conditions, as described in Section 10.5.2 in
connection with interrupts.

Unfortunately, it is disastrous for reliability. If the running thread goes into
an infinite loop, the effect is to freeze the whole system. It also makes it difficult
to maintain responsiveness. Socially responsible threads voluntarily give up the
CPU from time to time, so that other threads, some of which may be interacting
with the user, are prevented from starving. However, nothing guarantees such
altruistic behavior. For these reasons, preemptive priority scheduling is now used
almost universally.

The idea of priority is crucial in concurrent programming, for it tells the
scheduler which of the processes competing for resources should be preferred.
Suppose that a high-priority process is blocked, and another process removes the
blockage (e.g., by setting an entry guard true, or notifying a wait set). Can we be
sure that the unblocked process will resume at once, in preference to any process
of lower priority – the very essence of preemptive priority scheduling?

ADA does guarantee this. JAVA does not, permitting the implementation to
resume an unblocked thread at a convenient later time. A programmer hoping
to ensure snappy response times may try to work around this by forcing threads
to give up the CPU from time to time, in non-preemptive style. At first sight,
the yield() method seems to do what is wanted, but, again, JAVA provides no
guarantee of useful behavior.

A difficulty that is caused by preemptive priority scheduling is priority
inversion.

If a high-priority process, H, tries to acquire a resource, r, that has been
obtained by a low-priority process, L, then H must wait until L relinquishes r. In
effect, the priority of H has been temporarily reduced below that of L. This is an
example of bounded priority inversion: the time H must wait is limited by the time
for which L retains r. Unbounded priority inversion happens when a third process,
M, of medium priority and having no interest in r, preempts L. That prevents L
from relinquishing r in a timely manner. The progress of H is now at the mercy of
M, which might even be stuck in an infinite loop.

Most notoriously, priority inversion was responsible for the repeated malfunc-
tion of a NASA Mars probe (fortunately cured by a software patch). This example
shows that even meticulous design by skilled programmers can fail badly due to
unpredictable timing effects. If a language can make such failures less likely, then
it should do so.

An effective countermeasure to priority inversion is to find the highest priority,
Pmax, of any process that blocks on a given resource r. Then every process that
acquires r is temporarily given the priority Pmax, reverting to its usual priority when
it relinquishes. This is the ceiling priority protocol. It lets all threads that acquire
r run as speedily as those of the highest priority among them, so that the latter
are not excessively delayed. This goes a long way to preventing priority inversion,
although it is not totally foolproof. An ADA95 protected type normally uses the

Exercises 363

ceiling priority protocol, throwing an exception if any caller has higher priority
than its given ceiling. In JAVA no such facility is provided, and the programmer
must resort to explicit manipulation of thread priorities, or other expedients. Since
JAVA does not ensure strict preemptive priority scheduling, these measures cannot
be guaranteed to be effective.

In short, the designers of ADA have imposed scheduling requirements that
permit efficient implementation, and also allow sound reasoning about the per-
formance and responsiveness of concurrent programs.

The vagueness of JAVA in these matters makes things more difficult. As
far as concurrent programs in JAVA are concerned, the slogan ‘‘write once, run
anywhere’’ is more truthfully stated as ‘‘write once, run anywhere it works’’. This
is a modest achievement for a language designed more than a decade after ADA

made its début, and twenty years after CONCURRENT PASCAL.

Summary
ADA and JAVA, in their different ways, offer a variety of constructs and techniques for
concurrency. Among these:

• We have seen how ADA server tasks can be used to implement a very simple model
of data safety in a concurrent program organized around communication.

• We have seen how the synchronized feature of JAVA can be used to implement
classes that are analogous to monitors, but less efficient and more error-prone.

• We have seen how the protected object feature of ADA combines most of the
advantages of monitors and conditional critical regions in a single construct.

• We have seen how concurrency is implemented in conventional computer systems
and how that relates to the more abstract concurrency features of ADA and JAVA.

Concurrency in ADA95 is comprehensively supported, at a high level of abstraction,
and well integrated with the rest of the language. Moreover, this is achieved without
sacrificing (too much) potential for good performance.

Concurrency in JAVA is provided by a set of rather low-level features, that tend
nevertheless to inefficiency. Surprisingly, in view of the genesis of JAVA as a language for
programming embedded systems, its handling of concurrency gives the impression of being
an afterthought. Certainly, it is complicated and error-prone.

Further reading

The major concurrent programming paradigms are sur-
veyed, with many examples, by PERROTT (1987). BUSTARD

et al. (1988) discuss applications, including simulation, and
are to be commended for addressing the question of test-
ing concurrent programs. JONES and GOLDSMITH (1988)
describe OCCAM. C and C++ programmers depend on
‘‘thread libraries’’ for concurrency facilities. The most
important is the POSIX thread library, also known as

‘‘Pthreads’’; see BUTENHOF (1997). BURNS and WELLINGS

(1998) describe the ADA95 model of concurrency in detail.
LEA (2000) does the same for JAVA, and illustrates many
design patterns and library frameworks that attempt to
insulate the JAVA programmer from the worst of its con-
currency problems. DIBBLE (2002) describes a heroic effort
to remedy the shortcomings of JAVA, aimed at making it
feasible for use in real-time applications.

Exercises
Exercises for Section 13.3

13.3.1 Rewrite the monitor given in Example 10.10, as an ADA95 protected object.

364 Chapter 13 Concurrent programming

13.3.2 Show that, using the buffer type given in Example 13.5, distributing n messages
to n waiting tasks takes time of order O(n). (Synchronization can be expected
to dominate performance, if the Message type is not too large.)

*13.3.3 The ADA implementation of the banker’s algorithm given in Programs 13.1
and 13.2 is less than ideally robust. This exercise sets out the changes needed
to make it behave well in a number of boundary conditions.

(a) Add the following declarations to the declaration of Banker:

inventory_error : exception;
liveness_error : exception;
safety_error : exception;

(b) The intention for inventory_error is that it should be thrown by
any call with a claim or an amount parameter that exceeds what is
proper for the call; and that it should be thrown by deregister if the
calling task has not yet relinquished all of its outstanding loans. Make the
necessary changes to implement these checks.

(c) The intention for liveness_error is that it should be thrown if the
system is found to be no longer live (i.e., if no process being scheduled can
proceed, which can happen only if the scheduler has malfunctioned and
failed to prevent deadlock). Make the necessary changes needed to throw
this exception appropriately.

(d) The intention forsafety_error is that it should be thrown if checks find
that more resources have been allocated than were provided in capital
(indicating that the scheduler has malfunctioned and failed to maintain
mutual exclusion). Write the body of:

procedure check_validity_of_allocations
(state : System_State);

It should throw safety_error if, in the given state, the balance of
any resource is negative; or the system’s capital of any resource is exceeded
by its exposure to the loan and possible further claim of any process; or
the total amount of any resource on loan exceeds the system’s capital of
that resource.
Find a suitable place to call check_validity_of_allocations.

*13.3.4 Five philosophers sit at a round table, with a bowl of spaghetti in the middle
and a plate in front of each. They alternate between eating and thinking. Five
forks are available, one placed between each two plates. Spaghetti is slippery
stuff and must be taken with two forks to maintain good table manners. In
order to eat, each philosopher must pick up both adjacent forks. Having
picked up a fork, he will not put it down until he has eaten. There are not
enough forks to let them all eat at once. Being devoted to the greatest good of
the greatest number, each philosopher puts down both his forks when he has
finished eating, then he starts to think.

(a) Construct a train of events in which the philosophers all deadlock and so
die of hunger.

(b) Construct a train of events in which only some philosophers starve, both
literally and technically!

Exercises 365

(c) Instantiate the Banker generic package (Program 13.1) as necessary, and
use it to program a solution in ADA that avoids both problems.

Exercises for Section 13.4
13.4.1 Show that neither the (deprecated)stopmethod in JAVA, nor theinterrupt

method, enables us to guarantee cancellation of a rogue thread.

13.4.2 In JAVA it is not possible to write a synchronized block protecting access to a
component of primitive type.

(a) Explain why.

(b) Suggest two ways you might work around this problem.

13.4.3 Show that, using the buffer class of Example 13.12, distributing n messages to
n waiting threads takes synchronization time of order O(n2).

13.4.4 Rewrite the monitor of Example 10.10 as a JAVA class.

*13.4.5 Rewrite the semaphore type of Example 13.6 as a JAVA class.

(a) Show that notify can be used reliably instead of notifyAll.

(b) Rewrite the buffer class in Example 13.12 to use your semaphore class for
synchronization. Show that distributing n messages to n waiting threads
now takes time of order O(n).

(c) Comment on the synchronization features of JAVA.

*13.4.6 Write an implementation of the banker’s algorithm in JAVA.

*13.4.7 In Exercise 10.5.4, we looked at double-checked locking, a technique that aims
to avoid the overhead of mutual exclusion where possible. Lazy initialization is
a common idiom in JAVA, and often liable to race conditions. Double-checked
locking is often suggested as a palliative, along the following lines:

class Thing . . . {

private Other someOther;

public void doSomething () {
if (someOther == null) {
synchronized (this) {
if (someOther == null)

someOther = new Other(. . .);
}

}
someOther.op();

}

}

(a) What can go wrong with this locking technique? How can it be made to
work, and what are the implications for the reuse of the Other class?

(b) The programmer has attempted to ensure the efficiency and the safety of
operations on Thing by totally encapsulating its components, synchro-
nizing only where updates make that necessary. For example, the call
‘‘someOther.op();’’ is not synchronized, because the programmer

366 Chapter 13 Concurrent programming

assumes that it will not change someOther. Explain why that assumption
is dangerous, and cannot be enforced in JAVA.

Exercises for Section 13.5
13.5.1 Why is preemptive priority scheduling important? To what extent do ADA95

and JAVA meet this need? Describe the yield method in JAVA and say why it
is less useful than it might be. Find out the nearest equivalent in ADA95.

13.5.2 Explain priority inversion. Show that many cases of priority inversion can be
automatically prevented in ADA. Suggest steps that a programmer can take to
reduce the risk of priority inversion in JAVA programs.

Chapter 14

Functional programming

In this chapter we shall study:

• the key concepts that characterize functional programming languages;

• the pragmatics of functional programming;

• the design of a major functional language, HASKELL.

14.1 Key concepts

In functional programming, the model of computation is the application of func-
tions to arguments. The key concepts of functional programming are therefore:

• expressions

• functions

• parametric polymorphism

and (in some functional languages):

• data abstraction

• lazy evaluation.

Expressions are a key concept of functional programming because their
purpose is to compute new values from old, which quite simply is the very essence
of functional programming.

Functions are a key concept of functional programming because functions
abstract over expressions. Moreover, functions are typically first-class values. Thus
functions can be passed as arguments, computed as results of other functions, built
into composite values, and so on. A higher-order function is one that takes another
function as an argument or computes another function as its result. For example,
a higher-order function can traverse a list, applying an argument function to each
component of the list.

Parametric polymorphism is a key concept of functional programming because
it enables a function to operate on values of a family of types (rather than just
one type). In practice, many useful functions are naturally polymorphic, and
parametric polymorphism greatly magnifies the power and expressiveness of a
functional language.

Data abstraction is a key concept in the more modern functional languages
such as ML and HASKELL. As always, data abstraction supports separation of

367

368 Chapter 14 Functional programming

concerns, which is essential for the design and implementation of large programs.
In a functional language, all the operations of an abstract type are constants and
functions. Thus an abstract type may be equipped with operations that compute
new values of the type from old. It is not possible for an abstract type to be
equipped with an operation that selectively updates a variable of the type, as in
an imperative language.

Lazy evaluation is based on the simple notion that an expression whose value
is never used need never be evaluated. In order to understand this concept, we
first explore a wider issue: the order in which expressions are evaluated.

14.1.1 Eager vs normal-order vs lazy evaluation

In this subsection we shall study the issue of when each actual parameter in a
function call is evaluated to yield the argument. We start by studying the choice
between eager and normal-order evaluation; later we shall see that lazy evaluation
is a more practicable variation of normal-order evaluation.

Eager evaluation means that we evaluate the actual parameter once, at the
point of call. In effect, we substitute the argument value for each occurrence of
the formal parameter.

Normal-order evaluation means that we evaluate the actual parameter only
when the argument is actually needed. In effect, we substitute the actual parameter
itself (an unevaluated expression) for each occurrence of the formal parameter.
(This is an over-simplification, however: see Exercise 14.1.3.)

Consider the function defined as follows:

sqr n = n * n

where n is the formal parameter. Consider also the function call ‘‘sqr(m+1)’’,
and suppose that m’s value is 6. Here are two different ways in which we could
evaluate this function call:

• Eager evaluation. First we evaluate ‘‘m+1’’, yielding 7. Then we bind the
formal parameter n to 7. Finally we evaluate ‘‘n * n’’, yielding 7 × 7 = 49.

• Normal-order evaluation. First we bind the formal parameter n to the
unevaluated expression ‘‘m+1’’. Subsequently we (re)evaluate that expres-
sion every time that the value of n is required during the evaluation
of ‘‘n * n’’. In effect, we evaluate ‘‘(m+1) * (m+1)’’, which yields
(6 + 1) × (6 + 1) = 49.

In the case of the sqr function, both eager and normal-order evaluation yield
the same result (although eager evaluation is the more efficient). However, the
behavior of certain functions does depend on the evaluation order. Consider the
function defined as follows:

cand b1 b2 = if b1 then b2 else False

where b1 and b2 are formal parameters. Consider also the function call ‘‘cand
(n>0) (t/n>50)’’. First suppose that n’s value is 2 and t’s value is 80.

14.1 Key concepts 369

• Eager evaluation: ‘‘n>0’’ yields true and ‘‘t/n>50’’ yields false; therefore
the function call yields false.

• Normal-order evaluation: In effect, we evaluate ‘‘if n>0 then t/n>50
else False’’, which also yields false.

But now suppose that n’s value is 0 and t’s value is 80.

• Eager evaluation: ‘‘n>0’’ yields false but ‘‘t/n>50’’ fails (due to division by
zero); therefore the function call itself fails.

• Normal-order evaluation: In effect we evaluate ‘‘if n>0 then t/n>50
else False’’, which yields false.

The essential difference between these two functions is as follows. The sqr
function always uses its argument, so a call to this function can be evaluated only
if its argument can be evaluated. On the other hand, the cand function sometimes
ignores its second argument, so a call to the cand function can sometimes be
evaluated even if its second argument cannot.

A function is strict in a particular argument if it always uses that argument.
For example, the sqr function is strict in its only argument; the cand function is
strict in its first argument, but nonstrict in its second argument.

Some programming languages possess an important property known as the
Church–Rosser Property:

If an expression can be evaluated at all, it can be evaluated by consistently using
normal-order evaluation. If an expression can be evaluated in several different orders
(mixing eager and normal-order evaluation), then all of these evaluation orders yield
the same result.

The Church–Rosser Property is possessed by HASKELL. It is not possessed by
any programming language that allows side effects (such as C, C++, JAVA, ADA,
or even ML). In a function call ‘‘F(E)’’ where evaluating E has side effects, it
certainly makes a difference when and how often E is evaluated. For example,
suppose that ‘‘getint(f)’’ reads an integer from the file f (a side effect) and
yields that integer. With eager evaluation, the function call ‘‘sqr(getint(f))’’
would cause one integer to be read, and would yield the square of that integer.
With normal-order evaluation, the same function call would cause two integers to
be read, and would yield their product!

In practice, normal-order evaluation is too inefficient to be used in program-
ming languages: an actual parameter might be evaluated several times, always
yielding the same argument. However, we can avoid this wasted computation
as follows.

Lazy evaluation means that we evaluate the actual parameter when the argu-
ment is first needed; then we store the argument for use whenever it is subsequently
needed. If the programming language possesses the Church–Rosser Property, lazy
evaluation always yields exactly the same result as normal-order evaluation.

Eager evaluation is adopted by nearly all programming languages. Lazy
evaluation is adopted only by pure functional languages such as HASKELL.

Lazy evaluation can be exploited in interesting ways. Evaluation of any
expression can be delayed until its value is actually needed, perhaps never. In

370 Chapter 14 Functional programming

particular, we can notionally construct a large composite value (such as a list),
and subsequently use only some of its components. The unused components will
remain unevaluated. We shall explore some of the possibilities of lazy evaluation
in Section 14.3.4.

14.2 Pragmatics

The basic program units of a functional program are functions. Typically, each
function is composed from simpler functions: one function calls another, or one
function’s result is passed as an argument to another function. Programs are written
entirely in terms of such functions, which are themselves composed of expressions
and declarations. Pure functional programming does not use commands or proper
procedures that update variables; these concepts belong to imperative and object-
oriented programming. Instead, functional programming exploits other powerful
concepts, notably higher-order functions and lazy evaluation.

A large functional program comprises a very large number of functions. Man-
aging them all can be problematic. In practice, most functions can be grouped
naturally into packages of some kind. Also, abstract types are just as advan-
tageous in functional programming as in other paradigms. Thus the program
units of a well-designed functional program are functions and packages (or
abstract types).

Figure 14.1 shows the architecture of such a functional program. Two abstract
types have been designed, each equipped with operations sufficient for this
application. All the program units are loosely coupled to one another. In particular,
since the representation of each abstract type is private, it can safely be changed
without forcing modifications to the other program units.

14.3 Case study: HASKELL

HASKELL was designed in the 1980s by a large committee led by Simon Peyton
Jones and John Hughes. It was strongly influenced both by ML, from which
it took parametric polymorphism and type inference, and by MIRANDA, from
which it took lazy evaluation. HASKELL was intended to be the world’s leading
functional language, and it has largely succeeded in that aim, although ML is also
still popular.

HASKELL is a pure functional language, whose computational power derives
largely from the use of higher-order functions and lazy evaluation. HASKELL does
not provide variables, commands, or sequencers. Nevertheless, HASKELL programs
can model state, and perform input/output, as we shall see in Section 14.3.7.

14.3.1 Values and types

HASKELL has a full repertoire of primitive types: Bool, Char, and various
numeric types (both integer and floating point). Unusually, HASKELL provides not
only a bounded integer type (Int) but also an unbounded integer type (Integer).

14.3 Case study: HASKELL 371

F function named F

F1

F1 calls F2

F2

abstract type named
T, with operations
named O1, …, Om

T

O1
…
Om

Notation:

main

process-
document

consult-
user

put-word
get-word

WordDictionary

empty
add

contains
load
save

Figure 14.1 Architecture of a functional program with data abstraction.

HASKELL also has a full repertoire of composite types: tuples, algebraic
types (disjoint unions), lists, and functions. Recursive types such as trees can be
defined directly.

Lists are the most ubiquitous composite values in functional programs. The
values of the HASKELL type [t] are lists whose elements are of type t. [] denotes
the empty list, and ‘‘x : xs’’ constructs a list whose head (first element) is x and
whose tail (list of remaining elements) is xs. (Note that ‘‘:’’ is an operator in
HASKELL.)

HASKELL provides a rich library of useful functions on lists, such as:

head :: [t] -> t
-- head xs computes the head of list xs.

tail :: [t] -> [t]
-- tail xs computes the tail of list xs.

length :: [t] -> Int
-- length xs computes the length of list xs.

(++) :: [t] -> [t] -> [t]
-- xs ++ ys computes the concatenation of lists xs and ys.

Here the type variable t denotes an arbitrary type.
We can easily define other useful functions on lists, as the following example

illustrates.

372 Chapter 14 Functional programming

EXAMPLE 14.1 HASKELL list functions

Consider the following HASKELL functions:

sum :: [Int] -> Int
-- sum ns computes the sum of the components of list ns.

sum [] = 0
sum (n : ns) = n + sum ns

product :: [Int] -> Int
-- product ns computes the product of the components of list ns.

product [] = 1
product (n : ns) = n * product ns

through :: Int -> Int -> [Int]
-- through m n computes the list of integers m through n.

m 'through' n =
if m > n
then []
else m : (m+1 'through' n)

(A binary function such as through can be used as an infix binary operator by writing it
as 'through'.)

We could use the above functions to define the factorial function as follows:

factorial n = product (1 ‘through’ n)

EXAMPLE 14.2 HASKELL list insertion

Consider inserting an integer into a sorted list of integers. In an imperative program
we could define a procedure that inserts the new component by selective updating. In a
HASKELL program we must instead define a function that computes a new list containing
the new component as well as all the original components; the original list itself remains
unchanged. The following function does this:

insert :: Int -> [Int] -> [Int]
-- insert i ns computes the list obtained by inserting i into the sorted list ns.

insert i [] =
[i]

insert i (n : ns) =
if i < n
then i : n : ns
else n : insert i ns

This function seems to copy the entire list in order to make a single insertion. On
closer study, however, we see that the function actually copies only the nodes containing
integers less than or equal to i; the remaining nodes are shared between the original
list and the new list. Figure 14.2 illustrates the effect of inserting 7 in the list [2, 3, 5, 11,
13, 17].

14.3 Case study: HASKELL 373

original
list

new
list

Cons
2

Cons
3

Cons
5

Cons
9

Cons
13

Cons
17

Nil

Cons
2

Cons
3

Cons
5

Cons
7

Figure 14.2 Insertion in a sorted list, without updating.

Figure 14.2 illustrates the representation of lists in a functional language,
which is similar to the linked representation that might be chosen by an imper-
ative programmer. The main difference is that a functional programmer never
manipulates pointers explicitly. This is a useful simplification, and eliminates a
major source of programming errors.

Figure 14.2 also illustrates the fact that parts of lists can be shared. In
the absence of side effects, sharing does not affect the program’s behavior,
since the shared components cannot be updated. We can therefore ignore the
existence of sharing, pretending that the lists are distinct. Again this is a useful
simplification.

These points apply not only to lists but also to trees and other recursive
types.

Recursive values such as lists can be manipulated with reasonable efficiency
in a functional language, but not arrays. Two lists that differ in a single component
can share much of their structure, but two arrays that differ in a single component
cannot. Therefore any function that computes a modified array must copy it in
its entirety, which is very costly if the function modifies a single component. For
this reason, the HASKELL language does not provide built-in arrays. (However, a
library module does support arrays for programs that really need them. For the
sake of efficiency, this module provides functions capable of modifying several
array components at a time.)

HASKELL complies well with the Type Completeness Principle. A constant,
parameter, or function result can be of any type (including a function type).

As befits a functional language, HASKELL has a rich expression repertoire
including constructions (for tuples, algebraic types, lists, and functions), function
calls, conditional (if- and case-) expressions, iterative expressions (list compre-
hensions), and block expressions.

The simplest form of function construction is ‘‘\ I -> E’’. This constructs
a function whose formal parameter is the identifier I and whose body is the
expression E.

A HASKELL function call has the form ‘‘E1 E2’’, where the subexpression E1
yields the function to be called, and the subexpression E2 yields the argument. If
f is a function whose result is another function, ‘‘f x’’ calls f to yield a function,
and ‘‘f x y’’ (or ‘‘(f x) y’’) calls the yielded function.

A binary operator ⊗ denotes a function of type T1 -> T2 -> T, where T1 and
T2 are the operand types and T is the result type. The expression ‘‘E1 ⊗ E2’’ is
equivalent to ‘‘(⊗) E1 E2’’.

374 Chapter 14 Functional programming

Iteration over lists is so important that HASKELL provides an iterative expres-
sion for this purpose: the list comprehension. For example, we can construct a list
of integers, each one greater than the corresponding integer in ns, by writing:

[n + 1 | n <- ns]

If ns is the list [2, 3, 5, 7, 11], this list comprehension will yield the list [3, 4, 6, 8,
12]. Similarly, if ns is a list of integers, we can double just the odd integers from
ns by writing:

[2 * n | n <- ns, n 'mod' 2 /= 0]

If ns is the list [2, 3, 5, 7, 11], this list comprehension will yield the list [6, 10,
14, 22].

The phrase ‘‘n <- ns’’ is an example of a generator. The occurrence of n to
the left of the symbol ‘‘<-’’ is a binding occurrence: n is bound in turn to each
component of the list ns.

The phrase ‘‘n 'mod' 2 /= 0’’ is an example of a filter, a boolean expression.
Values of n for which this filter yields false are discarded.

In general, a list comprehension has the form [E | Q1, . . . , Qn], where
each Qi is either a generator or a filter. If Qi is a generator, the scope of a binding
occurrence in its left-hand side includes Qi+1, . . . , Qn, and E.

List comprehensions are adapted from mathematical set notation. Compare
the above list comprehensions with {n + 1 | n ∈ ns} and {2n | n ∈ ns; n mod 2 �= 0},
respectively.

EXAMPLE 14.3 HASKELL list comprehensions

The following function uses a list comprehension and the through function of
Example 14.1:

sumsq :: Int -> Int
-- sumsq n computes the sum of the squares of the first n integers.

sumsq n = sum [i * i | i <- 1 'through' n]

Using list comprehensions we can code the quick-sort algorithm remarkably concisely:

sort :: [Int] -> [Int]
-- sort ns computes the list obtained by sorting list ns into ascending order.

sort [] = []
sort [x:xs] =

sort [y | y <- xs, y < x]
++ [x]
++ sort [z | z <- xs, z >= x]

14.3.2 Bindings and scope
A HASKELL program is basically a collection of modules (packages). One of these
modules must be named Main, and one of its components must be a function
named main; that function is the main program.

14.3 Case study: HASKELL 375

Within a module we may define types, constants, and functions. There is no
restriction on the order of the definitions, so a function may call other functions
defined earlier or later. The functions may be directly or mutually recursive.

Inside a block expression we may define local constants and functions (but
not types).

Both functions and case-expressions can be defined by pattern matching.
A pattern resembles an expression, but may contain binding occurrences of
identifiers. Given a value v, if there exist bindings for these identifiers such
that the pattern (viewed as an expression) would yield v, then the pattern is
said to match v. When the pattern matches a given value, it actually produces
these bindings.

EXAMPLE 14.4 HASKELL pattern matching
Consider the following HASKELL type definition:

data Shape = Pointy | Circular Float
| Rectangular(Float, Float)

The type defined here is a disjoint union.
Now consider the following function:

area :: Shape -> Float
-- area s computes the area of the shape s.

We can define this function by means of a case-expression:

area s =
case s of
Pointy -> 0.0
Circular r -> pi * r * r
Rectangular(h, w) -> h * w

This case-expression determines which of three alternative patterns matches the value
of s. If the pattern ‘‘Pointy’’ matches the value of s, the result is 0.0. If the pattern
‘‘Circular r’’ matches the value of s, e.g., if that value is Circular 5.0, the
identifier r is bound to 5.0 for the purpose of evaluating the expression ‘‘pi * r *
r’’. If the pattern ‘‘Rectangular(h, w)’’ matches the value of s, e.g., if that value is
Rectangular(2.0, 3.0), the identifiersh andw are bound to 2.0 and 3.0, respectively,
for the purpose of evaluating the expression ‘‘h * w’’.

Alternatively, we can exploit pattern matching directly in the function definition:

area Pointy = 0.0
area (Circular r) = pi * r * r
area (Rectangular(h, w)) = h * w

This function determines which of three alternative patterns matches its argument value.

In general, a function may be defined by several equations. Each equation’s
left-hand side contains a different pattern in its formal parameter position. For an
equation to be applied, its pattern must match the argument value, in which case

376 Chapter 14 Functional programming

the pattern produces bindings for the purpose of evaluating the right-hand side of
the equation.

Defining functions by pattern matching is a popular functional programming
idiom: it is concise, clear, and similar to mathematical notation.

We can declare a function’s type:

length :: [t] -> Int

as well as define it:

length [] = 0
length (x : xs) = 1 + length xs

Declaring a function’s type is optional; the HASKELL compiler can infer the
function’s type from its definition alone. However, declaring functions’ types
tends to make the program easier to understand.

14.3.3 Procedural abstraction
HASKELL supports only function procedures. It makes no distinction between
parameterless functions and constants.

HASKELL functions are first-class values: they can be passed as parameters,
computed as function results, built into composite values, and so on. This has a
major impact on programming style.

A function with a functional parameter or functional result is called a higher-
order function. We frequently exploit higher-order functions to make code
reusable, by abstracting over those parts of it that are specific to a particular
application.

Allowing a function to compute another function as its result opens up many
interesting possibilities, which are heavily exploited in functional programming.
The simplest way to generate a new function is by composing two existing
functions, as the following example illustrates.

EXAMPLE 14.5 HASKELL function composition
The ‘‘.’’ operator composes two given functions, and is defined as follows:

(.) :: (t -> u) -> (s -> t) -> (s -> u)
-- f . g computes a function h such that h(x) = f(g(x)).

f . g = \ x -> f(g(x))

Given the following library functions:

not :: Bool -> Bool
odd :: Int -> Bool

we can compose them as follows:

even = not . odd

This defines a function even whose type is Int -> Bool.

14.3 Case study: HASKELL 377

EXAMPLE 14.6 HASKELL curried function

Consider the following function:

power :: (Int, Float) -> Float
-- power(n, b) computes the nth power of b (assuming that n≥0).

power(n, b) =
if n = 0 then 1.0 else b * power(n-1, b)

This function, when applied to a pair consisting of an integer and a real number, will
compute a real number. For example, ‘‘power(2, x)’’ computes the square of x.

Now consider the following closely related function:

powerc :: Int -> Float -> Float
-- powerc n b computes the nth power of b (assuming that n≥0).

powerc n b =
if n = 0 then 1.0 else b * powerc (n-1) b

This function, when applied to an integer n, will compute another function; the latter
function, when applied to a real number, will compute the nth power of that real number.
For example, ‘‘powerc 2 x’’ computes the square of x.

The advantage of powerc is that we can call it with only one argument. For example:

sqr = powerc 2
cube = powerc 3

Here both sqr and cube are functions of type Float -> Float.

The function powerc of Example 14.6 is called a curried version of the
function power. The technique of calling a curried function with fewer than the
maximum number of arguments is called partial application.

EXAMPLE 14.7 HASKELL higher-order functions

The following HASKELL library function is higher-order:

filter :: (t -> Bool) -> [t] -> [t]
-- filter f computes a new function that filters the components of a given
-- list, retaining only those components x for which f x yields true.

filter f [] = []
filter f (x : xs) =

if f x then x : filter f xs else filter f xs

For instance, ‘‘filter odd’’ yields a function, of type [Int] -> [Int], that maps
the list [2, 3, 5, 7, 11] to the list [3, 5, 7, 11].

The following HASKELL library function is also higher-order:

map :: (s -> t) -> [s] -> [t]
-- map f computes a new function that applies function f separately to each
-- component of a given list.

378 Chapter 14 Functional programming

map f [] = []
map f (x : xs) = f x : map f xs

For instance, ‘‘map odd’’ is a function, of type [Int] -> [Bool], that maps the list [2,
3, 5, 7, 11] to the list [false, true, true, true, true].

EXAMPLE 14.8 HASKELL generic sorting function
Let us parameterize the sorting function of Example 14.3 with respect to the function that
compares two components:

genericSort :: (t -> t -> Bool) -> [t] -> [t]
-- genericSort before computes a function that sorts a given list
-- into ascending order, taking x 'before' y to mean that x should come
-- before y in the sorted list.

genericSort before =
let
sort [] = []
sort (n : ns) =

sort [i | i <- ns, i 'before' n]
++ [n]
++ sort [i | i <- ns, not (i 'before' n)]

in sort

When applied to an appropriate comparison function, genericSort generates a
specific sorting function. For instance:

intSort, reverseIntSort :: [Int] -> [Int]

intSort = genericSort (<)

reverseIntSort = genericSort (>)

Each of these generated functions sorts a list of integers. (Recall that the operators ‘‘<’’
and ‘‘>’’ denote functions, each of type Int -> Int -> Bool.)

Here the comparison function is explicitly defined:

type String = [Char]

precedes :: String -> String -> Bool

cs1 'precedes' [] =
False

[] 'precedes' (c2:cs2) =
True

(c1:cs1) 'precedes' (c2:cs2) =
if c1 == c2 then cs1 'precedes' cs2 else c1 < c2

lexicographicSort :: [String] -> [String]

lexicographicSort = genericSort precedes

As these examples illustrate, when we abstract over functions we very often
also want to abstract over types. We benefit from being able to reuse a sorting

14.3 Case study: HASKELL 379

function to sort lists of integers into a variety of different orders, but we benefit
much more from reusing a sorting function to sort lists of many different types.
Therefore HASKELL supports parametric polymorphism.

14.3.4 Lazy evaluation
In Section 14.1.1 we introduced lazy evaluation as a technique for delaying the
evaluation of function arguments until they are needed.

The usefulness of lazy evaluation is greatly increased if we also allow uneval-
uated expressions as components of a list. Such expressions might eventually be
evaluated, but only if and when they are selected from the list. A list containing
unevaluated expressions is called a lazy list. A remarkable consequence of this is
that we can build infinite lists, whose tails remain unevaluated.

This idea applies similarly to other composite types, so we can also build lazy
(and infinite) trees, and so on.

EXAMPLE 14.9 HASKELL lazy lists (1)
Consider the following HASKELL function:

from :: Int -> [Int]
-- from n computes the list of all integers not less than n.

from n = n : from (n+1)

The list computed by the from function is infinite (if we ignore the bounded range
of integers). With eager evaluation, this function would never terminate. But with lazy
evaluation, the recursive call to the from function will be built into the list, and will be
evaluated only if and when the tail of the list is selected.

Consider also the following function:

firstPrime :: [Int] -> Int
-- firstPrime ns computes the first prime number in the list ns.

firstPrime [] =
0

firstPrime (n : ns) =
if isPrime n then n else firstPrime ns

The following expression composes these two functions to compute the first prime
number not less than m:

firstPrime (from m)

In principle, this expression first computes an infinite list of integers, then tests the first
few integers in this list until it finds a prime number. In practice, the list always remains
partially evaluated. Only when firstPrime selects the tail of the list does a little more
evaluation of the list take place.

This example illustrates that the infinity of a lazy list is only potential. A lazy
list is an active composite value that is capable of computing as many of its own
components as needed.

380 Chapter 14 Functional programming

A major benefit of lazy evaluation is that it supports a novel kind of modularity:
the separation of control from calculation. The idea is to break an iterative
or recursive computation into a pure calculation part and a control part. The
calculation part computes all the necessary values and builds them into a composite
value (such as a lazy list). The control part traverses all or part of this composite
value, thus determining the flow of control. Often the calculation can be expressed
more simply once control information is removed. And often the same calculation
part can be reused with different control parts, or a control part can be reused
with different calculation parts. (See also Exercises 14.3.9 and 14.3.10.)

EXAMPLE 14.10 HASKELL lazy lists (2)

Consider the problem of computing square roots by the Newton–Raphson method. This
can naturally be decomposed into a calculation part that computes approximations, and
a control part that decides when the process has converged sufficiently. Arbitrarily many
approximations can be computed, so it is natural to build them into a lazy list. The following
HASKELL function does that:

approxRoots :: Float -> [Float]
-- approxRoots x computes a list of converging approximations to the
-- square root of x.

approxRoots x =
let
rootsFrom r =

r : rootsFrom (0.5 * (r + x/r))
in rootsFrom 1.0

The following is a control function that interprets convergence in terms of the absolute
difference between successive approximations:

absolute :: Float -> [Float] -> Float
-- absolute eps rs computes the first component of the list rs whose
-- absolute difference from its predecessor is at most eps.

absolute eps (r1 : r2 : rs) =
if abs (r1 - r2) <= eps
then r2
else absolute eps (r2 : rs)

Now we can compose the square root function as follows:

sqrt = absolute 0.0001 . approxRoots

We could reuse the same list of approximations with a different control function: see
Exercise 14.3.10. Conversely, we could reuse any one of these control functions with any
numerical algorithm that generates a sequence of converging approximations.

The same idea can be exploited in search algorithms. The search space is
calculated and built into a composite value such as a tree, and the search strategy

14.3 Case study: HASKELL 381

is then expressed as a function on this tree. When both the computation of the
search space and the search strategy are complex, separating the two can be a
significant simplification. The explicit representation of the search space as a tree
also makes it easy to add functions that manipulate the search space. For example,
we could limit the search to a fixed depth by discarding deeper branches; or we
could order branches so that regions of the search space in which the solution is
likely to lie are explored first.

14.3.5 Data abstraction

HASKELL supports data abstraction by means of modules, which are similar to
the packages of some other programming languages. A module groups together
definitions of components such as types, constants, and functions. Each of these
components may be either public or private.

An abstract type can be defined by a module that exports the type itself and
its operations (constants and functions), but hides the type’s representation.

EXAMPLE 14.11 HASKELL abstract type

The following module defines an algebraic type Date and several functions:

module Dates (Date, makeDate, advance, show) where

data Date = Epoch Int
-- A date is represented by the number of days since the first day of 2000.

makeDate :: (Int, Int, Int) -> Date
advance :: Int -> Date -> Date
show :: Date -> String

makeDate (y, m, d) =
. . .

advance n (Epoch e) =
Epoch (e + n)

show (Epoch e) =
let (y, m, d) = decompose (Epoch e)
in show y ++ "-" ++ show m ++ "-" ++ show d

decompose (Epoch e) =
let
y = . . .

m = . . .

d = . . .

in (y, m, d)

The module heading states that only the Date type and the makeDate, advance, and
show functions are public. The decompose function is private. The tag Epoch is also
private, so application code cannot use this tag to construct or pattern-match a Date value.
Therefore application code can manipulate Date values only by calling the module’s public
functions. In other words, Date is an abstract type.

382 Chapter 14 Functional programming

14.3.6 Generic abstraction

Generic abstraction is supported in HASKELL by parametric polymorphism, param-
eterized types, and type classes.

Parametric polymorphism allows us to define functions that operate over
a family of types with similar structure. Consider the following polymorphic
functions:

id :: t -> t
second :: (s, t) -> t
length :: [t] -> Int

id x = x

second (x, y) = y

length [] = 0
length (x : xs) = 1 + length xs

The id function operates over all types, the second function operates over all
tuple types with exactly two components, and the length function operates over
all list types.

A type variable (such as s or t above) ranges over all types. In general, the
definition of a polymorphic function can make no assumptions about the type
denoted by a type variable.

However, the definitions of certain polymorphic functions must assume that
the type denoted by a type variable is equipped with particular operations. For
example, the function:

min :: t -> t -> t

min x y = if x < y then x else y -- illegal!

cannot be defined unless we can assume that the type denoted by t is equipped
with a ‘‘<’’ operator.

HASKELL uses type classes to resolve this problem. A type class is a family of
types, all of which are equipped with certain required functions (or operators).
When we declare a type class, we declare the required functions, and provide
default definitions of them. Subsequently, we may declare any type to be an
instance of the type class, meaning that it is equipped with the required functions
of the type class; at the same time we may override any or all of the required
functions’ default definitions.

EXAMPLE 14.12 HASKELL type classes

The following type class Eq encompasses all types equipped with equality and inequality
test operators, named ‘‘==’’ and ‘‘/=’’:

class Eq t where
(==), (/=) :: t -> t -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

14.3 Case study: HASKELL 383

These default definitions of ‘‘==’’ and ‘‘/=’’ define the operators in terms of each other.
Every instance of this type class will have to override one or both of these default definitions
(otherwise a call to either operator would never terminate).

The following defines a new algebraic type Rational:

data Rational = Rat(Int, Int)
-- The rational number m/n is represented by Rat(m,n), where n>0.

and the following specifies that the type Rational is an instance of the Eq type class:

instance Eq Rational where

Rat(m1,n1) == Rat(m2,n2) =
m1*n2 == m2*n1

Here the Rational ‘‘==’’ operator is redefined (in terms of the Int ‘‘==’’ operator),
overriding its definition in the Eq type class declaration. However, the Rational ‘‘/=’’
operator is not redefined here, so its default definition (in terms of the Rational ‘‘==’’
operator) is retained.

The following type class Ord encompasses all types equipped with comparison
operators named ‘‘<’’, ‘‘<=’’, ‘‘>=’’, and ‘‘>’’:

class Ord t where
(<), (<=), (>=), (>) :: t -> t -> Bool

x < y = y > x
x <= y = not (y > x)
x >= y = not (y < x)
x > y = y < x

and the following specifies that the type Rational is an instance of the Ord type class:

instance Ord Rational where

Rat(m1,n1) < Rat(m2,n2) =
m1*n2 < m2*n1

The Eq type class of Example 14.12, and a richer version of the Ord type class,
are actually in HASKELL’s library. Nearly all HASKELL types (excepting mainly
function types) are instances of the Eq type class, and so are equipped with ‘‘==’’
and ‘‘/=’’ operators.

A given type can be an instance of several type classes. For example, the
Rational type of Example 14.12 is an instance of both Eq and Ord.

The following example illustrates how we can exploit a type class to define an
interesting generic abstract type.

EXAMPLE 14.13 HASKELL generic abstract type

The following module defines a parameterized abstract type PriorityQueue t, with
the restriction that the type denoted by t must be equipped with the ‘‘<’’ operator:

384 Chapter 14 Functional programming

module PriorityQueues (PriorityQueue,
empty, add, remove) where

data (Ord t) =>
PriorityQueue t = PQ [t]

-- A priority queue is represented by a sorted list.

empty :: PriorityQueue t
add :: t -> PriorityQueue t -> PriorityQueue t
remove :: PriorityQueue t -> (t, PriorityQueue t)

empty = PQ []

add x (PQ xs) =
let

insert x [] = [x]
insert x (y : ys) =
if x < y
then x : y : ys
else y : insert x ys

in PQ (insert x xs)

remove (PQ [x: xs]) = (x, PQ xs)

The ‘‘<’’ operator is used in the definition of the add function. The clause ‘‘(Ord t) =>’’
in the definition of the PriorityQueue t type guarantees that t is indeed equipped
with a ‘‘<’’ operator (and other comparison operators not used here).

All instance types of a given type class are equipped with synonymous func-
tions (or operators). Thus type classes support overloading (in a more systematic
manner than the ad hoc overloading supported by other languages such as C++,
JAVA, and ADA).

14.3.7 Modeling state
A pure functional language such as HASKELL has no explicit concept of storage
and therefore no variables that can be updated. It might therefore seem that we
cannot model real-world processes with inherent state. Actually we can model
state, but we do so indirectly, without any explicit use of storage.

In HASKELL, an action is an abstract entity that effects a change of state
(such as performing input/output) as well as producing a result. Actions can be
composed sequentially, and we can predict the effect of performing a sequence of
actions. (By contrast, we cannot predict the order in which HASKELL expressions
will be evaluated, but that does not matter because evaluating an expression has
no side effects.)

Actions are first-class values, and can therefore be passed as arguments,
computed as function results, and built into composite values. IO t is the type of
an action that performs input/output and produces a result of type t.

The primitive action ‘‘return E’’ simply evaluates the expression E. It has
no effect other than producing the value of E. (Do not confuse this action with
the return sequencer of imperative and object-oriented languages.)

14.3 Case study: HASKELL 385

Given two subactions, A1 of type IO s, and A2 of type IO t, we can form the
following composite actions:

• ‘‘A1 >> A2’’ is an action that first performs A1, discards its result, and then
performs A2. This composite action produces the result of A2, so its type is
IO t.

• ‘‘A1 >>= \ I -> A2’’ is an action that first performs A1, binds identifier I
to its result (of type s), and then performs A2. This composite action also
produces the result of A2, so its type is IO t.

EXAMPLE 14.14 HASKELL input/output

The following program first reads from standard input the names of two text files, then
copies the contents of the first text file to the second text file:

main =
getLine >>= \ inName ->
getLine >>= \ outName ->
readFile inName >>= \ inText ->
writeFile outName inText >>
putStr "Done!"

This uses several library functions:

getLine :: IO String
-- getLine reads a line of text from standard input, producing the line’s
-- contents as a string.

putStr :: String -> IO ()
-- putStr str writes string str to standard output.

readFile :: FilePath -> IO String
-- readFile path reads the whole of the text file named path, producing
-- the file’s contents as a string.

writeFile :: FilePath -> String -> IO ()
-- writeFile path str writes string str to the text file named path.

The following library functions enable us to throw and handle exceptions:

ioError :: IOError -> IO t
-- ioError e throws exception e.

catch :: IO t -> (IOError -> IO t) -> IO t
-- catch act handler performs action act. If act throws an exception,
-- handler is applied to that exception.

Note that IOError is a library abstract type whose values represent exceptions.
This technique for modeling state has limitations: it is not as expressive or

natural as the assignments, input/output operations, and exception handling of
an imperative language. It forces a two-level architecture on HASKELL programs:

386 Chapter 14 Functional programming

the lower level consists of ordinary functions, which use values to compute new
values; the upper level consists of actions that perform all the input/output,
calling the lower-level functions to perform computation. HASKELL is a suitable
language for implementing only those programs that naturally have such an
architecture.

14.3.8 A simple spellchecker

To conclude this overview of functional programming in HASKELL, let us examine
a HASKELL implementation of the simple spellchecker specified in Section 11.2.1.
The program’s architecture is shown in Figure 14.1. The program consists of
several modules, and is outlined in Programs 14.1–14.3.

Program 14.1 outlines the Words module, which defines the abstract type
Word together with its operations getWord and putWord, both of which are
actions. Moreover, putWord will throw an exception if it reaches the end of the
input document.

Program 14.2 outlines the Dictionariesmodule, which defines the abstract
type Dictionary. The operations of this abstract type are a constant (empty)
and some functions. For example, add is a function that computes the dictionary
obtained by adding a word to an existing dictionary. (Contrast this with the
imperative and object-oriented add operations in Programs 11.6, 12.2, and 12.6,
each of which updated the dictionary to which it was applied.)

Program 14.3 outlines the Mainmodule, which defines the high-level functions
consultUser, processDocument, and main. The first two are parameterized
actions, and the latter is the main program action. Note that processDocument
reads a word from the input document and processes it, then calls itself recursively
to process the remaining words. It also catches any exception thrown by getWord,
in which case it returns immediately.

module Words (Word, getWord, putWord) where

type Word = . . . -- representation
-- Each Word value is a single word.

getWord :: FilePath -> FilePath -> IO Word
-- getWords inDoc outDoc reads a word from the file inDoc, copying any
-- preceding punctuation to the file outDoc. It produces that word, or throws an
-- exception if there is no next word.

putWord :: FilePath -> Word -> IO ()
-- putword outDoc word writes word to the file outDoc.

getWord inDoc outDoc = . . .

putWord outDoc word = . . .

Program 14.1 Words module in HASKELL (in outline).

Summary 387

module Dictionaries (Dictionary, empty, add, contains,
load, save) where

import Words

type Dictionary = . . . -- representation
-- Each Dictionary value is a set of words.

empty :: Dictionary
-- empty is the empty dictionary.

add :: Word -> Dictionary -> Dictionary
-- add word dict yields the dictionary obtained by adding word to dict.

contains :: Dictionary -> Word -> Bool
-- dict 'contains' word yields true if and only if word is a member of
-- dict.

load :: FilePath -> IO Dictionary
-- load path loads a dictionary from the file named path, and produces that
-- dictionary.

save :: FilePath -> Dictionary -> IO ()
-- save path dict saves dict to the file named path.

empty = . . .

add word dict = . . .

dict 'contains' word = . . .

load fn = . . .

save fn dict = . . .

Program 14.2 Dictionaries module in HASKELL (in outline).

Summary
In this chapter:

• We have identified the key concepts of functional programming: expressions, func-
tions, parametric polymorphism, and (in some functional languages) data abstraction
and lazy evaluation.

• We have studied the pragmatics of functional programming, noting that data
abstraction is just as advantageous in functional programming as in other paradigms.

• We have studied the design of a major functional programming language, HASKELL.
In particular, we found that lazy evaluation opens up novel ways of structuring
programs. We also found that we can model state (such as input/output) without
resorting to variables.

• We have seen a functional implementation, in HASKELL, of a simple spellchecker.

388 Chapter 14 Functional programming

module Main where

import Words
import Dictionaries

inDoc = "indoc.txt"
outDoc = "outdoc.txt"

consultUser :: Word -> Dictionary -> Dictionary
-> IO (Word, Dictionary, Dictionary)

-- consultUser word mainDict ignored asks the user what to do with
-- word, which is unknown.
-- If the user chooses to accept the word, it is added to mainDict.
-- If the user chooses to ignore the word, it is added to ignored.
-- If the user chooses to replace the word, the user enters a replacement word.
-- It produces (word', mainDict', ignored'), where word' is either
-- word or its replacement, mainDict' is mainDict with word possibly
-- added, and ignored' is ignored with word possibly added.

processDocument :: Dictionary -> Dictionary
-> IO Dictionary

-- processDocument mainDict ignored copies all words and punctuation
-- from the input document to the output document, but asks the user what to do
-- with any words that are unknown (i.e., not in mainDict or ignored).
-- It produces mainDict', which is mainDict with accepted words added.

main :: IO ()

consultUser currentWord mainDict ignored =
. . .

processDocument mainDict ignored =
catch (
getWord inDoc outDoc >>= \ word ->
consultUser word mainDict ignored >>=

\ (word', mainDict', ignored') ->
putWord outDoc word' >>
processDocument mainDict' ignored'

) (
\ ioexception -> return mainDict

)

main =
load "dict.txt" >>= \ mainDict ->
processDocument mainDict empty >>= \ mainDict' ->
save "dict.txt" mainDict'

Program 14.3 Main module in HASKELL (in outline).

Further reading

Several good introductions to functional programming in
HASKELL are available. BIRD and WADLER (1988) place
strong emphasis on proofs of correctness and program
transformation. THOMPSON (1999) is a more elementary
treatment.

WIKSTRÖM (1987) covers the purely functional subset of
ML, emphasizing programming methodology; a definition
of ML is included as an appendix.

ABELSON et al. (1996) describe SCHEME, a dialect of LISP.
SCHEME supports higher-order functions and (to a limited

Exercises 389

extent) lazy evaluation, but also provides variables and side
effects. Abelson et al. explore the potential of a hybrid
functional–imperative style, concentrating heavily on the
modularity of their programs.

The Church–Rosser Property is based on a theorem about
the lambda-calculus, an account of which may be found

in ROSSER (1982). (The lambda-calculus is an
extremely simple functional language, much used as an
object of study in the theory of computation.)

Exercises

Exercises for Section 14.1
14.1.1 The C++ expression ‘‘E1 && E2’’ yields true if and only if both E1 and E2

yield true; moreover, evaluation of E2 is short-circuited if E1 yields false. The
ADA expression ‘‘E1 and thenE2’’ behaves likewise. Explain why ‘‘&&’’ and
‘‘and then’’ cannot be defined as ordinary operators or functions in their
respective languages.

14.1.2 (a) Define a HASKELL function cond such that ‘‘cond(E1, E2, E3)’’ has
exactly the same effect as the HASKELL expression ‘‘if E1 then E2 else E3’’.
Take advantage of lazy evaluation. (b) Explain why such a function cannot be
defined using eager evaluation.

*14.1.3 Consider the function definition ‘‘F I = E’’ and the function call ‘‘F A’’.
Normal-order evaluation might be characterized by:

F A ≡ E[I ⇒ A]

where E[I ⇒ A] is the expression obtained by substituting A for all free occur-
rences of I in E. (a) Characterize eager evaluation in an analogous fashion.
(b) Show that E[I ⇒ A] must be defined carefully, because of the possibility
of confusing the scopes of an identifier with more than one declaration. For
example, consider:

let
f n = let m = 7 in m * n
m = 2

in f(m+1)

Exercises for Section 14.3
14.3.1 Draw a diagram, similar to Figure 14.2, that shows the effect of evaluating

‘‘ns1 ++ ns2’’, where ns1 is the list [2, 3, 5], ns2 is the list [7, 11, 13, 17],
and ‘‘++’’ is the concatenation operator.

14.3.2 Suppose that an employee record consists of an employee’s name (a string),
age (an integer), gender (female or male), and grade (managerial, clerical, or
manual). You are given employees, a list of employee records. Write list
comprehensions to compute the following: (a) a list of all female employees;
(b) a list of all male employees over 60 years of age; (c) a list of the names
of all managers. Also write an expression to compute (d) the mean age of all
female clerical employees.

14.3.3 (a) Define a HASKELL type whose values are binary search trees (BSTs) with
integer components. (b) Define a function that inserts a given integer into
a BST. (c) Define a function that maps a given unsorted integer list to a

390 Chapter 14 Functional programming

BST, using your insertion function. (d) Define a function that maps a BST to
an integer list using left–root–right traversal. (e) Form the composition of
functions (c) and (d). What does it do?

14.3.4 Consider the type Shape of Example 14.4, and the following type:

type Point = (Float, Float) -- x, y coordinates

Using pattern matching, define the following functions:

perimeter :: Shape -> Float
-- perimeter s computes the length of shape s’s perimeter.

inside :: Point -> (Shape, Point) -> Bool
-- p 'inside' (s, c) computes true if and only if point p is inside
-- the shape s centered at point c.

14.3.5 The HASKELL operator ‘‘.’’ composes any two compatible functions, as in
Example 14.5. Give three reasons why ‘‘.’’ cannot be defined in a language
like C or PASCAL.

14.3.6 Example 14.6 uses the obvious algorithm to compute bn (where n ≥ 0). A
better algorithm is suggested by the following equations:

b0 = 1
b2n = (b2

)n

b2n+1 = (b2
)n × b

Write a HASKELL function to compute bn using this better algorithm.

*14.3.7 (a) Consider a list comprehension of the form:

[E1 | I <- E2]

This uses the existing list, yielded by the expression E2, to compute a
new list. Each component of the new list is determined by evaluating E1

with the identifier I bound to the corresponding component of the existing
list. Show how the same effect can be achieved using the map function of
Example 14.7. (b) Repeat with a list comprehension of the form:

[E1 | I <- E2, E3]

which is similar, except that components of the existing list for which the
expression E3 yields false are discarded. Use the map and filter functions
of Example 14.7.

14.3.8 Consider the genericSort function of Example 14.8. Use this to generate
functions to sort lists of employee records (see Exercise 14.3.2). The lists are
to be sorted: (a) by name; (b) primarily by grade and secondarily by name.

14.3.9 By replacing the calculation part and/or the control part of Example 14.9,
write functions to compute the following: (a) the first power of 2 not less than
m; (b) a list of all prime numbers between m and n.

14.3.10 Consider the calculation function approxRoots and the control function
absolute of Example 14.10. Reuse the same calculation function with:
(a) a control function that tests for convergence using relative difference
between successive approximations; (b) a control function that chooses the

Exercises 391

fourth approximation regardless; (c) a control function that formats the
approximations for debugging.

14.3.11 Finish the coding of the HASKELL spellchecker of Programs 14.1–14.3.

14.3.12 Modify the HASKELL spellchecker of Programs 14.1–14.3 to use a third
dictionary, the user dictionary. Any unknown words accepted by the user are
to be added to the user dictionary, which must be saved when the program
finishes. The main dictionary is no longer to be updated.

Chapter 15

Logic programming

In this chapter we shall study:

• the key concepts of logic programming;

• the pragmatics of logic programming;

• the design of a major logic programming language, PROLOG.

15.1 Key concepts

Even paradigms as different as imperative and functional programming have one
thing in common: a program reads inputs and writes outputs. Since the outputs
are functionally dependent on the inputs, an imperative or functional program
may be viewed abstractly as implementing a mapping from inputs to outputs.

A logic program, on the other hand, implements a relation. Since relations are
more general than mappings, logic programming is potentially higher-level than
imperative or functional programming.

Consider two sets of values S and T. We say that r is a relation between S and
T if, for every x in S and y in T, r(x, y) is either true or false.

For example, ‘‘>’’ is a relation between numbers, since for any pair of numbers
x and y, x > y is either true or false. (By convention, we write ‘‘x > y’’ rather than
‘‘>(x, y)’’.)

A simple geographical example is the relation ‘‘flows through’’ between
rivers and countries: ‘‘the River Clyde flows through Scotland’’ is true, but ‘‘the
Mississippi River flows through California’’ is false.

Figure 15.1 illustrates several different relations between two sets S = {u, v}
and T = {a, b, c}. A double-headed arrow connects each pair of values for which
the relation is true. For example, r1(u, a) and r1(v, c) are true.

Compare Figure 15.1 with Figure 2.2, which illustrated mappings between
sets S and T. In a mapping in S → T, each value in S is mapped to exactly one
value in T; but in a relation between S and T, a given value in S may be related
to many values in T. In general, mappings are many-to-one, while relations are
many-to-many. For example, the relation r4 in Figure 15.1 is many-to-many.

Imperative and functional programming are essentially about implementing
mappings. Having implemented a mapping m, we can make the following query:

Given a, determine the value of m(a). (15.1)

A query like (15.1) will always have a single answer.

393

394 Chapter 15 Logic programming

S

T

u v

a b c

r1

a b c

r2

u v

a b c

r3

u v

a b c

r4

u v

Figure 15.1 Four different relations between sets S and T.

Logic programming is about implementing relations. Having implemented a
relation r, we can make queries like:

Given a and u, determine whether r(a, u) is true. (15.2)
Given a, find all y such that r(a, y) is true. (15.3)
Given u, find all x such that r(x, u) is true. (15.4)
Find all x and y such that r(x, y) is true. (15.5)

A query like (15.2) will have a single yes/no answer, but a query like (15.3), (15.4),
or (15.5) could have any number of answers (perhaps none). Moreover, queries
(15.3) and (15.4) show that a relation makes no distinction between inputs and
outputs. Queries like these are characteristic of logic programming, and explain
why it is potentially higher-level than imperative or functional programming.

For simplicity, so far we have talked about binary relations, i.e., relations
between pairs of values. We can also talk about unary relations, written in the
form r(x), ternary relations, written r(x, y, z), and so on.

EXAMPLE 15.1 Relations

Let Point = point(Float × Float) represent the set of all points on the xy plane.
Consider a relation origin(p), which is true if and only if point p is the origin. This is a

unary relation on the set Point. It can be defined as follows:

origin(point(x, y)) if and only if x = 0 and y = 0

Now consider inside(p, r), which is true if and only if point p lies inside the circle of
radius r centered at the origin. This is a binary relation between Point and Float. It can be
defined as follows:

inside(point(x, y), r) if and only if x2 + y2 < r2

Finally consider collinear(p1, p2, p3), which is true if and only if points p1, p2, and p3

all lie on a straight line. This is a ternary relation. It can be defined as follows:

collinear(point(x1, y1), point(x2, y2), point(x3, y3)) if and only if
(x1 − x2)(y2 − y3) = (y1 − y2)(x2 − x3)

Note that we can define relations in terms of other relations. We have defined the
relations origin, inside, and collinear in terms of the relations ‘‘=’’ and ‘‘<’’ on numbers.

15.1 Key concepts 395

No logic programming language can exploit the full power of mathematical
logic, for that formalism is unimplementable. We can use mathematical logic to
specify solutions to problems such as this:

fermat(n) if and only if there exist positive integers a, b, c such that
an + bn = cn

but this ‘‘program’’ cannot be implemented (since the problem is incomputable).
Logic programming is therefore forced to employ a more restricted logic that

can be implemented. It turns out that first-order predicate logic, further restricted
to Horn clauses, is implementable. The key concepts of logic programming
are therefore:

• assertions
• Horn clauses
• relations.

A simple assertion has the form r(T1, . . . , Tm) where r is an m-ary relation,
and where T1, . . . , Tm are terms (expressions), possibly containing variables.

A Horn clause (or just clause) has the form:

A0 if A1 and . . . and An.

Informally, this clause means that, if the assertions A1, . . . , An are all true, then we
can infer that the assertion A0 is also true. However, we cannot conversely infer
that A0 is false just because some Ai turns out to be false: a Horn clause is written
in terms of ‘‘if’’ rather than ‘‘if and only if’’.

A fact is a special case of a Horn clause where n = 0:

A0.

This fact states that the assertion A0 is true unconditionally.
A logic program is a collection of Horn clauses. The restriction to Horn clauses

ensures that an implementation is both possible and tolerably efficient.
Computation consists of testing a given query Q, which in its simplest form is

just an assertion. If we can infer from the clauses of the program that Q is true,
then we say that the query succeeds. If we cannot infer that Q is true, then we say
that the query fails. This does not mean that Q is definitely false; it means simply
that Q cannot be inferred to be true from the clauses of the program.

To test query Q, we use a technique known as resolution:

• If the program contains a fact ‘‘A0.’’ such that A0 matches Q, then we
immediately conclude that Q succeeds.

• If the program contains a clause ‘‘A0 if A1 and . . . and An.’’ such that
A0 matches Q, then we test A1, . . . , An separately as subqueries. If all
succeed, then we conclude that Q succeeds. If any subquery fails, then we
backtrack, i.e., give up the attempt to use this particular clause and try
another clause instead.

Only when we have tried all clauses whose left-hand sides match Q can we
conclude that query Q fails.

396 Chapter 15 Logic programming

An assertion A matches a query Q if A and Q can be made equal by consistent
substitution, i.e., by replacing each variable by the same value wherever it occurs
in A or Q.

Relations abstract over assertions. We can define a relation r by one or more
facts of the form ‘‘r(. . .).’’ and/or clauses of the form ‘‘r(. . .) if’’. We can call
that relation from a clause of the form ‘‘. . . if . . . and r(. . .) and . . .’’.

Relations in logic programming play much the same role as procedures in
other paradigms. Backtracking, however, gives logic programming a distinctive
flavor, and is responsible for much of its power and expressiveness. Unfortunately,
backtracking is time-consuming.

15.2 Pragmatics
The program units of a logic program are relations. Typically, each relation is
composed from simpler relations. Programs are written entirely in terms of such
relations. Pure logic programming does not use procedures (which belong to
imperative and functional programming). Instead, logic programming uniquely
exploits backtracking, which accounts for much of its power and expressiveness.

The very simple structure of Horn clauses forces individual relations to be
rather small and simple. A procedure in an imperative or functional program can
be as complex as desired, because its definition can include commands and/or
expressions composed in many ways. The same is not true of the assertions in the
definition of a relation. For this reason, logic programs tend to consist of a large
number of relations, each of which has a rather simple definition.

Data abstraction, or at least a means to group relations into packages, would
help to keep large logic programs manageable. Unfortunately, the only major
logic programming language (PROLOG) has not followed the major imperative and
functional programming languages, which have evolved in this way.

Figure 15.2 shows the architecture of a typical logic program.

15.3 Case study: PROLOG

PROLOG was gradually developed during the 1970s by Robert Kowalski and Alain
Colmerauer, primarily as an experimental artificial intelligence tool. Lacking a
standard definition, PROLOG evolved into several dialects, differing even in their
basic syntax! Fortunately, the Edinburgh dialect became a de facto standard.

PROLOG received a major boost in 1981, when the Japanese Institute for New
Generation Computing Technology selected logic programming as its enabling
software technology, and launched the ten-year Fifth Generation Project to
provide a complementary hardware technology in the shape of fast logical infer-
ence machines. That project did not achieve its very ambitious goals, but logic
programming and PROLOG gained a high profile.

15.3.1 Values, variables, and terms

PROLOG’s primitive values are numbers and atoms. Atoms can be compared with
one another, but have no other properties. They are used to represent real-world

15.3 Case study: PROLOG 397

get-
word

put-
word

main

containsload addsave clear

process-
document

consult-
user

R relation named R

R1

R1 calls R2

R2

Notation:

Figure 15.2 Architecture of a logic program.

objects that are primitive as far as the current application is concerned. Examples
of atoms are red, green, and blue, which might represent colors, and jan,
feb, mar, etc., which might represent months. Atoms resemble the enumerands
of some other languages.

PROLOG’s composite values are called structures, but they are actually
tagged tuples. For example, structures such as date(2000,jan,1) and
date(1978,may,5) might be used to represent dates. The tags serve to
distinguish structures that happen to have the same components but represent
distinct real-world objects, such as point(2,3) and rational(2,3). The
components of a structure can be any values, including substructures, for example:

person(name("Watt","Susanne"),
female,
date(1978,may,5))

A list in PROLOG is a special case of a structure. The atom [] denotes the
empty list, and the structure ‘‘.(x,xs)’’ denotes the list whose head is x and
whose tail is the list xs. More convenient notation for lists is also provided:

[x|xs] ≡ .(x,xs)

[x1,. . .,xn] ≡ .(x1,(xn,[]). . .)

A string in PROLOG is a list of integers, where each individual integer rep-
resents a character. For example, the string literal "Susanne" denotes a list of
seven integers.

PROLOG is a dynamically typed language. Values of all types (numbers, atoms,
and structures) can be used interchangeably. Thus we can construct heterogeneous

398 Chapter 15 Logic programming

lists containing values of different types. We can also compare values of different
types using the equality relation ‘‘=’’, but such a comparison always yields false.

A PROLOG term is a variable, numeric literal, atom, or structure construction.
Terms occur as arguments to relations.

A PROLOG variable (written with an initial uppercase letter to distinguish it
from an atom or tag) denotes a fixed but unknown value, of any type. Thus PROLOG

variables correspond to mathematical variables, not the updatable variables of an
imperative language. A variable is declared implicitly by its occurrence in a clause,
and its scope is just the clause in which it occurs.

15.3.2 Assertions and clauses

A PROLOG assertion has the form r(T1, . . . , Tm), where r is an m-ary relation and
T1, . . . , Tm are terms.

An assertion A matches a query Q if there is a substitution of terms for
variables that makes A and Q the same. For example, born(P, 1978) matches
born("Susanne", 1978) under the substitution P = "Susanne". Likewise,
born(P, Y) matches born("Jeffrey", 1983) under the substitution P =
"Jeffrey" and Y = 1983. Clearly, an assertion can match a query only if they
refer to the same relation.

A PROLOG clause is a Horn clause written in one of the following forms:

A0.
A0 :- A1, . . ., An.

The first of these is a fact. The second is read as ‘‘A0 succeeds if A1 succeeds and
. . . and An succeeds’’.

A PROLOG clause may also contain the symbol ‘‘;’’, which means ‘‘or’’.
For example:

A0 :- A1; A2, A3.

is read as ‘‘A0 succeeds if either A1 succeeds or A2 succeeds and A3 succeeds’’.
This is just an abbreviation for a pair of Horn clauses, ‘‘A0 :- A1.’’ and ‘‘A0 :-
A2, A3.’’.

15.3.3 Relations

A PROLOG relation is defined by one or more clauses.

EXAMPLE 15.2 PROLOG relations

The following PROLOG facts together define a unary relation star on celestial bodies,
where each celestial body is represented by an atom (such as sun):

% star(B) succeeds if and only if B is a known star.
star(sirius).
star(sun).

15.3 Case study: PROLOG 399

star(vega).
% . . . and similarly for other stars.

Here are some possible queries:

?- star(sun). This succeeds.

?- star(jupiter). This fails.

The following PROLOG facts together define a binary relation orbits:

% orbits(B1, B2) succeeds if and only if B1 is known to orbit around B2.
orbits(mercury, sun).
orbits(venus, sun).
orbits(earth, sun).
orbits(mars, sun).
orbits(moon, earth).
orbits(phobos, mars).
orbits(deimos, mars).
% . . . and similarly for other planets and their satellites.

Here are some possible queries:

?- orbits(mars, sun). This succeeds.

?- orbits(moon, sun). This fails.

?- orbits(phobos, B). This asks which body or bodies Phobos
orbits. It succeeds yielding a single answer:
B = mars.

?- orbits(B, mars). This asks which body or bodies orbit Mars.
It succeeds yielding the answers B =
phobos and B = deimos.

?- orbits(B, venus). This fails, since there is no substitution for B
that would make this query match any of
the facts.

The following clause defines a unary relation planet:

% planet(B) succeeds if and only if B is a known planet of the Sun.
planet(B) :-

orbits(B, sun).

Here are some possible queries:

?- planet(mars). This succeeds.

?- planet(P). This succeeds yielding the answers P = mercury,
P = venus, P = earth, P = mars, etc.

The following clause defines a unary relation satellite:

% satellite(B) succeeds if and only if B is a known satellite of a known
% planet of the Sun.
satellite(B) :-

orbits(B, P), planet(P).

400 Chapter 15 Logic programming

This clause says that a body B is a satellite if it orbits some celestial body P and that same
P is a planet. Here are some possible queries:

?- satellite(phobos). This succeeds.

?- satellite(S). This succeeds yielding the answers
S = moon, S = phobos, S =
deimos, etc.

Finally, the following clause defines a unary relation solar:

% solar(B) succeeds if and only if B is a known member of the Solar System.
solar(sun).
solar(B) :-

planet(B);
satellite(B).

The first clause says that the Sun is a member of the solar system. The second clause says
that a body B is a member of the solar system if it is a planet or if it is a satellite. Here are
some possible queries:

?- solar(venus). This succeeds.

?- solar(moon). This succeeds.

?- solar(sirius). This fails.

?- solar(B). This succeeds yielding the answers B =
sun, B = mercury, B = venus, B
= earth, B = mars, B = moon, B
= phobos, B = deimos, etc.

Not all relations defined in PROLOG have such straightforward logical mean-
ings. The following example illustrates one way in which PROLOG departs from our
logical intuition.

EXAMPLE 15.3 PROLOG arithmetic relations

The relations of Example 15.3.1 might be expressed in PROLOG as follows. Assume that the
point (x, y) is represented by the structure point(x,y).

origin(point(X,Y)) :-
X = 0, Y = 0.

inside(point(X,Y), R) :-
X*X+Y*Y < R*R.

Here are some possible queries:

?- origin(point(0,2)). This fails.

?- origin(P). This succeeds yielding the answer P =
point(0,0).

?- inside(point(1,2), 3). This succeeds.

?- inside(point(1,2), R). This query is erroneous.

15.3 Case study: PROLOG 401

The last query attempts to ask for the radii of all circles that enclose the point (1, 2). It
amounts to finding every value for R such that 5 < R*R, but PROLOG’s built-in relation ‘‘<’’
succeeds only when both its arguments are known numbers. In consequence, the relation
inside behaves correctly only when both its arguments are known.

The only way to repeat a computation in PROLOG is by defining a recursive
relation. Relations on lists are typically recursive.

EXAMPLE 15.4 PROLOG recursive relations

The following clauses define a binary relation contains:

% contains(L, Y) succeeds if and only if Y is an element of list L.
contains([X|Xs], X).
contains([X|Xs], Y) :-

contains(Xs, Y).

The first clause says that X is an element of a list with head X and tail Xs. The second clause
says that Y is an element of a list with head X and tail Xs if Y is an element of Xs. Here are
some possible queries:

?- contains([2,3,5], 3). This succeeds.

?- contains([2,3,5], 4). This fails.

?- contains([2,3,5], V). This succeeds yielding the answers V =
2, V = 3, and V = 5.

?- contains([], 4). This fails.

The last query fails simply because there is no clause that matches it.
The following clauses define a ternary relation addlast:

% addlast(X, L1, L2) succeeds if and only if adding X to the end of list
% L1 yields the list L2.
addlast(X, [], [X]).
addlast(X, [Y|Ys], [Y|Zs]) :-

addlast(X, Ys, Zs).

The first clause says that adding X to the end of the empty list yields [X]. The second
clause says that adding X to the end of [Y|Ys] yields [Y|Zs], if adding X to the end of Ys
yields Zs. Here are some possible queries:

?- addlast(7, [], L). This succeeds yielding the answer
L = [7].

?- addlast(7, [2,3,5], L). This succeeds yielding the answer
L = [2, 3, 5, 7].

?- addlast(V, L, [2,3,5]). This succeeds yielding the answer
V = 5 and L = [2, 3].

?- addlast(V, L, []). This fails.

402 Chapter 15 Logic programming

The following clauses define a ternary relation concat:

% concat(L1, L2, L3) succeeds if and only if concatenating the lists L1
% and L2 yields the list L3.
concat([], Ys, Ys).
concat([X|Xs], Ys, [X|Zs]) :-

concat(Xs, Ys, Zs).

The first clause says that concatenating the empty list and Ys yields Ys. The second clause
says that concatenating [X|Xs] and Ys yields [X|Zs], if concatenating Xs and Ys yields
Zs. Here are some possible queries:

?- concat([2,3], [5,7], L). This succeeds yielding the answer
L = [2, 3, 5, 7].

?- concat([2,3], L,
[2,3,5,7]).

This succeeds yielding the answer
L = [5, 7].

?- concat(L1, L2, [5,7]). This finds all possible ways of splitting [5,
7]. It succeeds yielding the answers:

(1) L1 = [] and L2 = [5, 7]
(2) L1 = [5] and L2 = [7]
(3) L1 = [5, 7] and L2 = []

Thus the relation concat can be used to concatenate two given lists, or to remove a given
list from the front (or back) of another list, or to find all ways of splitting a given list. In an
imperative or functional language, we would need to write several procedures or functions
to accomplish all these computations.

15.3.4 The closed-world assumption

An assertion A might fail. This does not mean that A is definitely false; it simply
means that we cannot infer from the clauses of the program that A is true. In fact,
only assertions using built-in relations (such as ‘‘chalk = cheese’’ and ‘‘2 >
3’’) are definitely false in PROLOG. When an assertion is tested, therefore, success
means true and failure means either unknown or false.

As this is rather inconvenient, PROLOG bends the rules of logic by ignoring
the distinction between unknown and false. In other words, an assertion is
assumed to be false if it cannot be inferred to be true. This is called the closed-
world assumption – the PROLOG processor assumes that the program encodes all
relevant information about the application domain (the ‘‘world’’).

In Example 15.2, a query like ‘‘?- orbits(halley, sun).’’ would fail,
simply because the program asserted nothing at all about halley. A query like
‘‘?- comet(halley).’’ would also fail, simply because the program did not
define a unary relation comet.

This of itself is not too serious: PROLOG programmers are well aware that
the closed-world assumption obliges them to encode all relevant information.
However, PROLOG compounds the problem by providing a form of negation. If
A is an assertion, then ‘‘not(A)’’ is an assertion that negates the assumed truth
value of A. Thus the negation of unknown is taken to be true! Using negation, it
is easy to write clauses that are truly misleading.

15.3 Case study: PROLOG 403

EXAMPLE 15.5 PROLOG negation

Suppose that we add the following clause to Example 15.2:

comet(B) :-
not(star(B)), not(planet(B)), not(satellite(B)).

Here are some possible queries:

?- comet(halley). This succeeds.

?- comet(apollo). This succeeds.

?- orbits(halley, sun). This fails.

The first query succeeds, but only by coincidence! This is highlighted by the fact that the
second query also succeeds.

15.3.5 Bindings and scope

A PROLOG program consists of one or more relations. Each relation, as we have
seen, is defined by one or more clauses.

The scope of every relation is the entire program. It is not possible in
PROLOG to define a relation locally to another relation, nor to group relations into
packages.

The scope of each variable is the whole of the clause (or query) in which it
occurs. This clause from Example 15.2:

planet(B) :-
orbits(B, sun).

has the following meaning in predicate logic:

For all B, planet(B) succeeds if orbits(B, sun) succeeds.

This clause:

satellite(B) :- orbits(B, P), planet(P).

has the following meaning:

For all B, satellite(B) succeeds if there exists P such that
orbits(B, P) and planet(P) both succeed.

This query:

?- satellite(S).

has the following meaning:

Does there exist S such that satellite(S) succeeds?

In general, every PROLOG variable V is either universally quantified (‘‘for all
V: . . .’’) or existentially quantified (‘‘there exists V such that . . .’’), according to the
following rules:

404 Chapter 15 Logic programming

• A variable that occurs on the left-hand side of a clause is univer-
sally quantified.

• A variable that occurs on the right-hand side (but not on the left-hand side)
of a clause is existentially quantified.

• A variable that occurs in a query is existentially quantified.

Quantification is always implicit in PROLOG.

15.3.6 Control

In principle, the order in which resolution is done should not affect the set of
answers yielded by a query (although it will affect the order in which these answers
are found). In practical logic programming, however, the order is very important.

The main consideration is nontermination, which is a possible consequence of
recursive clauses. The following example illustrates the problem.

EXAMPLE 15.6 Nontermination

Suppose that we add the following relation to Example 15.2:

% neighbor(A, B) succeeds if and only if A or B is a satellite of the other.
neighbor(A, B) :-

planet(A), orbits(B, A).
neighbor(A, B) :-

neighbor(B, A).

In principle, queries like the following:

?- neighbor(earth, moon).
?- neighbor(moon, earth).

should both succeed. If we consistently apply the nonrecursive clause first, both queries
will indeed give the correct answers. But if we consistently apply the recursive clause first,
both queries will loop forever, due to repeated application of the recursive clause.

Consider the clause ‘‘A0 :- A1, A2.’’. Assume that A1 loops forever but A2
fails. If we test A2 first, it fails and we can immediately conclude that A0 fails. (This
is consistent with a predicate logic interpretation of the clause.) But if we test A1
first, it will loop forever and the computation will make no further progress.

Thus the actual behavior of a logic program depends on the order in which
resolution is done. To allow the programmer control over the computation,
PROLOG defines the resolution order precisely:

• The assertions on the right-hand side of a clause are tried in order from left
to right.

• If a relation is defined by several clauses, these clauses are tried in order
from first to last.

15.3 Case study: PROLOG 405

Together with backtracking, these rules define the control flow of PROLOG

programs. A consequence of these rules is that every PROLOG program is deter-
ministic. If a query has multiple answers, we can even predict the order in which
these answers will be found.

Backtracking is very time-consuming. If we know in advance that a query
will have only one answer (say), then it would be wasteful to allow the PROLOG

processor to continue searching for more answers once the first answer has
been found.

In Example 15.2, we know that a query like ‘‘?- orbits(deimos, P).’’
will have just one answer, but the PROLOG processor does not know that (since
the program cannot declare that orbits is a many-to-one relation). So even
when the answer P = mars has been found, the PROLOG processor will try all the
remaining clauses in a fruitless attempt to find other answers.

PROLOG provides a kind of sequencer, called the cut, that suppresses back-
tracking whenever it is encountered. The cut is written as ‘‘!’’.

Suppose that we are testing a query Q using the following clause:

A0 :- A1, !, A2.

If A1 fails, then the PROLOG processor backtracks and tries another clause, as usual.
But if A1 succeeds, the processor accepts the first answer yielded by A1, passes the
cut, and goes on to test A2. Passing the cut has the effect that, if A2 subsequently
fails, then the processor immediately concludes that Q itself fails – the PROLOG

processor will make no attempt to find any further answers from A1, and will not
try any further clauses to test Q.

Or suppose that we are testing a query Q using the following clause:

A0 :- !.

If A0 matches Q, the PROLOG processor will not try any further clauses to test Q.

EXAMPLE 15.7 PROLOG cut

Suppose that a phone-book is represented by a list of entries, in which each entry is a
structure of the form entry(Name,Number), and in which no two entries contain the
same name.

The following clauses define a ternary relation lookup1:

% lookup1(PhoneBook, Name, Num) succeeds if and only if
% PhoneBook contains entry(Name,Num).
lookup1([entry(Name1,Num1)|Ents], Name1, Num1).
lookup1([entry(Name2,Num2)|Ents], Name1, Num1) :-

lookup1(Ents, Name1, Num1).

Let PhoneBook be the following list:

[entry("Ali",6046),
entry("Carol",6742),
entry("David",6742)]

406 Chapter 15 Logic programming

Then the following query:

?- lookup1(PhoneBook, "Carol", Number).

yields the single answer Number = 6742. This answer is correct, but to find it the PROLOG

processor examines every entry in PhoneBook!
Queries like this can be answered more efficiently if we cut off the search as soon as

we have a match:

% lookup2(PhoneBook, Name, Num) succeeds if and only if
% PhoneBook contains entry(Name,Num).
lookup2([entry(Name1,Num1)|Ents], Name1, Num1) :-

!.
lookup2([entry(Name2,Num2)|Ents], Name1, Num1) :-

!, lookup2(Ents, Name1, Num1).

The cuts do not affect the answers yielded by queries like the one mentioned above.
However, they eliminate possible answers to other kinds of query. For instance, this query:

?- lookup1(PhoneBook, Name, 6742).

yields two answers, Name = "Carol" and Name = "David", while this query:

?- lookup2(PhoneBook, Name, 6742).

yields only the first of these answers. (See also Exercise 15.3.4.)

The cut is an ad hoc feature, added to PROLOG to make execution of queries
tolerably efficient. Cuts cannot be understood in terms of predicate logic, but
only in terms of PROLOG’s control flow. Cuts often have unexpected effects,
as illustrated by Example 15.7. Thus cuts are low-level sequencers, somewhat
analogous to jumps in imperative languages.

15.3.7 Input/output
A simple PROLOG program might consist entirely of ordinary relations. The inputs
to the program are queries; its outputs are the corresponding answer(s) to these
queries (including substitutions for variables that occur in the queries), formatted
by the PROLOG processor.

More realistic programs need to read data from files, and write data to files,
in formats chosen by the program designer. For this purpose PROLOG provides a
number of built-in relations:

see(F) Opens the file named F, making it the current input file.
read(T) Reads a term from the current input file; T is that term (or

the atom end of file if no term remains to be read).
seen Closes the current input file.
tell(F) Opens the file named F, making it the current output file.
write(T) Writes the term T to the current output file.
nl Writes an end-of-line to the current output file.
told Closes the current output file.

15.3 Case study: PROLOG 407

Of course these are not relations in the proper sense of the word. A program
that uses these relations is not a pure logic program, and its behavior can be
understood only in terms of PROLOG’s control flow (Section 15.3.6).

15.3.8 A simple spellchecker

To conclude this overview of logic programming in PROLOG, let us briefly examine
a spellchecker with the architecture shown in Figure 15.2. This program is outlined
in Programs 15.1–15.4.

Program 15.1 outlines relations concerned with words, which are here repre-
sented by strings. The get_word and put_word relations perform input/output
of individual words. Note that get_word’s result is either a word or the atom
end_of_file. An additional relation less is defined here, since PROLOG does
not support lexicographic comparison of strings.

Program 15.2 outlines relations concerned with dictionaries. For example,
add is a ternary relation that can be used to compute the dictionary obtained by
adding a word to an existing dictionary. A dictionary is here represented by a
binary search tree. PROLOG does not support data abstraction, so it is not possible
to keep the representation private. (In this program, however, the higher-level
relations are defined exclusively in terms of the dictionary relations, thus avoiding
tight coupling.)

Program 15.3 outlines the higher-level relations consult_user,
process_document, and main. Program 15.4 shows several auxiliary relations
(known, handle_word, and process_words) that are needed to assist in the
definition of process_document. These relations make liberal use of cuts,
for the sake of efficiency. The relation process_words calls get_word, and
uses pattern matching on its result to decide what to do next: if the result is
end_of_file, process_words succeeds immediately; if the result is a word,

% A word is here represented by a string.

% get_word(W) reads the next word from the current input file, copying any
% preceding punctuation to the current output file. W is either that word or
% end_of_file if there is no next word to be read.
get_word(W) :-

. . .

% put_word(W) writes word W to the current output file.
put_word(W) :-

. . .

% less(W1, W2) succeeds if and only if word W1 precedes word W2 in alphabetical
% order.
less(W1, W2) :-

. . .

Program 15.1 Word relations in PROLOG (in outline).

408 Chapter 15 Logic programming

% A dictionary is a set of words. Here it is represented by a binary search tree: either
% empty or dict(Dl, W, Dr), where W is a word and Dl and Dr are dictionaries.

% clear(D) succeeds iff D is the empty dictionary.
clear(empty).

% add(D, W, D1) succeeds iff D1 is the dictionary obtained by adding W to D.
add(empty, W, dict(empty,W,empty)).
add(dict(Dl,W,Dr), W, dict(Dl,W,Dr)).
add(dict(Dl,Wd,Dr), W, dict(Dl1,Wd,Dr)) :-

less(W, Wd), !,
add(Dl, W, Dl1).

add(dict(Dl,W,Dr), W, dict(Dl,Wd,Dr1)) :-
less(Wd, W), !,
add(Dr, W, Dr1).

% contains(D, W) succeeds iff D is W is a member of D.
contains(dict(Dl,W,Dr), W).
contains(dict(Dl,Wd,Dr), W) :-

less(W, Wd), !,
contains(Dl, W).

contains(dict(Dl,Wd,Dr), W) :-
less(Wd, W), !,
contains(Dr, W).

% load(F, D) reads all words from the file named F into the dictionary D.
load(F, D) :-

see(F),
loadwords(empty, D),
seen.

% save(F, D) writes all words in dictionary D to the file named F.
save(F, D) :-

tell(F),
savewords(D),
told.

% loadwords(D, D1) reads all words from the current input file and adds them to
% the dictionary D, yielding the dictionary D1.
loadwords(D, D) :-

read(end_of_file), !.
loadwords(D, D2) :-

read(W),
add(D, W, D1),
loadwords(D1, D2).

% savewords(D) writes all words in dictionary D to the current output file.
savewords(empty).
savewords(dict(Dl,W,Dr)) :-

write(W),
savewords(Dl),
savewords(Dr).

Program 15.2 Dictionary relations in PROLOG.

Summary 409

% consult_user(Word, MainDict, Ignored, Word1, MainDict1,
% Ignored1) asks the user what to do with Word, which is unknown.
% If the user chooses to accept the word, it is added to MainDict.
% If the user chooses to ignore the word, it is added to Ignored.
% If the user chooses to replace the word, the user enters a replacement word.
% Word1 is either Word or its replacement, MainDict1 is mainDict with Word
% possibly added, and Ignored1 is Ignored with Word possibly added.
consult_user(Word, MainDict, Ignored,

Word1, MainDict1, Ignored1) :-
. . .

% process_document(MainDict, Ignored, MainDict1) copies all words
% and punctuation from the input document to the output document, but asks the user
% what to do with any words that are unknown. MainDict1 is MainDict with
% accepted words added.
process_document(MainDict, Ignored, MainDict1) :-

see("indoc.txt"),
tell("outdoc.txt"),
process_words(MainDict, Ignored, MainDict1),
seen,
told.

main :-
load("dict.txt", MainDict),
clear(Ignored),
process_document(MainDict, Ignored, MainDict1),
save("dict.txt", MainDict1).

Program 15.3 Definitions of the consult_user, process_document, and main
relations in PROLOG (in outline).

process_words processes that word and then calls itself recursively to process
the remaining words.

Summary
In this chapter:

• We have identified the key concepts of logic programming: assertions, Horn clauses,
and relations.

• We have studied the pragmatics of logic programming. We noted that data abstrac-
tion would be as advantageous in logic programming as in other paradigms.

• We have studied the design of a major logic programming language, PROLOG. We
found that programming in PROLOG benefits from the power of backtracking, but in
practice also needs impure features like the cut and input/output, which cannot be
understood in terms of mathematical logic.

• We have seen a logic programming implementation, in PROLOG, of a simple
spellchecker.

410 Chapter 15 Logic programming

% known(Word, MainDict, Ignored) succeeds if and only if Word is known
% (i.e., in MainDict or Ignored).
known(Word, MainDict, Ignored) :-

contains(MainDict, Word), !;
contains(Ignored, Word).

% handle_word(Word, MainDict, Ignored, Word1, MainDict1,
% Ignored1) asks the user what to do with Word if it is unknown.
handle_word(Word, MainDict, Ignored,

Word, MainDict, Ignored) :-
known(Word, MainDict, Ignored), !.

handle_word(Word, MainDict, Ignored,
Word1, MainDict1, Ignored1) :-

not(known(Word, MainDict, Ignored)), !,
consult_user(Word, MainDict, Ignored,

Word1, MainDict1, Ignored1).

% process_words(MainDict, Ignored, MainDict1) copies all words
% and punctuation from the current input file to the current output file, but asks the user
% what to do with any words that are unknown. MainDict1 is MainDict with
% accepted words added.
process_words(MainDict, Ignored, MainDict) :-

get_word(end_of_file), !.
process_words(MainDict, Ignored, MainDict2) :-

get_word(Word), !,
handle_word(Word, MainDict, Ignored,

Word1, MainDict1, Ignored1),
put_word(Word1),
process_words(MainDict1, Ignored1, MainDict2).

Program 15.4 Definitions of auxiliary relations in PROLOG.

Further reading

This chapter has given only a very brief outline of the
logic programming paradigm. For a much fuller account of

logic programming in general, and of PROLOG in particular,
see BRATKO (1990) or MALPAS (1987).

Exercises

Exercises for Section 15.1
15.1.1 Consider the sets Country = {China, Egypt, Greece, India, Italy, Russia, Spain,

Turkey} and Continent = {Africa, Asia, Europe}. Draw a diagram, simi-
lar to Figure 15.1, showing the relation ‘‘is located in’’ between countries
and continents.

Exercises for Section 15.3
15.3.1 Consider the relation collinear of Example 15.1. Define this relation in PROLOG.

Exercises 411

15.3.2 Consider the list relations defined in Example 15.4. (a) Give an alternative
definition of addlast in terms of concat. (b) Define a relation last(L,
X) that succeeds if and only if X is the last element of the list L. (c) Define a
relation reverse(L1, L2) that succeeds if and only if L2 is the reverse of
the list L1. (d) Define a relation ordered(L) that succeeds if and only if the
list of integers L is in ascending order.

15.3.3 Consider the lookup1 and lookup2 relations of Example 15.7.

(a) Using the example PhoneBook, what answers would you expect from the
following queries? Explain these answers.

?- lookup1(PhoneBook, "David", 9999).
?- lookup1(PhoneBook, "Susanne", Number).
?- lookup1(PhoneBook, Name, 6041).
?- lookup1(PhoneBook, Name, Number).

(b) Repeat with the lookup2 relation.

(c) Repeat with the following relation:

% lookup3(PhoneBook, Name, Num) succeeds if and only if
% PhoneBook contains entry(Name,Num).
lookup3([entry(Name1,Num1)|Ents], Name1, Num1).
lookup3([entry(Name2,Num2)|Ents], Name1, Num1) :-

Name1 \= Name2, lookup3(Ents, Name1, Num1).

Note that the built-in relation ‘‘\=’’ succeeds if and only if its operands are
unequal; both operands must be known values.

(d) Define a relation insert(Book1, Name, Num, Book2) that suc-
ceeds if and only if Book2 is the phone-book obtained by adding
entry(Name,Num) to Book1, or fails if Book1 already contains an
entry for Name.

15.3.4 Use cuts to improve the efficiency of queries in Example 15.2. Make reasonable
assumptions about which kinds of query are most likely. What queries will have
their answers affected by your cuts?

15.3.5 Finish the coding of the PROLOG spellchecker of Programs 15.1–15.3.

15.3.6 Modify the PROLOG spellchecker of Programs 15.1–15.3 to use a third dictionary,
the user dictionary. Any unknown words accepted by the user are to be added
to the user dictionary, which must be saved when the program finishes. The
main dictionary is no longer to be updated.

Chapter 16

Scripting

In this chapter we shall study:

• the pragmatics of scripting;

• the key concepts of scripting languages;

• the design of a major scripting language, PYTHON.

16.1 Pragmatics

Scripting is a paradigm characterized by:

• use of scripts to glue subsystems together;

• rapid development and evolution of scripts;

• modest efficiency requirements;

• very high-level functionality in application-specific areas.

Scripting is used in a variety of applications, and scripting languages are cor-
respondingly diverse. Nevertheless, the above points influence the design of all
scripting languages.

A software system often consists of a number of subsystems controlled or
connected by a script. In such a system, the script is said to glue the subsystems
together. One example of gluing is a system to create a new user account on
a computer, consisting of a script that calls programs to perform the necessary
system administration actions. A second example is an office system that uses a
script to connect a word processor to a spellchecker and a drawing tool. A third
example is a system that enables a user to fill a Web form, converts the form data
into a database query, transmits the query to a database server, converts the query
results into a dynamic Web page, and downloads the latter to the user’s computer
for display by the Web browser.

Each subsystem could be a complete program designed to stand alone, or it
could be a program unit designed to be part of a larger system, or it could be
itself a script. Each subsystem could be written in a different programming or
scripting language.

Gluing exposes the problem of how to pass data between a script and a
subsystem written in a different language. In some systems only strings can be
passed directly; for example, a UNIX command script manipulates only strings,
and a C program accepts an array of strings as its argument, so the script can call

413

414 Chapter 16 Scripting

the program without difficulty. Nowadays subsystems are often classes written in
object-oriented languages, in which case the script should be able to pass objects
around, and perhaps call methods with which these objects are equipped.

Scripts are characterized by rapid development and evolution. Some scripts
are written and used once only, such as a sequence of commands issued by the
user, one at a time, to a system that presents a command-line interface. Other
scripts are used frequently, but also need to be modified frequently in response
to changing requirements. In such circumstances, scripts should be easy to write,
with concise syntax. (This does not imply that scripts need be cryptic. Many of the
older scripting languages have extremely cryptic and irregular syntax, and scripts
written in such languages are very hard to read.)

Script development typically entails a lightweight edit–run cycle (as opposed
to the heavyweight edit–compile–link–run cycle of conventional program devel-
opment). In some scripting languages, source code is interpreted directly; compi-
lation and linking are omitted altogether. In other scripting languages (including
PYTHON), source code is automatically compiled into virtual machine code, which
is then interpreted; compilation and linking do take place, but only behind
the scenes.

Efficiency is not an essential requirement for scripts. Clearly a once-used script
need not be particularly fast, but that is less obvious for a frequently-used script.
When a script is used as glue, however, the system’s total running time tends
to be dominated by the subsystems, which are typically written in programming
languages and can be tuned as much as desired. (If the running time is dominated
by the glue, the system’s architecture should be reconsidered.) Since the script’s
execution speed is not critically important, the overheads of interpretation and of
dynamic type checking can be tolerated.

Scripting languages all provide very high-level functionality in certain
application-specific areas. For instance, many scripts are required to parse and
translate text, so all scripting languages provide very high-level facilities for
processing strings. This point will be amplified in the following section.

16.2 Key concepts

Scripting is similar to imperative programming in many respects. Thus all scripting
languages support variables, commands, and procedures, which are the key
concepts of imperative programming.

Scripting languages are so diverse that it is difficult to identify any concepts
that they all share with one another but do not share with imperative pro-
gramming languages. Nevertheless, the following concepts are characteristic of
scripting languages:

• very high-level string processing;
• very high-level graphical user interface support;
• dynamic typing.

All scripting languages provide very high-level support for string processing.
The justification for this is the ubiquity of textual data, such as e-mail messages,

16.2 Key concepts 415

database queries and results, XML documents, and HTML documents. Generation
of text is easy enough, even with simple string operations, but parsing of text
(i.e., discovering its internal structure) is more troublesome. To solve this kind
of problem a powerful tool is the regular expression, which we shall study in
Section 16.2.1.

Many scripting languages provide very high-level support for building graph-
ical user interfaces (GUIs). One justification for this is to ensure loose coupling
between the GUI and the application code; the GUI is especially likely to evolve
rapidly as usability problems are exposed. Another justification is a potentially
large productivity gain. For example, a single line of code in the scripting language
TCL suffices to create a button, fix its visual appearance and label, and identify a
procedure in the application code (or in the script itself) that will be called when
a user clicks the button. To achieve the same effect takes many lines of code in
a conventional programming language (even assuming that the language has a
suitable GUI library).

Many scripting languages are dynamically typed. When used as glue, scripts
need to be able to pass data to and from subsystems written in different languages,
perhaps with incompatible type systems. Scripts often process heterogeneous
data, whether in forms, databases, spreadsheets, or Web pages. For scripting
applications, a simple type system would be too inflexible, while an advanced type
system such as parametric polymorphism or generic classes would sit uneasily with
the pragmatic need for rapid development and evolution.

Of course, dynamic typing is not an unmixed blessing. Scripts can indeed be
written more quickly when the types of variables and parameters need not be
declared, but the absence of type information makes scripts harder to read. A
dynamically typed scripting language does indeed avoid the need for a complicated
type system, but type errors can be detected only by the vagaries of testing, and
some type errors might remain undetected indefinitely. (Recall that static typing
enables the compiler to certify that type errors will never cause run-time failure.)

Just because some scripts are used once only, it does not follow that mainte-
nance of scripts is not a problem. If a script is useful and will be used frequently,
its very success condemns it to be maintained just like any program written in a
conventional language. To be maintainable, a script or program must be readable,
well documented, designed for change, and as error-free as possible. Fortunately,
the designers of the more modern scripting languages such as PYTHON clearly
understand the importance of maintenance, but even they have not yet found a
way to reconcile the conflicting goals of flexibility and elimination of run-time
type errors.

16.2.1 Regular expressions

A regular expression (or RE) is a kind of pattern that matches some set of strings.
Here are some simple examples of regular expressions.

• The regular expression M(r|s|iss) means ‘‘M’’ followed by either ‘‘r’’ or
‘‘s’’ or ‘‘iss’’. Thus it matches the strings ‘‘Mr’’, ‘‘Ms’’, and ‘‘Miss’’ (but
no others).

416 Chapter 16 Scripting

Table 16.1 Forms of regular expressions: (a) basic forms; (b) derived forms.

(a)

Basic form What it matches

c ‘‘c’’ (where c is a single character)

RE1|RE2 any string matched by either RE1 or RE2

RE1RE2 any string obtained by concatenating a string matched by RE1 and a
string matched by RE2

RE* any string obtained by concatenating zero or more strings, each of
which is matched by RE

(RE) any string matched by RE (the parentheses being used for grouping)

(b)

Derived form What it matches

. ‘‘c’’ (where c is a single character)

RE? either the empty string or any string matched by RE

RE+ any string obtained by concatenating one or more strings, each of which
is matched by RE

REn any string obtained by concatenating exactly n strings, each of which is
matched by RE (where n is a nonnegative integer)

• The regular expression ba*n means ‘‘b’’ followed by zero or more ‘‘a’’s fol-
lowed by ‘‘n’’. Thus it matches the strings ‘‘bn’’, ‘‘ban’’, ‘‘baan’’, ‘‘baaan’’,
and so on.

• The regular expression (em|in)* means zero or more occurrences of either
‘‘em’’ or ‘‘in’’. Thus it matches the strings ‘‘’’, ‘‘em’’, ‘‘in’’, ‘‘emem’’, ‘‘emin’’,
‘‘inem’’, ‘‘inin’’, ‘‘ememem’’, ‘‘eminem’’, and so on.

Table 16.1 summarizes the various forms of regular expression, showing what
each means in terms of the strings it matches. The basic forms c, RE1|RE2,
RE1RE2, RE*, and (RE) are sufficient to express everything we want. However,
we find it convenient in practice also to use derived forms such as ‘‘. ’’, RE?, RE+,
and REn. All the derived forms can be expressed in terms of the basic forms. (See
Exercise 16.2.3.)

EXAMPLE 16.1 Regular expressions in practice

The UNIX command language employs a dialect of regular expressions in which ‘‘*’’
matches any string of characters, and ‘‘.’’ matches itself. The following command:

16.3 Case study: PYTHON 417

print *.txt

contains a regular expression ‘‘*.txt’’, and is interpreted as follows. First, the regular
expression is replaced by a sequence of all filenames in the current directory (folder) that
are matched by the regular expression. Second, the print program is called with these
filenames as arguments. The command’s net effect is to print all files in the current directory
whose names end with ‘‘.txt’’.

The following script:

(1) for f in *
do
case $f in

(2) *.ps)
print $f; rm $f;;

(3) *.txt)
print $f;;

(4) *)
;;

esac
done

contains a case-command within a for-command. In line (1), the regular expression ‘‘*’’
matches all filenames in the current directory, so the for-command’s control variable f is
set to each filename in turn. The case-command tests the regular expressions at lines (2),
(3), and (4) until it finds one that matches $f (the value of f). The regular expression
‘‘*.ps’’ matches any filename ending with ‘‘.ps’’; ‘‘*.txt’’ matches any filename ending
with ‘‘.txt’’; and ‘‘*’’ matches any filename at all. The script’s net effect is to print
and remove all POSTSCRIPT files in the current directory, print all text files, and ignore all
other files.

This script is typical of the kind of application for which scripting languages are
intended. It calls existing programs, such as print and rm. It is short but useful,
automating a sequence of actions that would be tedious to perform manually.

Almost all scripting languages employ regular expressions in string matching
operations. A simple operation might test whether a given regular expression
matches a given string s. A more powerful operation might discover which parts of
s are matched by certain parts of the regular expression. (This is a form of parsing.)
Typically the matching operation yields a tuple or list of substrings of s that are
matched by the parenthesized parts of the regular expression. For example, the
regular expression ‘‘{(.*),(.*)}’’ matches the string ‘‘{one,two}’’, and yields
the substrings ‘‘one’’ and ‘‘two’’.

16.3 Case study: PYTHON

PYTHON was designed in the early 1990s by Guido van Rossum. It has been used
to help implement the successful Web search engine GOOGLE, and in a variety
of other application areas ranging from science fiction (visual effects for the Star
Wars series) to real science (computer-aided design in NASA).

PYTHON borrows ideas from languages as diverse as PERL, HASKELL, and
the object-oriented languages, skillfully integrating these ideas into a coherent

418 Chapter 16 Scripting

whole. PYTHON scripts are concise but readable, and highly expressive. PYTHON is
a compact language, relying on its library to provide most of its very high-level
functionality such as string matching (unlike older scripting languages such as
PERL, in which such features are built-in). PYTHON is dynamically typed, so scripts
contain little or no type information.

16.3.1 Values and types

PYTHON has a limited repertoire of primitive types: integer, real, and complex
numbers. It has no specific character type; single-character strings are used instead.
Its boolean values (named False and True) are just small integers. However,
any value can be tested: zero, the empty tuple, the empty string, the empty list,
and so on, are treated like False; all other values are treated like True.

PYTHON has a rich repertoire of composite types: tuples, strings, lists, dic-
tionaries, and objects. A PYTHON list is a heterogeneous sequence of values. A
dictionary (sometimes called an associative array) is a heterogeneous mapping
from keys to values, where the keys are distinct immutable values. Components
of tuples, strings, lists, and dictionaries may be inspected, and components of
lists and dictionaries may be updated, using a uniform notation that resembles
conventional array-indexing notation. Also, list and dictionary components may
be inserted and deleted.

PYTHON counts procedures as first-class values, along with all primitive
and composite values. Thus PYTHON conforms well to the Type Complete-
ness Principle.

PYTHON is dynamically typed. The value of any variable, parameter, or
component may be of any type. All operations are type-checked at run-time. The
expression ‘‘isinstance(E,T)’’ yields True if the value yielded by E is of type
T, and ‘‘type(E)’’ yields the type of the value yielded by E.

PYTHON’s expression repertoire includes procedure calls, constructions (for
tuples, lists, dictionaries, objects, and procedures), and iterative expressions (list
comprehensions). Surprisingly, there are no conditional expressions.

EXAMPLE 16.2 PYTHON tuples, lists, and dictionaries

The following code illustrates tuple construction:

date = 1998, "Nov", 19

Now date[0] yields 1998, date[1] yields ‘‘Nov’’, and date[2] yields 19.
The following code illustrates two list constructions, which construct a homogeneous

list and a heterogeneous list, respectively:

primes = [2, 3, 5, 7, 11]
years = ["unknown", 1314, 1707, date[0]]

Nowprimes[0] yields 2,years[1] yields 1314,years[3] yields 1998, ‘‘years[0] =
843’’ updates the first component of years, and so on. Also, ‘‘years.append(1999)’’
adds 1999 at the end of years.

16.3 Case study: PYTHON 419

The following list comprehension:

[n + 1 for n in primes]

yields the list [3, 4, 6, 8, 12] whose components are one greater than the corresponding
components of primes. The following list comprehension:

[2 * n for n in primes if n % 2 != 0]

yields the list [6, 10, 14, 22] whose components are double the corresponding components
of primes, after discarding even components. (Compare the HASKELL list comprehensions
in Example 14.3.1.)

The following code illustrates dictionary construction:

phones = {"David": 6742, "Carol": 6742, "Ali": 6046}

Now phones["Carol"] yields 6742, phones["Ali"] yields 6046, ‘‘phones
["Ali"] = 1234’’ updates the component of phones whose key is ‘‘Ali’’, and so
on. Also, ‘‘"David" in phones’’ returns True, and ‘‘phones.keys()’’ returns a list
containing ‘‘Ali’’, ‘‘Carol’’, and ‘‘David’’ (in no particular order).

16.3.2 Variables, storage, and control

PYTHON supports global and local variables. Variables are not explicitly declared,
simply initialized by assignment. After initialization, a variable may later be
assigned any value of any type, as a consequence of dynamic typing.

PYTHON adopts reference semantics. This is especially significant for muta-
ble values, which can be selectively updated. Primitive values and strings are
immutable; lists, dictionaries, and objects are mutable; tuples are mutable if any
of their components are mutable. In practice reference semantics behaves much
like copy semantics for immutable values, so operations on numbers and strings
behave as we would expect.

PYTHON’s repertoire of commands include assignments, procedure calls, con-
ditional (if- but not case-) commands, iterative (while- and for-) commands, and
exception-handling commands.

PYTHON assignments are similar to those of C, including the form ‘‘V⊗ =E’’
(abbreviating ‘‘V = V ⊗ E’’) for each binary operator ⊗. However, PYTHON differs
from C in not allowing an assignment to be used as an expression.

PYTHON additionally supports simultaneous assignment. For example:

y, m, d = date

assigns the three components of the tuple date (Example 16.2) to three separate
variables. Also:

m, n = n, m

concisely swaps the values of two variables m and n. (Actually, it first constructs a
pair, then assigns the two components of the pair to the two left-side variables.)

PYTHON if- and while-commands are conventional. PYTHON for-commands
support definite iteration, the control sequence being the components of a tuple,
string, list, dictionary, or file. In fact, we can iterate over any value equipped with

420 Chapter 16 Scripting

an operation that generates a sequence. We can easily achieve the conventional
iteration over a sequence of numbers by using the library procedurerange(m,n),
which returns a list of integers from m through n − 1.

PYTHON supports break, continue, and return sequencers. It also supports
exceptions, which are objects of a subclass of Exception, and which can carry
values.

EXAMPLE 16.3 PYTHON iterative commands

The following code computes the greatest common divisor of two integers, m and n:

p, q = m, n
while p % q != 0:

p, q = q, p % q
gcd = q

Note the elegance of simultaneous assignment. Note also that indentation is required to
indicate the extent of the loop body.

The following code sums the numeric components of a list row, ignoring any nonnu-
meric components:

sum = 0.0
for x in row:

if isinstance(x, (int, float)):
sum += x

EXAMPLE 16.4 PYTHON exceptions

The following code prompts the user to enter a numeric literal, and stores the corresponding
real number in num:

while True:
try:
response = raw_input("Enter a numeric literal: ")
num = float(response)
break

except ValueError:
print "Your response was ill-formed."

This while-command keeps prompting until the user enters a well-formed numeric literal.
The library procedure raw_input(. . .) displays the given prompt and returns the user’s
response as a string. The type conversion ‘‘float(response)’’ attempts to convert the
response to a real number. If this type conversion is possible, the following break sequencer
terminates the loop. If not, the type conversion throws a ValueError exception, control
is transferred to the ValueError exception handler, which displays a warning message,
and finally the loop is iterated again.

16.3 Case study: PYTHON 421

16.3.3 Bindings and scope
A PYTHON program consists of a number of modules, which may be grouped into
packages. Within a module we may initialize variables, define procedures, and
declare classes. Within a procedure we may initialize local variables and define
local procedures. Within a class we may initialize variable components and define
procedures (methods).

During a PYTHON session, we may interactively issue declarations, commands,
and expressions from the keyboard. These are all acted upon immediately.
Whenever we issue an expression, its value is displayed on the screen. We may
also import a named module (or selected components of it) at any time.

PYTHON was originally a dynamically-scoped language, but it is now stati-
cally scoped.

16.3.4 Procedural abstraction
PYTHON supports function procedures and proper procedures. The only differ-
ence is that a function procedure returns a value, while a proper procedure
returns nothing.

Since PYTHON is dynamically typed, a procedure definition states the name
but not the type of each formal parameter. The corresponding argument may be
of different types on different calls to the procedure.

PYTHON supports the reference parameter mechanism. Thus a mutable argu-
ment can be selectively updated.

EXAMPLE 16.5 PYTHON procedures
The following function procedure returns the greatest common divisor of its two arguments:

def gcd (m, n):
p, q = m, n
while p % q != 0:
p, q = q, p % q

return q

Here p and q are local variables.
The following proper procedure takes a date represented by a triple (as in

Example 16.2), and prints that date in ISO format (e.g., ‘‘2000-01-01’’):

def print_date (date):
y, m, d = date
if m = "Jan":
m = 1

elif m = "Feb":
m = 2

. . .

elif m = "Dec":
m = 12

print "%04d-%02d-%02d" % (y, m, d)

Here y, m, and d are local variables.

422 Chapter 16 Scripting

EXAMPLE 16.6 PYTHON procedure with dynamic typing

The following function procedure illustrates the flexibility of dynamic typing. It returns the
minimum and maximum component of a given sequence:

def minimax (vals):
min = max = vals[0]
for val in vals:
if val < min:

min = val
elif val > max:

max = val
return min, max

In a call to this procedure, the argument may be either a tuple or a list. Moreover, the
components of that tuple or list may be of any type equipped with ‘‘<’’ and ‘‘>’’: integers,
real numbers, strings, tuples, lists, or dictionaries.

Note that this procedure returns a pair. In effect it has two results, which we can easily
separate using simultaneous assignment:

readings = [. . .]
low, high = minimax(readings)

Some older languages such as C have library procedures with variable numbers
of arguments. PYTHON is almost unique in allowing such procedures to be defined
by programmers. This is achieved by the simple expedient of allowing a single
formal parameter to refer to a whole tuple (or dictionary) of arguments.

EXAMPLE 16.7 PYTHON procedure with a variable number of arguments

The following proper procedure accepts any number of arguments, and prints them one
per line:

def printall (*args):
for arg in args:
print arg

The notation ‘‘*args’’ declares that args will refer to a tuple of arguments.
All of the following procedure calls work successfully:

printall(name)
printall(name, address)
printall(name, address, zipcode)

16.3.5 Data abstraction

PYTHON has three different constructs relevant to data abstraction: packages,
modules, and classes. Modules and classes support encapsulation, using a naming
convention to distinguish between public and private components.

16.3 Case study: PYTHON 423

A package is simply a group of modules. A module is a group of components
that may be variables, procedures, and classes. These components (or a designated
subset of them) may be imported for use by any other module. All components of a
module are public, except those whose identifiers start with ‘‘_’’ which are private.

A class is a group of components that may be class variables, class methods,
and instance methods. A procedure defined in a class declaration acts as an
instance method if its first formal parameter is named self and refers to an object
of the class being declared. Otherwise the procedure acts as a class method. To
achieve the effect of a constructor, we usually equip each class with an initialization
method named ‘‘__init__’’; this method is automatically called when an object of
the class is constructed. Instance variables are named using the usual ‘‘.’’ notation
(as in self.attr), and they may be initialized by the initialization method or
by any other method. All components of a class are public, except those whose
identifiers start with ‘‘__’’, which are private.

EXAMPLE 16.8 PYTHON class

Consider the following class:

class Person:

def __init__ (self, sname, fname, gender, birth):
self.__surname = sname
self.__forename = fname
self.__female = (gender == "F" or gender == "f")
self.__birth = birth

def get_surname (self):
return self.__surname

def change_surname (self, sname):
self.__surname = sname

def print_details (self):
print self.__forename + " " + self.__surname

This class is equipped with an initialization method and three other instance methods, each
of which has a self parameter and perhaps some other parameters. In the following code:

dw = Person("Watt", "David", "M", 1946)

the object construction on the right first creates an object of class Person; it then
passes the above arguments, together with a reference to the newly-created object, to
the initialization method. The latter initializes the object’s instance variables, which are
named __surname, __forename, __female, and __birth (and thus are all private).
The following method call:

dw.change_surname("Bloggs")

has the same effect as:

Person.change_surname(dw, "Bloggs")

which shows clearly that the method’s formal parameter self refers to the object dw.

424 Chapter 16 Scripting

Now consider the following subclass of Person:

class Student (Person):

def __init__ (self, sname, fname, \
gender, birth, id, deg):

Person.__init__(self, \
sname, fname, gender, birth)

self.__studentid = id
self.__degree = deg

def change_degree (self, deg):
self.__degree = deg

def print_details (self):
Person.print_details(self)
print "id " + str(self.__studentid)

This class provides its own initialization method, provides an additional method named
change_degree, and overrides its superclass’s print_details method. We can see
that each object of class Student will have additional variable components named
__studentid and __degree. The following code:

jw = Student("Watt", "Jeff", "M", 1983, 100296, "BSc")

creates and initializes an object of class Student. The following code illustrates
dynamic dispatch:

for p in [dw, jw]:
p.print_details()

PYTHON supports multiple inheritance: a class may designate any number of
superclasses. Ambiguous references to class components are resolved by searching
the superclasses in the order in which they are named in the class declaration. As
explained in Section 6.3.4, this tends to make it difficult to understand large class
hierarchies.

PYTHON’s support for object-oriented programming is developing but is not yet
mature. The use of the ‘‘__’’ naming convention to indicate privacy is clumsy and
error-prone; class components are public by default. Still more seriously, variable
components can be created (and deleted) at any time, by any method and even
by application code! For example, in Example 16.8 the assignment ‘‘dw.height
= 1.8’’ would create an extra public instance variable in the object dw (without
affecting any other Person object, nor any Student object). This undermines a
fundamental assumption of object-oriented programming, that all objects of the
same class have the same structure.

16.3.6 Separate compilation

PYTHON modules are compiled separately. Each module must explicitly import
every other module on which it depends.

Each module’s source code is stored in a text file. For example, a module
named widget is stored in a file named widget.py. When that module is first

16.3 Case study: PYTHON 425

imported, it is compiled and its object code is stored in a file named widget.pyc.
Whenever the module is subsequently imported, it is recompiled only if the source
code has been edited in the meantime. Compilation is completely automatic.

The PYTHON compiler does not reject code that refers to undeclared identifiers.
Such code simply fails if and when it is executed.

Nor does the PYTHON compiler perform type checking: the language is dynam-
ically typed. The compiler will not reject code that might fail with a type error,
nor even code that will certainly fail, such as:

def fail (x):
print x+1, x[0]

16.3.7 Module library

PYTHON is equipped with a very rich module library, which supports string handling,
markup, mathematics, cryptography, multimedia, GUIs, operating system services,
Internet services, compilation, and so on.

Unlike older scripting languages, PYTHON does not have built-in high-level
string processing or GUI support. Instead, the PYTHON module library provides
such functionality. For example, the re library module provides powerful string
matching facilities using regular expressions.

EXAMPLE 16.9 HTML parsing

An HTML document contains a number of headings. A level-1 heading, for instance, has
the form ‘‘<H1>title</H1>’’. Here ‘‘H1’’ is an example of a tag.

Suppose that a table of contents is to be printed for a given HTML document, with
each heading’s title indented according to its level. For instance, if the document contained
the text of this chapter expressed in HTML, the table of contents should look like this:

16 Scripting
16.1 Pragmatics
16.2 Key concepts

16.2.1 Regular expressions
16.3 Case study: Python
. . .

Exercises

PYTHON actually provides an HTMLParser class that is suitable for this application.
For the sake of illustration, however, let us suppose that we must write a script from scratch.

The following regular expression will match an HTML heading at any level up to 6:

<(H[1-6])>(.*?)</\1>
Note the following points:

• ‘‘[1–6]’’ matches any one of the characters ‘‘1’’ through ‘‘6’’.

• ‘‘.*?’’ matches the shortest possible substring (which is what we want here), whereas
‘‘.*’’ would match the longest possible substring.

426 Chapter 16 Scripting

• The two parenthesized subexpressions, namely ‘‘(H[1–6])’’ and ‘‘(.*?)’’, will
match the heading’s tag and title, respectively. That tag and that title will be
remembered by the matching algorithm.

• ‘‘\1’’ matches the same substring as the first parenthesized subexpression, namely
the tag. This prevents unmatched opening and closing tags as in ‘‘<H1>title</H2>’’.

The following procedure prints the table of contents:

def print_toc (docname):
(1) doc = open(docname)
(2) html = doc.read()
(3) pattern = re.compile("<(H[1-6])>(.*?)</\\1>")
(4) matches = pattern.findall(html)
(5) for (tag, title) in matches:
(6) level = int(tag[1])
(7) print "\t" * (level-1) + title

Line (1) opens the named document, and line (2) stores its entire contents in html, as
a single string. Line (3) ‘‘compiles’’ the regular expression in such a way as to make
subsequent matching efficient. Line (4) finds all substrings of html that are matched by
the regular expression, storing a list of (tag, title) pairs in matches. Line (5) iterates over
matches, setting tag and title to the components of each pair in turn. Line (6) extracts
the level number from the tag, and line (7) prints the title preceded by the appropriate
number of tabs.

The solution in Example 16.9 is extraordinarily clear and concise. Probably
no other (programming or scripting) language could match it.

EXAMPLE 16.10 CGI argument parsing

When a Web form is completed, the data is encoded as a string of the form:

‘‘key1 = value1& . . . &keyn = valuen’’

where each key is the name of a field and each value is the field’s content. A given
key may be repeated (e.g., if the form contains a list box and multiple selections are
possible). Moreover, for technical reasons, any space in a value is encoded as ‘‘+’’, and any
other non-alphanumeric character is encoded in hexadecimal (‘‘%dd’’). For example, the
following string:

"name=Watt%2C+David&gender=M&child=Susanne&child=Jeff"

encodes the following data:

name Watt, David
gender M
child Susanne|Jeff

PYTHON actually provides a cgi module for processing CGI data. For the sake of
illustration, however, let us suppose that we must write a script from scratch.

The following procedure takes CGI data encoded as a string, and returns that data
structured as a dictionary:

Exercises 427

def parse_cgi (encoding):
hex_pattern = re.compile("%([0-9A-Fa-f]{2})")
hex_replacement = \

lambda match: chr(int(match.group(1), 16))
dictionary = {}

(1) for pair in encoding.split("&"):
(2) key, value = pair.split("=")
(3) value = value.replace("+", " ")
(4) value = hex_pattern.sub(hex_replacement, value)
(5) if key in dictionary:

dictionary[key] += "|" + value
else:
dictionary[key] = value

return dictionary

Line (1) splits the encoding string into a list of substrings of the form ‘‘key=value’’, and
iterates over that list. Line (2) splits one of these substrings into its key and value. Line
(3) replaces each occurrence of ‘‘+’’ in the value by a space, and line (4) replaces each
occurrence of ‘‘%dd’’ by the character whose hexadecimal code is dd. The if-command
starting at line (5) either adds a new entry to the dictionary or modifies the existing entry
as appropriate.

Summary
In this chapter:

• We have surveyed the pragmatic issues that influence the design of scripting
languages: gluing, rapid development and evolution, modest efficiency requirements,
and very high-level functionality in relevant areas.

• We have surveyed the concepts common to most scripting languages: very high-level
support for string processing, very high-level support for GUIs, and dynamic typing.

• We have studied the design of a major scripting language, PYTHON. We saw that
PYTHON resembles a conventional programming language, except that it is dynami-
cally typed, and that it derives much of its expressiveness from a rich module library.

Further reading

BARRON (2000) surveys the ‘‘world of scripting’’ and the
older scripting languages, such as JAVASCRIPT, PERL, TCL,
and VISUAL BASIC. Interestingly, Barron omits PYTHON

from his survey, classifying it as a programming language
rather than a scripting language (although on grounds that

are highly debatable). Example 16.10 is based on a PERL

example in Barron’s book.

OUSTERHOUT (1998) is a short article that vividly describes
the advantages of scripting, and the enthusiasm of its advo-
cates. Ousterhout was the designer of TCL.

Exercises

Exercises for Section 16.1
16.1.1 Consider a spreadsheet used by a small organization (such as a sports club) to

keep track of its finances. Would you classify such a spreadsheet as a script?
Explain your answer.

428 Chapter 16 Scripting

Exercises for Section 16.2
16.2.1 This exercise is a drill for readers unfamiliar with regular expressions.

(a) Does abc|de match ‘‘abc’’, ‘‘abce’’, ‘‘abcde’’, ‘‘bcde’’, or ‘‘de’’?

(b) Does ab(c|d)e match ‘‘abc’’, ‘‘abce’’, ‘‘abcde’’, ‘‘bcde’’, or ‘‘de’’?

(c) Does abb*c match ‘‘abbbb’’, ‘‘abbc’’, ‘‘abc’’, ‘‘ac’’, or ‘‘bbc’’?

(d) Does a(bc)*c match ‘‘abbbc’’, ‘‘abc’’, ‘‘abcbcc’’, ‘‘abcc’’, or ‘‘ac’’?

16.2.2 The following HTML includes an example of a link to another document:

See Acme’s

mission statement.

The simplest form of HTML link is link-text. Write
down a regular expression that matches this form of link.

16.2.3 Consider the derived forms of regular expressions in Table 16.1. Express the
derived forms RE?, RE+, and RE2 in terms of the basic forms.

Exercises for Section 16.3
16.3.1 Write a PYTHON procedure that neatly tabulates the components of a dictionary.

16.3.2 Write a PYTHON module that supports the ‘‘phone-book’’ operations of your
mobile phone. Represent the phone-book by a dictionary, as in Example 16.2.

16.3.3 Using your answer to Exercise 16.2.2, write a PYTHON procedure that returns
a list of all the URLs to which a given HTML document is linked.

*16.3.4 Design and implement a simple spellchecker (as specified in Section 11.2.1) in
PYTHON.

PART V

CONCLUSION

Part V concludes the book by suggesting guidelines for selecting languages for
software development projects, and guidelines for designing new languages.

429

Chapter 17

Language selection

In this chapter we shall:

• identify technical and economic criteria that should be considered when selecting
languages for software development projects;

• illustrate how to use these criteria to evaluate candidate languages for a particu-
lar project.

17.1 Criteria

At some stage in every software development project, the selection of a language
becomes an important decision.

All too often, languages are selected for all the wrong reasons: fanaticism
(‘‘. . . is brilliant’’), prejudice (‘‘. . . is rubbish’’), inertia (‘‘. . . is too much trouble
to learn’’), fear of change (‘‘. . . is what we know best, for all its faults’’), fashion
(‘‘. . . is what everyone is using now’’), commercial pressures (‘‘. . . is supported by
MegaBuck Inc.’’), conformism (‘‘no-one ever got fired for choosing . . . ’’). That
such social and emotional influences are often decisive is a sad reflection on the
state of the software engineering profession.

Professional software engineers should instead base their decisions on relevant
technical and economic criteria, such as the following.

• Scale: Does the language support the orderly development of large-scale
programs? The language should allow programs to be constructed from
compilation units that have been coded and tested separately, perhaps by
different programmers. Separate compilation is a practical necessity, since
type inconsistencies are less common within a compilation unit (written
by one programmer) than between compilation units (perhaps written by
different programmers), and the latter are not detected by independent
compilation.

• Modularity: Does the language support the decomposition of programs into
suitable program units, such that we can distinguish clearly between what a
program unit is to do (the application programmer’s view) and how it will be
coded (the implementer’s view)? This separation of concerns is an essential
intellectual tool for managing the development of large programs. Relevant
concepts here are procedures, packages, abstract types, and classes.

431

432 Chapter 17 Language selection

• Reusability: Does the language support effective reuse of program units?
If so, the project can be accelerated by reusing tried-and-tested program
units; it might also develop new program units suitable for future reuse.
Relevant concepts here are packages, abstract types, classes, and particularly
generic units.

• Portability: Does the language help or hinder writing of portable code?
In other words, can the code be moved from one platform to a dissimilar
platform without major changes?

• Level: Does the language encourage programmers to think in terms of high-
level abstractions oriented to the application? Or does it force programmers
to think all the time in terms of low-level details such as bits and pointers?
Low-level code is notoriously error-prone, especially when pointers are
involved. It is, however, necessary in some parts of some applications.

• Reliability: Is the language designed in such a way that programming errors
can be detected and eliminated as quickly as possible? Errors detected by
compile-time checks are guaranteed absent in the running program, which is
ideal. Errors detected by run-time checks are guaranteed to cause no harm
other than throwing an exception (or at worst terminating the program),
which is second-best. Errors not detected at all can cause unlimited harm
(such as corrupting data) before the program crashes. While reliability is
always important, it is absolutely essential in safety-critical systems.

• Efficiency: Is the language capable of being implemented efficiently? Some
aspects of object-oriented programming entail run-time overheads, such
as class tags and dynamic dispatch. Run-time checks are costly (although
some compilers are willing to suppress them, at the programmer’s own
risk). Garbage collection is also costly, slowing the program down at
unpredictable times. Interpretive code is about ten times slower than native
machine code. If critical parts of the program must be highly efficient, does
the language allow them to be tuned by resort to low-level coding, or by
calls to procedures written in a lower-level language?

• Readability: Does the language help or hinder good programming practice?
A language that enforces cryptic syntax, very short identifiers, default
declarations, and an absence of type information makes it difficult to write
readable code. The significant point is that code is read (by its author and
other programmers) more often than it is written.

• Data modeling: Does the language provide types, and associated operations,
that are suitable for representing entities in the relevant application area?
Examples would be records and files in data processing; real numbers and
arrays in scientific computation; strings in text processing; lists, trees, and
mappings in translators; and queues in operating systems and simulators.
If the language itself lacks the needed types, does it allow programmers
to define new types and operations that accurately model entities in the
application area? Relevant concepts here are abstract types and classes.

• Process modeling: Does the language provide control structures that are
suitable for modeling the behavior of entities in the relevant application

17.2 Evaluation 433

area? In particular, we need concurrency to model simultaneous processes
in simulators, operating systems, and real-time process controllers.

• Availability of compilers and tools: Are good-quality compilers available for
the language? A good-quality compiler enforces the language’s syntax and
type rules, generates correct and efficient object code, generates run-time
checks (at least as an option) to trap any errors that cannot be detected
at compile-time, and reports all errors clearly and accurately. Also, is a
good-quality integrated development environment (IDE) available for the
language? An IDE enhances productivity by combining a program editor,
compiler, linker, debugger, and related tools into a single integrated system.

• Familiarity: Are the available programmers already familiar with the lan-
guage? If not, is high-quality training available, and will the investment in
training justify itself in future projects?

17.2 Evaluation

In this section we illustrate how to evaluate candidate languages for particular
software development projects. We shall consider two possible projects: a word
processor and an automatically driven road vehicle. For each project we shall
evaluate four candidate languages: C, C++, JAVA, and ADA.

We can make at least a preliminary evaluation of the candidate languages
against all of the selection criteria summarized in the previous section. In addition,
we should re-evaluate the languages against the data modeling and process
modeling criteria (and also perhaps the scale, level, and efficiency criteria) for each
particular project.

EXAMPLE 17.1 Preliminary evaluation of C, C++, JAVA, and ADA

• Scale: All four languages allow a program to be constructed from compilation units.
C’s independent compilation is a very shaky basis for large-scale programming: only
the disciplined use of header files provides any protection against type inconsistencies
between compilation units, and such discipline cannot be enforced by the compiler.
C++ also exhibits some of the weaknesses of independent compilation. ADA’s
separate compilation rigorously enforces type consistency between compilation
units. JAVA’s separate compilation does likewise, but it is partly undermined by
dynamic linking.

• Modularity: All four languages of course support procedural abstraction. More
importantly, C++ and JAVA support data abstraction by means of classes, and ADA

by means of both abstract types and classes, but C does not support data abstraction
at all.

• Reusability: C++, JAVA, and ADA support both data abstraction and generic abstrac-
tion, enabling us to write reusable program units. Both C++ and JAVA provide
large class libraries that can be reused by all programmers. C supports neither data
abstraction nor generic abstraction, making it very poor for reuse.

434 Chapter 17 Language selection

• Portability: C and C++ have many features that make programs unportable, such
as pointer arithmetic and even ordinary arithmetic. (For instance, even using
C++ exceptions it is not possible to handle overflow.) ADA programs are much
more portable; for instance, programmers can easily employ platform-independent
arithmetic. JAVA programs are exceptionally portable: even object code can be
moved from one platform to another without change.

• Level: C is a relatively low-level language, characterized by bit-handling operations
and by the ubiquitous use of pointers to achieve the effect of reference parameters
and to define recursive types. C++ relies on pointers for recursive types and object-
oriented programming, although disciplined use of data abstraction makes it possible
to localize most pointer handling. Similar points can be made about pointer handling
in ADA. ADA is generally high-level, but also supports low-level programming in
clearly signposted program units. JAVA is also high-level, avoiding all explicit pointer
handling. (All objects are implicitly accessed through pointers, but that is evident
only in the language’s reference semantics.)

• Reliability: C and C++ are very unreliable, setting numerous traps for unsuspecting
programmers. Great care is needed to avoid dangling pointers to deallocated heap
variables or to dead local variables. Especially in C, the feeble type system permits
meaningless type conversions and pointer arithmetic, and does not enforce type
checks between compilation units, thus exposing programs to a variety of run-time
type errors. Moreover, the lack of run-time checks allows these errors, and others
such as out-of-range array indexing, to go undetected until unlimited harm has been
done. JAVA and ADA are much more reliable: dangling pointers cannot arise; full
compile-time type checks automatically detect a large proportion of programming
errors; and automatic run-time checks ensure that other errors such as out-of-range
array indexing are detected before serious harm is done.

• Efficiency: C and C++ can be implemented very efficiently. JAVA and ADA are
slowed down by run-time checks. More significantly, JAVA depends heavily on
garbage collection (since all objects are heap variables), and JAVA programs are
usually compiled into interpretive code; the resulting performance penalties are
acceptable for applets, but not for computationally intensive programs.

• Readability: All of these languages make it possible to write readable software.
Unfortunately it is common practice among C and C++ programmers to write very
cryptic code. This, combined with use of low-level features like pointer arithmetic,
makes programs hard to maintain.

• Data modeling: In all four languages it is easy to define the data types needed
in different application areas. Data abstraction in C++, JAVA, and ADA makes it
possible to equip each type with necessary and sufficient operations, and to ensure
that application code uses only these operations, but C has no such safeguards.

• Process modeling: C provides only basic control structures, while C++, JAVA, and
ADA provide exceptions. Most importantly, JAVA and ADA support concurrency
directly using high-level abstractions. C and C++ instead rely on the underlying
operating system to support concurrency (which impairs portability).

• Availability of compilers and tools: Currently there is a wide choice of low-cost
good-quality compilers and IDEs for all four languages. However, most JAVA com-
pilers generate interpretive code, which in turn can be translated into (inefficient)
native machine code by a ‘‘just-in-time’’ compiler. (There is no reason why JAVA

compilers could not generate efficient native machine code directly, but that is
currently unusual.)

17.2 Evaluation 435

• Familiarity: Currently, most professional programmers are familiar with C, C++, or
JAVA, but ADA is much less well known. C and JAVA, being relatively small languages,
can quickly be mastered by professional programmers. (The JAVA class library is
another matter!) C++ and ADA, being large languages, take a long time to master.

EXAMPLE 17.2 Evaluation of languages for a word processor

Let us evaluate C, C++, JAVA, and ADA for a project to design and implement a new
word processor. Following up on the preliminary evaluation of Example 17.1, we should
re-evaluate the languages against the following criteria.

• Data modeling: The word processor will need data types such as paragraphs, style
sheets, and dictionaries.

• Process modeling: The word processor will have no special process modeling
requirements. (Actually, concurrency would help to keep the graphical user interface
responsive while the application is computing the effects of an insertion or deletion,
but for simplicity we shall ignore that here.)

• Scale: The word processor will be a medium-size program.

• Level: The word processor will have no need for low-level coding.

• Efficiency: The word processor must be reasonably efficient, because of the computa-
tion involved in refreshing the window after inserting, deleting, or reformatting text.

Overall, we might reasonably come to the following conclusions. C would be less than
ideal, scoring well on efficiency, but scoring badly on scale, modularity, and reliability.
C++ would be preferable, scoring better than C on scale and modularity. JAVA might be
suitable, scoring well on everything except efficiency. ADA would be suitable, scoring well
on everything except probably familiarity.

EXAMPLE 17.3 Evaluation of languages for an automatically driven road vehicle

Let us evaluate C, C++, JAVA, and ADA for a project to design and implement the
control system for an automatically driven road vehicle. This system must be able to
recognize road hazards such as junctions, bends, other vehicles, and so on, using suitably
positioned cameras. Following up on the preliminary evaluation of Example 17.1, we
should re-evaluate the languages against the following criteria.

• Data modeling: The control system will need data types such as images.

• Process modeling: The control system will need concurrency so that it can simulta-
neously steer, accelerate or brake, watch other vehicles, and so on. For instance, it
must not suspend steering while braking or while processing a camera image.

• Scale: The control system will be a large program.

• Level: Some parts of the control system, such as image processing, will need low-level
coding capability.

• Reliability: The control system is a safety-critical system, so it must be extremely
reliable and fail-safe.

436 Chapter 17 Language selection

• Efficiency: The control system will be a real-time system, and must be able to process
its camera images fast enough to react appropriately. For instance, it must be able
to recognize obstacles fast enough to avoid collisions.

Overall, we might reasonably come to the following conclusions. Both C and C++
should be ruled out on reliability grounds. JAVA should be ruled out on efficiency grounds.
ADA would be suitable in every respect.

Summary
In this chapter:

• Having dismissed some of the more irrational arguments that tend to be used
when selecting a language for a particular software development project, we have
identified a number of technical and economic criteria that should properly be taken
into account.

• We have used these criteria to evaluate the suitability of C, C++, JAVA, and ADA for
two possible projects, a word processor and an automatically driven road vehicle.

Exercises

Exercises for Section 17.1
*17.1.1 Recall your own experience of a software development project in which a

careful selection of language was required. Were all the criteria of Section 17.1
taken into account? Were any additional criteria taken into account?

Exercises for Section 17.2
*17.2.1 Choose a language other than C, C++, JAVA, or ADA, and evaluate its suitability

for implementing a word processor, along the lines of Example 17.2.

*17.2.2 Choose a language other than C, C++, JAVA, or ADA, and evaluate its
suitability for implementing an automatically driven road vehicle, along the
lines of Example 17.3.

*17.2.3 Consider a software development project in which you are currently involved.
Evaluate several candidate languages for this project.

*17.2.4 What additional selection criterion should be taken into account when select-
ing a language suitable for writing applets? Evaluate C++ and JAVA for
this purpose.

*17.2.5 What additional selection criterion should be taken into account when selecting
a language suitable for writing macros in a word processor or spreadsheet
system? Evaluate C++, JAVA, and VISUAL BASIC for this purpose.

Chapter 18

Language design

This chapter addresses the difficult question of how we should design programming and
scripting languages. While few of us will ever be involved in the design of a new language
or even the extension of an existing language, all of us should be able to analyze critically
the design of existing languages.

18.1 Selection of concepts

The main purpose of this book has been to show that a large variety of languages
can be understood in terms of a relatively small number of concepts. Nevertheless,
these concepts still are too numerous to be incorporated in any single language. The
language designer’s first problem, therefore, is a judicious selection of concepts.
What to omit is just as important a decision as what to include.

The concepts of values and types, variables and storage, bindings and scope,
and procedural abstraction are so fundamental that they are found in almost every
language. Nevertheless the pure functional languages demonstrate that many
useful problems can be solved elegantly by defining functions, without resort to
updatable variables. A similar point could be made about logic languages.

Every modern language should support data abstraction in some form. All
programs benefit from being decomposed into suitable program units, and large
programs are manageable only if they are decomposed in this way. Experience has
shown that the most useful program units are packages, abstract types, and classes.
The lack of data abstraction is therefore a serious weakness in any language.

An important goal of software engineering is reuse. New programs should be
able to include existing tried-and-tested program units. Reusable program units
must be self-contained, and in particular should make no unnecessary assumptions
about the types of data that they manipulate. Thus a language intended for serious
software engineering should support generic units, inclusion polymorphism, or
parametric polymorphism. Currently these concepts are associated mainly with
imperative, object-oriented, and functional languages, respectively, but it is not
clear why this should be so.

Concurrency is also important in some applications. But concurrent program-
ming is significantly more difficult than sequential programming, and is justified
only when large efficiency gains are possible (such as when an inherently parallel
algorithm can be distributed), or when the application is naturally concurrent
(such as a simulator, process controller, or operating system). Designers can
reasonably omit concurrency in languages not intended for such applications.

437

438 Chapter 18 Language design

18.2 Regularity

How should concepts be combined to design a language? Simply piling feature
upon feature is not a good approach, as PL/I vividly demonstrated. Even smaller
languages sometimes betray similar symptoms. FORTRAN and COBOL provide
baroque input/output facilities, but every programmer encounters situations where
these facilities are not quite right. Surely it is preferable to provide a small set
of basic facilities, and allow programmers to build more elaborate facilities on
top of these as required? Abstract types and classes support and encourage
this approach.

To achieve maximum power with a given number of concepts, the programmer
should be able to combine these concepts in a regular fashion, with no unnecessary
restrictions or surprising interactions. The semantic principles discussed in this
book help the language designer to avoid irregularities.

The Type Completeness Principle (Section 2.5.3) suggests that all types in the
language should have equal status. For example, parameters and function results
should not be restricted to particular types. Nevertheless, some languages insist
that function results are of primitive type. In such a language it would be very
awkward to program complex arithmetic, for example, since we could not write
function procedures to compute complex sums, differences, and so on.

The Abstraction Principle (Section 5.1.3) invites the language designer to
consider abstraction over syntactic categories other than the usual ones: function
procedures abstract over expressions, and proper procedures abstract over com-
mands. The language designer should also consider generic units, which abstract
over declarations, and parameterized types, which abstract over types.

The Correspondence Principle (Section 5.2.3) states that for each form of dec-
laration there exists a corresponding parameter mechanism. This principle helps
the language designer to select from the bewildering variety of possible param-
eter mechanisms. To the extent that the language complies with this principle,
programmers can easily and reliably generalize blocks into procedures.

The Qualification Principle (Section 4.4.3) invites the language designer to
consider including blocks in a variety of syntactic categories. Many languages
have block commands, but few (other than functional languages) have block
expressions, and still fewer have block declarations.

18.3 Simplicity

Simplicity should always be a goal of language design. The language is our most
basic tool as programmers, so must be mastered thoroughly. The language should
help us to solve problems: it should allow us to express solutions naturally, and
indeed should help us discover these solutions in the first place. A large and
complicated language creates problems by being difficult to master. Tony Hoare
has expressed this point succinctly: large and complicated languages belong not to
the solution space but to the problem space.

18.3 Simplicity 439

PASCAL demonstrated that a language designed with limited aims can be very
simple. Indeed its success was due largely to its simplicity. It included a small
but judicious selection of concepts; it was easily and quickly mastered, yet it was
powerful enough to solve a wide variety of problems.

Nevertheless, there is a tension between the goal of simplicity and the
demands of a truly general-purpose language. A general-purpose language will be
used in a wide variety of application areas, including those demanding concurrent
programming. It will be used to construct large programs consisting of numerous
program units written by different programmers, and to construct libraries of
program units likely to be reused in future programs. Such a language must
include most of the concepts studied in this book, and must inevitably be much
more complicated than a language like PASCAL.

The most promising way to resolve this tension is to compartmentalize the
language. An individual programmer then has to master only those parts of
the language needed to solve the problem on hand. For this approach to work,
the language designer must avoid any unexpected interactions between different
parts of the language, which could cause an unwary programmer to stray into
unknown territory.

PL/I was heavily and justifiably criticized for failing to control its complexity.
A notorious example is the innocent-looking expression ‘‘25 + 1/3’’, which yields
5.3! PL/I used complicated (and counterintuitive) fixed-point arithmetic rules for
evaluating such expressions, sometimes truncating the most significant digits! An
unwary programmer familiar only with the rules of integer arithmetic might easily
stumble into this trap.

ADA has also been criticized for its size and complexity. In many respects,
however, ADA makes a good job of controlling its complexity. Suppose, for
example, that a PASCAL programmer is learning ADA, but is not yet aware of
the existence of exceptions. The programmer might write an ADA program that
unintentionally throws an exception but, in the absence of a handler, the program
will simply halt with an appropriate error message (just as the corresponding
PASCAL program would do).

Even HASKELL, a much simpler language, has traps for unwary programmers.
Polymorphic type inference is complicated, and it is possible that the type inferred
for a function might be different from the one intended by the programmer. Such
a discrepancy might be buried in the middle of a large program, and thus escape
notice. To avoid such confusion, the programmer can voluntarily declare the type
of every function. That type information is redundant (since it could be inferred by
the compiler), but it makes the programmer’s intentions explicit and thus makes
the program easier to read. Redundancy is often a good thing in language design.

Parametric polymorphism, inclusion polymorphism (inheritance), overload-
ing, and coercions are all useful in their own right, but combining two or more of
these in a single language can lead to unexpected interactions. For instance, C++
and JAVA combine overloading and inheritance. Consider the following JAVA class
and subclass:

440 Chapter 18 Language design

class Line {
private int length;

(1) public void set (int newLength) {
length = newLength;

}

. . .

}

class ColoredLine extends Line {
public static final RED = 0, GREEN = 1, BLUE = 2;
private int color;

(2) public void set (int newColor) {
color = newColor;

}

. . .

}

In the programmer’s mind, lengths and colors are different types, so method (2)
should overload method (1). But in the actual code, lengths and colors are both
integers, so method (2) overrides method (1).

To return to our theme of controlling complexity, the language designer
cannot, and should not attempt to, anticipate all facilities that the programmer
will need. Rather than building too many facilities into the language, the language
should allow programmers to define the facilities they need in the language itself
(or reuse them from a library). The key to this is abstraction. Each new function
procedure, in effect, enriches the language’s expression repertoire; each new
proper procedure enriches its command repertoire; and each new abstract type or
class enriches its type repertoire.

We can illustrate this idea in the area of input/output. Older languages such as
FORTRAN, COBOL, and PL/I have complicated built-in input/output facilities. Being
built-in and inextensible, they make a vain attempt to be comprehensive, but often
fail to provide exactly the facilities needed in a particular situation. By contrast,
modern languages such as C++, JAVA, and ADA have no built-in input/output at
all. Instead their libraries provide input/output units (classes or packages) that
cater for most needs. Programmers who do not need these units can ignore them,
and programmers who need different facilities can design their own input/output
units. These programmers are not penalized (in terms of language or compiler
complexity) by the existence of facilities they do not use.

We can also illustrate this idea in the area of scripting. The older scripting
languages such as PERL and TCL have built-in string matching using regular
expressions. The newer scripting language PYTHON avoids this language complexity
by providing library classes with similar functionality. Again, programmers are
free to ignore these classes and to provide their own.

Taken to its logical conclusion, this approach suggests a small core language
with powerful abstraction mechanisms, together with a rich library of reusable
program units. The language could provide a small repertoire of primitive and
composite types, together with the means to define new types equipped with

18.4 Efficiency 441

expressions function procedures
commands proper procedures

declarations

arithmetic arrays

strings input/output

lists GUI

sets

expressions function procedures
commands proper procedures

declarations classes/packages

arithmetic arrays

input /outputstrings

lists

sets

core
language

library
classes/
packages

(a) (b)

GUI

Figure 18.1 (a) A monolithic language; (b) a core language plus library.

suitable operations. The library could include program units for things like strings,
lists, and input/output that are needed in many but not all programs. All this is
summarized in Figure 18.1. The effect is that necessary complexity is devolved
from the language itself to its library. Furthermore, programmers can develop
their own more specialized libraries to complement the standard library. (See also
Exercise 18.3.1.)

JAVA exemplifies this approach extraordinarily well. The JAVA core language
is very simple (no larger than C, and far smaller than C++), and easy to learn. The
JAVA standard class library includes an enormous number of classes grouped into
packages. JAVA’s core language and class library together provide an enormous
wealth of facilities, and the productivity of JAVA programmers is unmatched.

18.4 Efficiency

In the early days of computing, when computers were extremely slow and short
of storage, languages like FORTRAN and COBOL were designed with numerous
restrictions to enable them to be implemented very efficiently. Much has changed
since then: computers are extremely fast and have vast storage capacities; and
compilers are much better at generating efficient object code.

Moreover, we now understand that seeking optimum efficiency is unproduc-
tive. Typically 90% of a program’s run-time is spent in 10% of the code. It is
therefore more productive to identify the critical 10% of the code and make it run
as fast as required, rather than waste effort on speeding up the noncritical 90% of
the code.

Nevertheless, every language should be capable of an acceptably efficient
implementation. What is acceptable depends on what is required of programs in
the application area for which the language is intended. A language intended for
system programming must be highly efficient. A language intended for ordinary
application programming must be reasonably efficient. A language intended for
programming applets or for scripting need not be particularly efficient.

A language’s efficiency is strongly influenced by its selection of concepts. Some
concepts such as dynamic typing, parametric polymorphism, object orientation,
and automatic deallocation (garbage collection) are inherently costly. Logic

442 Chapter 18 Language design

programming is inherently less efficient than functional programming, which
in turn is inherently less efficient than imperative programming. The language
designer must decide whether the benefits of each concept outweigh its cost.

Sometimes an interaction of concepts has paradoxical effects on efficiency.
For example, in an imperative language selective updating of an array is cheap,
while in a functional language an array-transforming operation would be costly
(having to copy all the unaffected components). Conversely, in an imperative
language sharing of list components is inhibited (by the possibility of selective
updating), while in a functional language sharing is always possible. Therefore
imperative languages prefer arrays while functional languages prefer lists.

Friedrich Bauer has suggested a useful principle: a language should not
include a concept if it imposes significant costs on programs that do not use it. This
principle is respected by ADA and JAVA exceptions: we can implement exceptions
in such a way that a program that throws no exceptions runs as fast as it would do
if exceptions did not exist. This principle is also respected by ADA’s concurrency
control abstractions. It is not respected by JAVA’s synchronization features, which
are designed to support concurrency, but which impose a cost on every object,
even in a sequential program.

18.5 Syntax

This book has deliberately concentrated on semantic concepts, because they are
of primary importance in designing, understanding, and using languages. Syntactic
issues are of secondary importance, but they are certainly important enough to
deserve a short discussion here.

Numerous articles have been written on surface syntactic issues. Should
semicolons separate or terminate commands? Should keywords be abbreviated?
Should composite commands be fully bracketed? (See Exercises 18.5.1 and 18.5.2.)
Such aspects of a language’s syntax might affect the number of syntactic errors
made by novice programmers, but experienced programmers easily cope with
such syntactic differences.

A much more important criterion for a language’s syntax is that programs
should be readable. A program is written once but read many times, both by
its author and by other programmers. So the language designer should choose
a syntax that permits and encourages programmers to write programs fit to be
read by others. Programmers should be free to choose meaningful identifiers (an
obvious point, perhaps, but one ignored in older languages like FORTRAN and
BASIC). Keywords should generally be preferred to unfamiliar symbols. It should
be easy to mingle commentary with the program text, and to lay out the text in
such a way as to suggest its syntactic (and semantic) structure.

Another important criterion is that finger slips should not radically change
the code’s meaning. This possibility was notoriously illustrated by the software
controlling an early Venus probe, in which the intended FORTRAN code ‘‘DO1I
=1,25’’ (which introduces a loop with control variable I ranging from 1 through
25) was mistyped as ‘‘DO1I =1.25’’ (which assigns 1.25 to an undeclared variable
named DO1I), causing the probe to be lost. It is better that a finger slip should

18.5 Syntax 443

be detected by the compiler as a syntactic error than that it should change the
code’s meaning.

The language’s syntax should use familiar mathematical notation wherever
possible. For example, in mathematics ‘‘=’’ means ‘‘is equal to’’. The use of ‘‘=’’ in
HASKELL definitions, and its use in ADA to denote the equality test, are consistent
with the mathematical meaning. But the use of ‘‘=’’ in C, C++, and JAVA to mean
‘‘becomes equal to’’ (assignment) is not consistent with the mathematical meaning.
It is notoriously common for C novices to write:

if (x = y) printf(". . .");

expecting to print something if the value of x equals the value of y. In fact,
this code assigns the value of y to the variable x, then tests the assigned value,
then prints something if the assigned value is nonzero. (This is another example
in which a finger slip, here writing ‘‘=’’ instead of ‘‘==’’, radically changes the
code’s meaning.)

A deeper point is that the language’s syntax should be transparent. It should
be obvious from a syntactic form what semantic concept is being used. The
syntactic forms and semantic concepts should be (more or less) in one-to-one
correspondence.

C and C++ declarations illustrate bad syntactic design. Type definitions come
in four different forms (introduced by enum, struct, typedef, and union).
Variable and parameter declarations are even more confusing. For example:

char * x, y;
char s, t[];

declares x to be of type char* (pointer to char), y to be of type char, s also
to be of type char, and t to be of type char[]! Type information is smeared
all over each declaration. By contrast, JAVA variable and parameter declarations
concentrate the type information in one place. For example:

char[] s, t;

declares both s and t to be of type char[].
The same syntactic form should not mean different things in different contexts.

For example, the C syntactic form ‘‘(char)x’’ violates this dictum: in one context
this is a variable declaration, declaring x to be of type char; in another context
this is a cast, converting the value of x to type char.

Here is a more complicated example of confusing syntax from C++. Suppose
that a class Widget has two constructors, one with a single int parameter, the
other being parameterless. Then we can create and initialize two heap objects:

Widget* w1 = new Widget(7); // calls the first constructor
Widget* w2 = new Widget(); // calls the second constructor

But suppose that we want to create two similar local objects on the stack:

Widget w3(7); // calls the first constructor
Widget w4(); // intended to call the second constructor!

444 Chapter 18 Language design

The declaration of w3 works as expected. But the declaration of w4 does not
create a Widget object; it declares a function with a Widget result!!

A single syntactic form should not confuse two distinct concepts. For example,
C and C++ make no clear syntactic distinction between function procedures and
proper procedures. Another example is that ADA record types confuse the distinct
concepts of Cartesian products and disjoint unions; by contrast, HASKELL’s tuple
types support Cartesian products, while its algebraic types separately support
disjoint unions.

Each concept should preferably be supported by a single syntactic form.
Providing alternative forms for the same concept makes the language larger and
more complicated, and is rarely justified. A fairly harmless example is PYTHON’s
syntactic form ‘‘unless E:’’, which is an alternative to ‘‘if ! E:’’. More
seriously, ADA has a tendency to allow programmers to achieve the same effect in
several different ways. For example, consider the following procedure:

procedure draw_box (x, y: Integer;
width: Integer := 1;
depth := 1);

This procedure can be called not only in the conventional positional notation:

draw_box(0, 0, 1, 2);

but also in so-called ‘‘keyword notation’’:

draw_box(depth => 2, width => 1, x => 0, y => 0);

and also with some actual parameters omitted if their default values are to be used:

draw_box(y => 0, x => 0, depth => 2);

The advantage of keyword notation is that the programmer writing the procedure
call need not remember the order of the parameters. The disadvantage is that
the flexible order of actual parameters, together with the possibility of mixing
positional and keyword notation, the existence of default arguments, and the
existence of overloading, make the rules for interpreting (and understanding)
procedure calls uncomfortably complicated.

A program is essentially a semantic structure, specifying how a computation
should be performed. The syntax is merely a notation by which the programmer
selects the semantic concepts to be used in that computation. The most important
properties of the syntax are that it should be easy to learn, and make programs
easy to understand.

18.6 Language life cycles

Each new language passes through a number of stages from its initial design to
routine use by programmers:

• The requirements for the new language are identified. What is its intended
application area? Will it be used to write long-lived reusable software, or
short-lived ‘‘throw-away’’ programs?

18.7 The future 445

• The language’s syntax and semantics are designed. As discussed above,
the primary decisions are which semantic concepts to select, and how to
combine them to make the language regular and simple, yet powerful.
Design of the syntax is secondary, and should be left until last.

• A specification of the new language is prepared. The specification must
be clearly written, complete, consistent, and unambiguous. This allows
programmers to review and comment on the new language.

• Using the specification, an initial implementation of the new language
is constructed. This allows programmers to gain experience with the
new language.

• The specification, implementation, and programmers’ experience all pro-
vide feedback to the designer, drawing attention to any unsatisfactory
aspects of the design, which can then be improved.

• If the new language is successful, improved implementations are con-
structed, textbooks are written, and a community of programmers is built
up. In due course, the language might become an international standard. It
will also undergo revision as its requirements change over time.

There are strong analogies between the above stages and the stages of
the familiar software life cycle (requirements, design, specification, prototyping,
implementation, testing, documentation, and maintenance). So we see that not
only software systems but also languages have life cycles.

18.7 The future

We started this book with a brief history of programming and scripting languages.
Let us conclude with some brief speculations on how programming and scripting
languages might develop in the future.

At the time of writing, the dominant paradigm is object-oriented programming
(together with the complementary object-oriented analysis and design methods).
New object-oriented languages are being designed, and object-oriented facilities
are being grafted on to imperative and scripting languages. This situation seems
likely to continue for the foreseeable future.

Functional and logic programming will remain important, but only within
their established niches. Functional and logic languages are hampered by their
inability to model state in a natural way, except by more-or-less ad hoc extensions
that destroy these languages’ conceptual clarity.

Scripting will remain important, since it enables nonprofessional program-
mers to customize software to their own requirements. However, the conceptual
distance between scripting and programming is narrower than the scripting enthu-
siasts claim. So scripting languages will continue to converge with programming
languages. In fact the gap between programming and scripting languages will
surely come to be seen as a historical accident.

It is possible that new paradigms will become more prominent in the future.
Aspect-oriented programming emerged in the late 1990s as a promising way
to build large programs with multiple ‘‘aspects’’, which tend to cut across the

446 Chapter 18 Language design

functional units of such programs. In an object-oriented distributed system, for
example, the aspects might be the objects’ functionality, locations, communica-
tions, and synchronization. Aspect-oriented programming allows such aspects to
be programmed separately, then woven together by a special compiler.

The Internet will continue to pose difficult challenges for language designers,
in terms of distributed programming and especially security. Existing language
technology allows us to download applets in full confidence that they are harmless.
So why cannot we open office documents attached to e-mails without worrying
that their macros might contain viruses? For that matter, why cannot we have
operating systems that are far more resistant to viral infections? Appropriate
language technology could make our systems more secure, but its development
and deployment are currently inhibited by commercial forces and resistance to
change. We should all insist on change!

Summary
In this chapter:

• We have seen that a judicious selection of concepts is essential in any lan-
guage design.

• We have seen that, given a selection of concepts, we can maximize the language’s
power and expressiveness by combining these concepts in a regular manner. The
Type Completeness, Abstraction, Correspondence, and Qualification Principles
suggest some ways to achieve this goal.

• We have seen that languages designed with limited aims can be very simple. On the
other hand, general-purpose languages are inevitably complicated, but they should
control their complexity by devolving as much functionality as possible to a package
or class library.

• We have seen that every language should be capable of acceptably efficient imple-
mentation, employing only concepts whose costs are justified by their benefits and
preferably are borne only by programs that actually use them.

• We have seen that a language’s syntax should be designed so that programs are
readable, mistakes are quickly detected, and the syntactic forms in a program
transparently reveal the underlying semantic concepts.

• We have seen that each language has a life cycle, which is similar to the software
life cycle.

• We have speculated on the future development of programming and script-
ing languages.

Further reading

Useful commonsense advice on language design has been
offered by HOARE (1973) and WIRTH (1974). Both Hoare
and Wirth place strong emphasis on simplicity, security,
efficiency (at both compile-time and run-time), and read-
ability. Hoare recommends that the language designer
should select and consolidate concepts already invented and
tested by others, and avoid the temptation to introduce new
and untried concepts. Wirth emphasizes the importance of

making the inherent cost of using each concept clearly
visible to the programmer.

MCIVER and CONWAY (1996) examine aspects of program-
ming language design that tend to cause difficulties for
novices in particular.

For a brief introduction to aspect-oriented programming,
see ELRAD et al. (2001).

Exercises 447

Exercises
Exercises for Section 18.1

18.1.1 (Revision) Consider the following concepts: static typing, variables, bind-
ings, procedural abstraction, data abstraction, generic abstraction, concurrency.
Which of these concepts are supported by each of the following languages: C,
C++, JAVA, ADA, HASKELL, PROLOG, and PYTHON?

Exercises for Section 18.2
*18.2.1 Consider the following languages: C, C++, JAVA, ADA, HASKELL, PROLOG, and

PYTHON. Assess each language’s compliance with:

(a) the Type Completeness Principle;
(b) the Abstraction Principle (consider expressions, commands where appli-

cable, and declarations);
(c) the Correspondence Principle;
(d) the Qualification Principle (consider expressions, commands where appli-

cable, and declarations).

Exercises for Section 18.3
*18.3.1 Consider the approach to managing language complexity suggested at the end

of Section 18.3, and illustrated in Figure 18.1. It might be argued that this is
a recipe for chaos. A monolithic language forces all programmers to work
with a common set of facilities, while a core language plus library encourages
programmers to design and use their own program units (rather than those
in the library), encouraging egotistic programming and ultimately hindering
portability. Develop this argument, and also develop a counterargument.

*18.3.2 Which (if any) built-in features of C++ and ADA might reasonably be supported
by program units in the library?

Exercises for Section 18.5
18.5.1 Consider the use of semicolons as command separators or terminators. As

illustrated below, PASCAL commands are separated by semicolons when com-
posed sequentially, ADA (and C) commands are terminated by semicolons, and
PYTHON commands are each terminated by an end-of-line:

PASCAL:

if x < y then
begin
z := x;
x := y;
y := z

end

ADA:

if x < y then
z := x;
x := y;
y := z;

end if;

PYTHON:

if x < y:
z = x
x = y
y = z

What are the advantages and disadvantages of each syntax?
18.5.2 Consider the syntax of composite (conditional and iterative) commands in

various languages. As illustrated below, C requires each subcommand to be

448 Chapter 18 Language design

enclosed in braces (unless the subcommand is very simple), ADA composite
commands provide their own bracketing, and PYTHON requires subcommands
to be indented:

C:

l = 0;
r = n - 1;
while (l <= r) {
m = (l + r)/2;
if (x == xs[m])
break;

if (x < xs[m])
r = m + 1;

else
l = m + 1;

}

ADA:

l = 0;
r = n - 1;
while l <= r loop
m = (l + r)/2;
if x = xs[m] then
exit;
end if;
if x < xs[m]
r = m - 1;
else
l = m + 1;
end if;

end loop;

PYTHON:

l = 0
r = n - 1
while l <= r:
m = (l + r)/2
if x == xs[m]:

break
if x < xs[m]:

r = m - 1
else:

l = m + 1

What are the advantages and disadvantages of each syntax?

Bibliography

ABELSON, H., SUSSMAN, G. J., AND SUSSMAN, J. (1996)
Structure and Interpretation of Computer Pro-
grams, 2nd edn, MIT Press, Cambridge, MA; also
McGraw-Hill, New York.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. (1986) Com-
pilers: Principles, Techniques, and Tools, Addison-
Wesley, Reading, MA.

ANSI (1994) Information Technology – Programm-
ing Language – Common LISP, ANSI INCITS
226–1994 (R1999), American National Standards
Institute, Washington, DC.

APPEL, A. (1998) Modern Compiler Implementation
in JAVA, Cambridge University Press, Cambridge,
UK.

ATKINSON, M. P. AND BUNEMAN, O. P. (1987) Database
programming languages, ACM Computing Surveys
19, 105–90.

BARRON, D. (2000) The World of Scripting Lan-
guages, Wiley, Chichester, UK.

BEAZLEY, D. M. (2001) PYTHON Essential Reference,
2nd edn, New Riders Publishing, Indianapolis, IN.

BIRD, R. A. AND WADLER, P. L. (1988) Introduction
to Functional Programming, Prentice Hall Inter-
national, Hemel Hempstead, UK.

BIRTWHISTLE, G. M., DAHL, O. -J., MYHRHAUG, B., AND

NYGAARD, K. (1979) SIMULA Begin, Petrocelli Char-
ter, New York.

BÖHM, C. AND JACOPINI, G. (1966) Flow diagrams,
Turing machines, and languages with only two
formation rules, Communications of the ACM 9,
366–71.

BOOCH, G. (1987) Software Engineering with ADA,
2nd edn, Addison-Wesley, Reading, MA.

BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WAD-

LER, P. (1998) Making the future safe for the past:
adding genericity to the JAVA programming lan-
guage, in ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and
Applications (OOPSLA’98), 183–200.

BRATKO, I. (1990) PROLOG: Programming for Artificial
Intelligence, Addison-Wesley, Wokingham, UK.

BRINCH HANSEN, P. (1973) Operating System Princi-
ples, Prentice Hall, Englewood Cliffs, NJ.

BRINCH HANSEN, P. (1977) The Architecture of Con-
current Programs, Prentice Hall, Englewood Cliffs,
NJ.

BURNS, A. AND WELLINGS, A. J. (1998) Concurrency
in ADA, Cambridge University Press, Cambridge,
UK.

BUSTARD, D., ELDER, J., AND WELSH, J. (1988) Con-
current Program Structures, Prentice Hall Interna-
tional, Hemel Hempstead, UK.

BUTENHOF, D. R. (1997) Programming with POSIX

Threads, Addison-Wesley, Reading, MA.
CARDELLI, L. (1986) Amber, in Combinators and

Functional Programming, Springer, Berlin, pp.
21–47.

CARDELLI, L. AND WEGNER, P. (1985) On understand-
ing types, data abstraction, and polymorphism,
ACM Computing Surveys 17, 471–522.

COHEN, N. H. (1995) ADA as a Second Language,
McGraw-Hill, New York.

COULOURIS, G., DOLLIMORE, J., AND KINDBERG, K.
(2000) Distributed Systems: Concepts and Design,
3rd edn, Addison-Wesley, Reading, MA.

COX, B. (1986) Object-Oriented Programming: an
Evolutionary Approach, Addison-Wesley, Read-
ing, MA.

DIBBLE, P. (2002) Real-Time JAVA Platform Program-
ming, Sun Microsystems Press, Santa Clara, CA.

DIJKSTRA, E. W. (1968a) Cooperating sequential pro-
cesses, in Programming Languages (ed. F. Gen-
uys), Academic Press, New York, pp. 43–112.

DIJKSTRA, E. W. (1968b) Go to statement considered
harmful, Communications of the ACM 11, 147–8.

DIJKSTRA, E. W. (1976) A Discipline of Programming,
Prentice Hall, Englewood Cliffs, NJ.

DRAYTON, P., ALBAHARI, B., AND NEWARD, E. (2002)
C# in a Nutshell, O’Reilly, Sebastopol, CA.

ELRAD, T., FILMAN, R. E., AND HADER, A. (eds) (2001)
Aspect-oriented programming, Communications
of the ACM 44, 29–41.

FLANAGAN, D. (2002) JAVA in a Nutshell, 3rd edn,
O’Reilly, Sebastopol, CA.

GEHANI, N. AND MCGETTRICK, A. D. (eds) (1988) Con-
current Programming, Addison-Wesley, Woking-
ham, UK.

449

450 Bibliography

GHEZZI, C. AND JAZAYERI, M. (1997) Programming
Language Concepts, 3rd edn, Wiley, New York.

GOLDBERG, A. AND ROBSON, D. (1989) SMALLTALK-80:
the Language, Addison-Wesley, Reading, MA.

HARBISON, S. P. AND STEELE, G. L. (1995) C: a Ref-
erence Manual, Prentice Hall, Englewood Cliffs,
NJ.

HINDLEY, J. R. (1969) The principal type-scheme of
an object in combinatory logic, Transactions of the
AMS 146, 29–60.

HOARE, C. A. R. (1972) Notes on data structuring,
in Structured Programming (eds O. -J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare), Academic Press,
London, pp. 83–174.

HOARE, C. A. R. (1973) Hints on programming lan-
guage design, in Proceedings of ACM Symposium
on Principles of Programming Languages 1973,
ACM Press, New York.

HOARE, C. A. R. (1975) Recursive data structures,
International Journal of Computer and Information
Sciences 4, 105–32.

HOARE, C. A. R. (1978) Communicating sequential
processes, Communications of the ACM 21,
666–77.

HOARE, C. A. R. (1981) The emperor’s old clothes,
Communications of the ACM 24, 75–83.

HOARE, C. A. R. (1986) Communicating Sequential
Processes, Prentice Hall International, Hemel
Hempstead, UK.

HOROWITZ, E. (ed.) (1995) Programming Languages:
a Grand Tour, 3rd edn, Freeman, New York.

ICHBIAH, J. (ed.) (1979) Rationale for the design of
the ADA programming language, ACM SIGPLAN
Notices 14, no. 6B (special issue).

ICHBIAH, J. (ed.) (1983) ADA Programming Language,
ANSI/MIL-STD-1815A, ADA Joint Program
Office, Department of Defense, Washington, DC.

ISO (1979) Programming Languages – PL/I, ISO
6160:1979, International Organization for Stan-
dardization, Geneva, Switzerland.

ISO (1990) Information Technology – Programming
Languages – PASCAL, ISO 7185:1990, International
Organization for Standardization, Geneva, Swit-
zerland.

ISO/IEC (1995) Information Technology – Prog-
ramming Languages – ADA, ISO/IEC 8652:1995,
International Organization for Standardization,
Geneva, Switzerland.

ISO/IEC (1997) Information Technology – Program-
ming Languages – FORTRAN, Part 1: Base Language,

ISO/IEC 1539-1:1997, International Organization
for Standardization, Geneva, Switzerland.

ISO/IEC (1998) Programming Languages – C++,
ISO/IEC 14882:1998, International Organization
for Standardization, Geneva, Switzerland.

ISO/IEC (1999) Programming Languages – C, ISO/
IEC 9899:1999, International Organization for
Standardization, Geneva, Switzerland.

ISO/IEC (2002) Programming Languages – COBOL,
ISO 1989:2002, International Organization for
Standardization, Geneva, Switzerland.

JONES, G. AND GOLDSMITH, M. (1988) Programming in
OCCAM2, Prentice Hall International, Hemel Hemp-
stead, UK.

JOY, W., STEELE, G., GOSLING, J., AND BRACHA, G.
(2000) JAVA Language Specification, 2nd edn, Addi-
son-Wesley, Reading, MA.

KERNIGHAN, B. W. AND RITCHIE, D. M. (1989) C Pro-
gramming Language, 2nd edn, Prentice Hall,
Englewood Cliffs, NJ.

KNUTH, D. E. (1974) Structured programming with
goto statements, ACM Computing Surveys 6,
261–302.

KOENIG, A. (1989) C Traps and Pitfalls, Addison-
Wesley, Reading, MA.

LANDIN, P. J. (1966) The next 700 programming lan-
guages, Communications of the ACM 9, 157–64.

LEA, D. (2000) Concurrent Programming in JAVA:
Design Principles and Patterns, Addison-Wesley,
Reading, MA.

LEDGARD, H. F. AND SINGER, A. (1982) Scaling down
ADA, Communications of the ACM 25, 121–5.

LISKOV, B. H. AND ZILLES, S. N. (1974) Programming
with abstract data types, ACM SIGPLAN Notices
9, 50–9.

MALPAS, J. (1987) PROLOG: a Relational Language
and its Applications, Prentice Hall International,
Hemel Hempstead, UK.

MCCARTHY, J. (1965) A basis for a mathematical
theory of computation, in Computer Program-
ming and Formal Systems (eds P. Braffort and
D. Hirschberg), North-Holland, Amsterdam, pp.
33–70.

MCCARTHY, J., ABRAHAMS, P. W., EDWARDS, D. J.,
et al. (1965) LISP 1.5 Programmer’s Manual, 2nd
edn, MIT Press, Cambridge, MA.

MCIVER, L. AND CONWAY, D. M. (1996) Seven deadly
sins of introductory programming language design,
in Proceedings of Software Engineering Education
and Practice 1996, IEEE Computer Society, pp.
309–16.

Bibliography 451

MEYER, B. (1988) From structured programming to
object-oriented design: the road to EIFFEL, Struc-
tured Programming 10, 19–39.

MEYER, B. (1989) Object-Oriented Software Construc-
tion, Prentice Hall International, Hemel Hemp-
stead, UK.

MILNER, R. (1978) A theory of type polymorphism
in programming, Journal of Computer and System
Science 17, 348–75.

MILNER, R., TOFTE, M., HARPER, R., AND MCQUEEN, D.
(1997) The Definition of Standard ML – Revised,
MIT Press, Cambridge, MA.

NAUR, P. (ed.) (1963) Revised report on the algo-
rithmic language ALGOL60, Communications of
the ACM 6, 1–20; also Computer Journal 5,
349–67.

OUSTERHOUT, J. K. (1998) Scripting: higher level pro-
gramming for the 21st century, IEEE Computer
31, 3, 23–30.

PARNAS, D. L. (1972) On the criteria to be used in
decomposing systems into modules, Communica-
tions of the ACM 15, 1053–8.

PERROTT, R. H. (1987) Parallel Programming, Addi-
son-Wesley, Wokingham, UK.

PRATT, T. W. AND ZELCOWITZ, N. V. (2001) Program-
ming Languages: Design and Implementation, 4th
edn, Prentice Hall, Englewood Cliffs, NJ.

REYNOLDS, J. C. (1985) Three approaches to type
structure, in Mathematical Foundations of Software
Development (eds H. Ehrig, C. Floyd, M. Nivat,
and J. Thatcher), Springer, Berlin, pp. 97–138.

ROSSER, J. B. (1982) Highlights of the history of the
lambda-calculus, Conference Record of 1982 ACM
Symposium on Lisp and Functional Programming,
Pittsburgh, ACM, New York, pp. 216–25.

SEBESTA, R. W. (2001) Concepts of Programming
Languages, 5th edn, Addison-Wesley, Reading,
MA.

SETHI, R. (1996) Programming Languages: Concepts
and Constructs, Addison-Wesley, Reading,
MA.

SIMPSON, H. R. (1990) Four-slot fully asynchronous
communication mechanism, IEE Proceedings 137
(Part E), 17–30.

STRACHEY, C. (1967) Fundamental concepts in pro-
gramming languages, in Proceedings of Interna-
tional Summer School in Computer Programming
1967, Copenhagen.

STROUSTRUP, B. (1994) The Design and Evolution of
C++, Addison-Wesley, Reading, MA.

STROUSTRUP, B. (1997) The C++ Programming Lan-
guage, 3rd edn, Addison-Wesley, Reading, MA.

SUTTER, H. (2002) A pragmatic look at exception
specifications, C/C++ Users Journal 20 (7).

TENNENT, R. D. (1977) Language design methods
based on semantic principles, Acta Informatica 8,
97–112.

TENNENT, R. D. (1981) Principles of Programming
Languages, Prentice Hall International, Hemel
Hempstead, UK.

THOMPSON, S. (1999) HASKELL: The Craft of Functional
Programming, 2nd edn, Addison-Wesley, Harlow,
UK.

US Department of Defense (1978) Requirements for
high-order computer programming languages, ADA

Joint Program Office, Department of Defense,
Washington, DC.

VAN ROSSUM, G. AND DRAKE, F. L. (eds) (2003) PYTHON

reference manual, Release 2.3, www.python.
org/doc/current/ref/.

VAN WIJNGAARDEN, A., et al. (1976) Revised Report
on the Algorithmic Language ALGOL68, Springer,
Berlin.

WALL, L., CHRISTIANSEN, T., AND ORWANT, J. (2000)
Programming PERL, 3rd edn, O’Reilly, Sebastopol,
CA.

WATT, D. A. (1991) Programming Language Syntax
and Semantics, Prentice Hall International, Hemel
Hempstead, UK.

WATT, D. A. AND BROWN, D. F. (2000) Programming
Language Processors in JAVA, Prentice Hall, Har-
low, UK.

WEXELBLAT, R. L. (ed.) (1980) ACM History of
Programming Languages Conference, Los Ange-
les, ACM Monograph, Academic Press, New
York.

WICHMANN, B. A. (1984) Is ADA too big? – a designer
answers the critics, Communications of the ACM
27, 98–103.

WIKSTRÖM, Å. (1987) Functional Programming using
Standard ML, Prentice Hall International, Hemel
Hempstead, UK.

WIRTH, N. (1974) On the design of programming
languages, in Proceedings of IFIP Congress 1974,
North-Holland, Amsterdam, pp. 386–93.

WIRTH, N. (1977) MODULA: a programming language
for modular multiprogramming, Software Practice
and Experience 7, 3–35.

ZAHN, C. T. (1974) A control statement for natural
top-down structured programming, Symposium on
Programming Languages, Paris.

Glossary

Abnormal situation An abnormal situation is one
in which a program cannot continue normally. The
program signals this situation by setting a status
flag or by throwing an exception.

Abort-deferred In ADA95, an abort-deferred con-
struct is an operation that must complete before
cancellation of a task takes effect.

Abstract class An abstract class is one in which
no object can be constructed. Its operations may
include abstract methods, but no constructor. It
must have one or more non-abstract subclasses.

Abstract method An abstract method is an unde-
fined method of an abstract class. It must be
overridden by all non-abstract subclasses.

Abstract type An abstract type is one whose rep-
resentation is private. It must be equipped with
some operations, which have exclusive access to
the representation.

Abstraction Principle The Abstraction Principle
states: It is possible to design procedures that
abstract over any syntactic category, provided only
that the constructs in that syntactic category spec-
ify some kind of computation. For example, proper
procedures abstract over commands, and function
procedures abstract over expressions.

Accept command In ADA, an accept command is a
composite command that services an entry call. A
serving task blocks at an accept command for an
entry with no outstanding call.

Activation An activation of a block is the time
interval during which that block is being executed.
An activation of a procedure is the time interval
between call and return.

Actual parameter An actual parameter is an expres-
sion (or other construct) that determines an argu-
ment to be passed to a procedure or method.

Address The address of a storage cell or variable is
its location in storage.

Admission control In concurrent programming,
admission control logic ensures that an operation is
delayed until its precondition has been established.

Algebraic type In HASKELL, an algebraic type is a
disjoint union.

Aliasing Aliasing occurs when a variable can be
accessed using two or more different names. Alias-
ing is a consequence of variable parameters and
variable renaming declarations.

Allocator An allocator is a construct that creates
a heap variable. Examples are new in C++, JAVA,
and ADA.

Application program interface (API) In software
engineering, the application program interface of
a program unit is the minimum information that
application programmers need to know in order to
use the program unit successfully.

Applied occurrence An applied occurrence of an
identifier is one where the identifier is used. See
also binding occurrence.

Architecture The architecture of a program is the
way in which it is decomposed into program units.

Argument An argument is a value, variable, or
other entity that is passed to a procedure or method
when it is called.

Array An array is a collection of components, each
of which is indexed by a distinct value in the array’s
index range.

Assertion In a logic language, an assertion is a
‘‘call’’ to a relation. The assertion either succeeds
or fails.

Assignment An assignment is a command that
evaluates an expression and stores its value in
a variable. In an expression-oriented language,
however, an assignment is itself an expression.

Atom In PROLOG, an atom is a primitive value other
than a number.

Atomic An operation is atomic if no intermediate
stage in its execution is observable by any process.
A variable is atomic if accessing it is an atomic
operation.

Await command In concurrent programming, an
await command blocks within a conditional critical
region until a boolean expression involving the
shared variable of the region yields true. While
waiting, a process relinquishes its exclusive use of
the shared variable. When it resumes, exclusive
access is restored.

Backtrack In logic programming, backtracking oc-
curs when an attempt to test a query against a

453

454 Glossary

particular clause fails, and the query is instead
tested against some other clause.

Bindable A bindable entity is one that may be
bound to an identifier in a particular programming
language.

Binding A binding is a fixed association between
an identifier and a bindable entity. Bindings are
produced by declarations.

Binding occurrence A binding occurrence of an
identifier is one where the identifier is declared.
See also applied occurrence.

Block A block is a program construct that delimits
the scope of any declarations within it. See also
block command, block expression.

Block command A block command consists of dec-
larations and a subcommand. The subcommand
is executed in the scope of the declarations. An
example is ‘‘{. . .}’’ in C, C++, and JAVA.

Block expression A block expression consists of
declarations and a subexpression. The subexpres-
sion is evaluated in the scope of the declarations.
An example is ‘‘let . . .in . . . ’’ in HASKELL.

Block structure Block structure is the textual rela-
tionship between blocks in a particular program-
ming language. See also flat block structure, mono-
lithic block structure, nested block structure.

Body The body of an iterative command is a sub-
command that is to be executed repeatedly. The
body of a procedure is a command (or expres-
sion) that is to be executed (evaluated) when the
procedure is called.

Bounded In a generic unit, a bounded type parame-
ter is one that restricts the corresponding argument
type. For instance, the argument might have to be
a subtype of a specified type, or it might have to
be a type equipped with specified operations. An
unbounded type parameter allows the argument to
be any type whatsoever.

Boundedly nondeterministic A computation is
boundedly nondeterministic if its sequence of steps
and its outcome are not entirely predictable, but
there are only a limited number of possible out-
comes, all of which may be equally acceptable.

Break sequencer In C, C++, and JAVA, a break
sequencer terminates execution of an enclosing
command.

Cardinality The cardinality of a set is the number
of members of that set. The cardinality of a type is
the number of values of that type.

Carry A sequencer may carry a value to its des-
tination. Examples are return sequencers in most
programming languages, and exceptions in JAVA.

Cartesian product A Cartesian product is a set of
tuples. Examples are C structure types and ADA

record types.
Case command A case command consists of a con-

dition (expression) and several subcommands. The
condition’s value determines which of these sub-
commands is chosen to be executed.

Case expression A case expression consists of a
condition (expression) and several other subex-
pressions. The condition’s value determines which
of these subexpressions is chosen to be evaluated.

Cast A cast is an explicit type conversion.
Catch When an exception is thrown, it may be

caught by an exception handler for that particular
exception.

Ceiling priority protocol In concurrent program-
ming, the ceiling priority protocol prevents priority
inversion by temporarily giving every process that
acquires a resource the highest priority of any
process using that resource.

Church–Rosser Property A programming langu-
age possesses the Church–Rosser Property if the
following holds: If an expression can be evaluated
at all, it can be evaluated by consistently using
normal-order evaluation; if an expression can be
evaluated in several different orders (mixing eager
and normal-order evaluation), then all of these
evaluation orders yield the same result. Only pure
functional languages (such as HASKELL) possess the
Church–Rosser Property.

Class A class is a set of similar objects. All objects
of a given class have similar variable components,
and are equipped with the same operations.

Class method A class method is attached to a class
(not to a particular object). It can access class
variables only.

Class variable A class variable is a component of a
class (not a component of a particular object). Its
lifetime is the program’s whole run-time.

Class-wide type The values of a class-wide type
are the objects of a particular class and all of its
subclasses.

Clause See Horn clause.
Closed-world assumption In logic programming,

the closed-world assumption is that an assertion is
false if it cannot be inferred to be true. This assump-
tion is justified only if the program encodes all rel-
evant information about the application domain.

Glossary 455

Coercion A coercion is an implicit type conversion.
Collateral command A collateral command con-

sists of two or more subcommands, which are
executed in any order, possibly in interleaved
order.

Collateral declaration A collateral declaration
consists of two or more subdeclarations, whose
bindings are combined. The scope of each subdec-
laration includes none of the others.

Command A command is a program construct that
is executed in order to update variables.

Command expression A command expression con-
sists of a command and a subexpression. The latter
is evaluated after the command is executed.

Communication In concurrent programming, there
is communication from process P to process Q if P
produces data that Q consumes.

Compatible Two types are compatible if they have
values in common.

Competing commands In concurrent programming,
two or more commands compete if each needs
exclusive access to the same resource for some of
its steps.

Compilation unit A compilation unit is a part of a
program that can be compiled on its own.

Composite type A composite type is one whose
values are composite. See also Cartesian product,
disjoint union, mapping, recursive type.

Composite value A composite value (or data struc-
ture) is a value that is composed from simpler
values.

Composite variable A composite variable is one
that is composed from simpler variables.

Concept A concept is an idea that underlies the
design of one or more programming languages.

Concurrent program A concurrent program spec-
ifies the possible state changes of two or more
sequential processes.

Concurrent programming Concurrent programm-
ing is a paradigm whose key concepts are processes
and their interactions.

Conditional command A conditional command
consists of a condition (expression) and two or
more subcommands. The condition’s value deter-
mines which of these subcommands is chosen to be
executed. See also if-command, case command.

Conditional critical region In concurrent program-
ming, a conditional critical region is a composite
command that provides both automatic mutual
exclusion and implicit communication.

Conditional expression A conditional expression
consists of a condition (expression) and two or
more subexpressions. The condition’s value deter-
mines which of these subexpressions is chosen to be
evaluated. See also if-expression, case expression.

Constant access A constant access is a simple ex-
pression that takes the value of a constant.

Constant declaration A constant declaration binds
an identifier to a value.

Constant parameter A constant parameter is a for-
mal parameter that is bound to the corresponding
argument value.

Construction A construction is an expression that
constructs a composite value such as an array,
record, or object.

Constructor A constructor is an operation of an
abstract type or class, which constructs a value or
object.

Context-dependent overloading Context-depend-
ent overloading occurs when two or more pro-
cedures have the same identifier in the same scope,
but differ in their parameter types and/or their
result types.

Context-independent overloading Context-inde-
pendent overloading occurs when two or more
procedures have the same identifier in the same
scope, but differ in their parameter types.

Continue sequencer In C, C++, and JAVA, a con-
tinue sequencer terminates the current iteration of
an enclosing loop body.

Control sequence In an ADA for-command, the con-
trol sequence is the sequence of values assigned to
the control variable.

Control variable In an ADA for-command, the con-
trol variable is used for counting the iterations.

Copy parameter mechanism A copy parameter
mechanism allows for a value to be copied into
and/or out of a procedure. See also copy-in param-
eter, copy-in-copy-out parameter, copy-out para-
meter.

Copy semantics Copy semantics means that, when
a value is assigned to a variable, that variable is
made to contain a copy of that value.

Copy-in parameter A copy-in parameter allows for
a value to be copied into a procedure when it is
called.

Copy-in-copy-out parameter A copy-in-copy-out
parameter allows for a value to be copied into
a procedure when it is called and out of the proce-
dure when it returns.

456 Glossary

Copy-out parameter A copy-out parameter allows
for a value to be copied out of a procedure when it
returns.

Correspondence Principle The Correspondence
Principle states: For each form of declaration there
exists a corresponding parameter mechanism. For
example, a constant declaration corresponds to
a constant parameter, and a variable declara-
tion with initialization corresponds to a copy-in
parameter.

Coupling Coupling is the degree of interdepen-
dence between program units. Two program units
are tightly (loosely) coupled if changes to one are
likely (unlikely) to force major changes to the
other.

Create When a variable is created, one or more
storage cells are allocated to it.

Critical section In concurrent programming, paral-
lel commands that must access the same resource
r under mutual exclusion are critical sections with
respect to r.

Curried A curried function is a function, with n
parameters, that can be called with fewer than
n arguments. The result of such a call is itself a
function.

Cut In PROLOG, a cut is a kind of sequencer that
prevents future backtracking.

Daemon thread In JAVA, the run-time environment
kills all daemon threads if it finds that all non-
daemon threads have terminated.

Dangling pointer A dangling pointer is one that
points to a variable that has been destroyed.

Deadlock In concurrent programming, deadlock is
when a set of processes are unable to continue
because of their mutually incompatible demands
for resources.

Deallocator A deallocator is a program construct
that destroys a heap variable.

Declaration A declaration is a program construct
that is elaborated to produce bindings. It might
also have side effects such as creating variables.

Definite iteration An iterative command supports
definite iteration if the number of iterations is
known in advance. An example is the ADA for-
command.

Definition A definition is a declaration that pro-
duces bindings but has no side effects.

Denote In an environment that binds an identifier
to an entity, the identifier is said to denote that
entity.

Dereferencing Dereferencing is a coercion that
takes a variable and yields its current value.

Destination The destination of a sequencer is the
program point to which control is transferred by
the sequencer.

Destroy When a variable is destroyed, the storage
cells previously allocated to it can be deallocated
and used for some other purpose.

Deterministic A computation is deterministic if its
sequence of steps and therefore its outcome are
entirely predictable and reproducible.

Direct file A direct file is one whose components
may be accessed randomly using their unique posi-
tion numbers.

Discrete primitive type A discrete primitive type is
a primitive type other than a floating-point type.
Its values can be mapped on to a range of integers.

Discriminated record In ADA, a discriminated rec-
ord is a kind of disjoint union. It has a com-
ponent (the ‘‘discriminant’’) whose current value
determines which other components the record
contains.

Disjoint union A disjoint union of two or more
types consists of a tag and (depending on the
tag) a value of one of these types. Examples are
HASKELL algebraic types and ADA discriminated
record types.

Distributed system In a distributed system, pro-
cesses run on a network of computers that do not
share primary storage.

Do-while-command In C, C++, and JAVA, a do-
while-command consists of a condition (boolean
expression) and a body (subcommand). It repeat-
edly executes the body and then evaluates the
condition, terminating as soon as the condition
yields false.

Dynamic array A dynamic array is one whose index
bounds are computed at run-time, but remain fixed
throughout the array’s lifetime.

Dynamic dispatch Dynamic dispatch occurs in a
method call where the version of the method to be
called cannot be determined at compile-time: the
target object could be either an object of a class
that is equipped with the method, or an object of a
subclass that overrides the method.

Dynamic linking Dynamic linking means that each
program unit is linked into a program only when
the program unit is first needed during the pro-
gram’s run-time.

Glossary 457

Dynamically scoped A programming language is
dynamically scoped if each procedure’s body is
executed in the environment of the procedure call.

Dynamically typed A programming language is
dynamically typed if values have types but vari-
ables and expressions do not. Each operation is
type-checked at run-time, immediately before the
operation is applied.

Eager evaluation With eager evaluation, an opera-
tion is applied as soon as its operands are known.

Effectively deterministic A computation is effec-
tively deterministic if its sequence of steps is
unpredictable but its outcome is predictable.

Elaborate When a declaration is elaborated, it pro-
duces bindings.

Empty list An empty list is a list with no compo-
nents.

Empty string An empty string is a string with no
characters.

Encapsulation Encapsulation means that a pro-
gram unit such as a package may distinguish
between its public and private components.

Entry In ADA, an entry of a task (or protected
object) is a service provided by the task.

Entry call In ADA, an entry call invokes an entry of a
task (or protected object) and may pass arguments
to the entry. The entry call is queued until the task
is ready to accept it.

Entry family In ADA95, an entry family is a set of
entries indexed by a value that may be used in a
guard controlling admission to the entry.

Enumerand An enumerand is a value of an enu-
meration type.

Enumeration type An enumeration type is a type
whose values (enumerands) are explicitly listed
when the type is declared.

Environment An environment is a set of bindings
that are fixed in a given scope.

Equivalent Two types are equivalent if the pro-
gramming language allows them to be used inter-
changeably. Both types must have the same set of
values.

Escape An escape is a sequencer that terminates
execution of an enclosing command, procedure, or
program.

Evaluate When an expression is evaluated, it yields
a value.

Event An event is an entity that represents a cat-
egory of system state changes, and is used for
signaling the occurrence of such changes between
processes.

Exception An exception is an entity that repre-
sents an abnormal situation. When an exception is
thrown, it can be caught by an enclosing command
or calling procedure that contains a suitable excep-
tion handler. In some programming languages, an
exception may carry a value that may be accessed
by the exception handler.

Exception handler An exception handler is a pro-
gram construct, labeled by an exception (or class of
exceptions), to which control may be transferred
when such an exception is thrown.

Exception specification An exception specification
of a procedure (or method) specifies which excep-
tions a call to that procedure (method) might
throw.

Exception-handling command An exception-hand-
ling command consists of a subcommand and one
or more exception handlers. If the subcommand (or
a procedure called by it) throws an exception, the
corresponding exception handler if any is executed.

Execute When a command is executed, it updates
variables.

Exit sequencer In ADA, an exit sequencer termi-
nates execution of an enclosing loop.

Expression An expression is a program construct
that is evaluated to yield a value. It might also have
side effects such as updating variables.

Expression-oriented An expression-oriented pro-
gramming language is one that makes no distinc-
tion between expressions and commands.

Fact In logic programming, a fact is an uncondi-
tional Horn clause.

Fail In logic programming, a query fails if it cannot
be inferred from the clauses in the program that
the query is true.

Fairness A concurrent system has the fairness prop-
erty if it ensures that no process needing a resource
is indefinitely prevented from obtaining it by the
demands of competing processes.

File A file is a data structure held in persistent
secondary storage.

First-class value A first-class value is one that can
be manipulated in unrestricted ways. Typically, it
can be passed as an argument, used as a component
of a composite value, assigned, and so on.

Flat block structure In a programming language
with flat block structure, each program is parti-
tioned into one or more non-overlapping blocks.

Flexible array A flexible array is one whose index
bounds are computed at run-time, and may be
changed during the array’s lifetime.

458 Glossary

For-command In ADA, a for-command is an iter-
ative command in which a control variable is
assigned a predetermined sequence of values. In C,
C++, and JAVA, a for-command is an abbreviation
for a while-command with initialization.

Formal parameter A formal parameter is an iden-
tifier through which a procedure can access an
argument. The formal parameter is bound either
to the argument itself, or to a local variable con-
taining a copy of the argument, depending on the
parameter mechanism.

Free An identifier is free in a program construct
if the construct contains an applied occurrence
of that identifier with no corresponding binding
occurrence.

Function In mathematics, a function is a map-
ping from one set to another. See also function
procedure.

Function call A function call is an expression that
calls a function procedure. It passes arguments,
and yields the function procedure’s result.

Function definition A function definition is a dec-
laration that binds an identifier to a function
procedure.

Function procedure A function procedure is a pro-
cedure that, when called, returns a value as its
result.

Function specification A function specification dec-
lares the identifier, formal parameters, and result
type of a function procedure.

Functional programming Functional programming
is a paradigm whose key concepts are expressions
and functions.

Generic unit A generic unit is a program unit that
is parameterized with respect to values, types,
procedures, etc., on which it depends. It can be
instantiated to generate an ordinary program unit.
Examples are ADA generics and C++ templates.

Global variable A global variable is one declared in
the program’s outermost block. Its lifetime is the
program’s entire run-time.

Guard In ADA95, a guard is a boolean expression
that controls admission to an entry.

Halt sequencer A halt sequencer is one that termi-
nates execution of the program.

Heap variable A heap variable is one that is cre-
ated by an allocator. Its lifetime extends until it is
destroyed or it becomes unreachable.

Heterogeneous A collection of values is heteroge-
neous if they are not all of the same type.

Hidden In nested block structure, a declaration of
an identifier may be hidden by a declaration of the
same identifier in an inner block.

Higher-order function A higher-order function is
one whose parameter or result is itself a function.

Homogeneous A collection of values is homoge-
neous if they are all of the same type.

Horn clause In logic, a Horn clause is a clause
of the form ‘‘A0 if A1 and . . . and An’’, where
n ≥ 0. All variables occurring in A0 are taken to
be existentially quantified, and all other variables
occurring in the clause are taken to be universally
quantified.

If-command An if-command consists of a condition
(a boolean expression) and two subcommands. The
value of the expression determines which subcom-
mand is chosen to be executed.

If-expression An if-expression consists of a condi-
tion (a boolean expression) and two other subex-
pressions. The condition’s value determines which
of these subexpressions is chosen to be evaluated.

Imperative programming Imperative programming
is a paradigm whose key concepts are variables,
commands, and procedures.

Implementable A programming language must be
implementable, meaning that every program in the
language can be executed on a computer.

Inclusion polymorphism Inclusion polymorphism is
a type system in which each type (or class) may
have subtypes (subclasses) that inherit the type’s
(class’s) operations.

Indefinite iteration An iterative command supports
indefinite iteration if the number of iterations is
not known in advance. An example is the while-
command.

Independent commands Two commands are inde-
pendent if no step of one command can affect the
outcome of any step of the other command.

Independent compilation Independent compilation
means that each compilation unit is compiled on
its own, with no type information from the other
compilation units in the same program. Type incon-
sistencies between compilation units cannot be
detected.

Index range An array’s index range is the range of
values used to index that array’s components.

Indexing Indexing is the operation that uses a value
in an array’s index range to access a particular
component of that array.

Infix notation In infix notation, a binary operator is
written between its operands, as in ‘‘x + y’’.

Glossary 459

Inherit If a type (or class) is equipped with an
operation, and that same operation is applicable to
a subtype (subclass), the subtype (subclass) is said
to inherit that operation.

Inheritance anomaly An inheritance anomaly is a
language design weakness resulting in poor support
for the inheritance of synchronization properties.

In-out-parameter In ADA, an in-out-parameter is
one that permits a procedure to inspect and update
the value of an argument variable.

In-parameter In ADA, an in-parameter is one that
permits a procedure to inspect an argument value.

Instance In HASKELL, an instance of a type class is a
type equipped with all the operations of that type
class.

Instance method An instance method is a method
attached to a particular object. The instance
method accesses that object using a keyword such
as this.

Instance variable An instance variable is a variable
component of each object of a given class.

Instantiation Instantiation of a generic unit gener-
ates an ordinary program unit, in which each of the
generic unit’s formal parameters is replaced by an
argument.

Interface An interface is a kind of program unit
that specifies (but does not define) operations that
will have to be provided by other program units
that claim to implement the interface.

Interruption status The interruption status of a
JAVA thread indicates whether an attempt has been
made to interrupt it.

Iteration An iteration of an iterative command is a
single execution of its body.

Iterative command An iterative command is one
which causes repeated execution of its body.

Iterative expression An iterative expression is one
which causes repeated execution of a subexpres-
sion. An example is the HASKELL list compre-
hension.

Jump A jump is a sequencer that transfers control
to a labeled command elsewhere in the program.

Label A label is an identifier attached to a
command.

Language processor A language processor is a sys-
tem that executes a program, or prepares a pro-
gram for execution. Examples are compilers, inter-
preters, and program editors.

Lazy evaluation With lazy evaluation, an operation
is applied when its result is needed for the first
time.

Lazy list A lazy list is one whose components are
evaluated and added only when they are needed.
A lazy list may be of infinite length.

Length The length of an array or list is the number
of components in it. The length of a string is the
number of characters in it.

Lifetime The lifetime of a variable is the time
interval between its creation and its destruction.
A variable occupies storage cells only during its
lifetime.

List A list is a sequence of components. Only
the first of these components need be directly
accessible.

List comprehension A list comprehension is an iter-
ative expression that computes a list from one or
more other lists.

Literal A literal is a program construct that always
denotes the same value.

Liveness A concurrent system has the liveness prop-
erty if it guarantees both fairness and freedom from
deadlock.

Local variable A local variable is one that is dec-
lared inside a block, and whose lifetime is an
activation of that block.

Logic programming Logic programming is a para-
digm whose key concepts are assertions, Horn
clauses, and relations.

Loop See iterative command.
Lower bound An array’s lower bound is the mini-

mum value of its index range.
Mapping A mapping takes each value in one set S

to a value in another set T. Examples are arrays
(where S is the index range and T is the component
type) and functions (where S is the parameter type
and T is the result type).

Match In functional programming, a pattern P
matches a value v if there exist bindings for
all unbound identifiers in P that would make P
equal v.
In logic programming, an assertion A matches a
query Q if A and Q can be made equal by consis-
tent substitution, i.e., by replacing each variable by
the same value wherever it occurs in A or Q.
In string processing, a regular expression matches a
string according to the rules defined in Table 16.1.

Method A method is an operation (other than a
constructor) of a class.

Module Depending on the context, a module is a
synonym for a program unit or for a package.

Monitor In concurrent programming, a monitor is
a program unit that combines encapsulation with

460 Glossary

automatic mutual exclusion and explicit communi-
cation.

Monolithic block structure In a programming lan-
guage with monolithic block structure, each pro-
gram is a single block.

Monomorphic Each parameter and result of a
monomorphic procedure has a single type.

Monotype A monotype denotes a single type. It
contains no type variables.

Multiple assignment A multiple assignment stores
several values in several variables at the same time.

Multiple inheritance Multiple inheritance allows a
class to have any number of superclasses.

Name equivalence Two types are name-equivalent
if they were defined in the same place.

Nested block structure In a programming language
with nested block structure, blocks may be nested
within other blocks.

New-type declaration A new-type declaration binds
an identifier to a type that is not equivalent to any
existing type.

Nondeterministic A computation is nondetermin-
istic if its sequence of steps and its outcome are
unpredictable.

Non-preemptive scheduling Non-preemptive sche-
duling allows a running thread to stay in control
until it voluntarily gives up the CPU.

Normal-order evaluation With normal-order eval-
uation, an operation is applied every time that its
result is needed.

Null pointer A null pointer is a special pointer value
that has no referent.

Object An object is a tagged tuple. Typically an
object is equipped with methods that have exclu-
sive access to the object’s components.

Object-oriented programming Object-oriented
programming is a paradigm whose key concepts
are objects, classes and subclasses, inheritance,
and inclusion polymorphism.

Observable An action is observable to a later oper-
ation if it affects the operation’s flow of control, or
if it updates a variable that the operation inspects.

Operation An operation is a procedure (or method
or constructor) that constructs, inspects, or updates
values of a given type (objects of a given class).

Operator An operator is a symbol that denotes
a function. Calls to that function are written in
infix notation. In some programming languages,
operators can be defined or redefined.

Out-parameter In ADA, an out-parameter is one
that permits a procedure to update (but not inspect)
the value of an argument variable.

Overloading Overloading occurs when two or more
procedures legally have the same identifier in the
same scope.

Overridable A method of a class is overridable if it
may be overridden by any subclass of that class.

Override If a class is equipped with one version
of a method, but a subclass is equipped with a
different version of the method, the subclass is said
to override that method.

Package A package is a program unit that declares
several (typically related) components, which may
be types, constants, variables, procedures, excep-
tions, and so on.

Package body In ADA, a package body declares
private components of a package. It also defines
public procedures specified in the corresponding
package specification.

Package specification In ADA, a package specifica-
tion declares public components of a package. It
specifies but does not define any public procedures.

Paradigm A paradigm is a distinctive style of pro-
gramming. Each paradigm is characterized by the
predominance of certain key concepts.

Parallel command A parallel command consists of
two or more subcommands, which are executed
concurrently.

Parameter mechanism A parameter mechanism is
the mechanism by which each formal parameter of
a procedure enables access to the corresponding
argument. See also copy parameter mechanism,
reference parameter mechanism.

Parameterized type A parameterized type is a type
that has other types as parameters. Examples are
array and list types.

Parametric polymorphism Parametric polymor-
phism is a type system that enables polymorphic
procedures to be written.

Partial application Partial application means call-
ing a curried function with fewer than the maxi-
mum number of arguments. The result of such a
call is itself a function.

Pattern A pattern a program construct that resem-
bles an expression, but may contain binding
occurrences of identifiers. When a pattern matches
a given value, it produces bindings for these
identifiers.

Glossary 461

Persistent variable A persistent variable is one
whose lifetime may transcend the run-time of a
program.

Pointer A pointer is a value that is either null or
refers to a variable.

Polymorphic Each parameter and result of a poly-
morphic procedure has a family of types.

Polytype A polytype denotes a family of types. It
contains type variables.

Pragmatics A programming language’s pragmatics
is concerned with the way in which the language is
intended to be used in practice.

Prefix notation In prefix notation, an operator is
written before its operands, as in ‘‘+(x, y)’’. In
most programming languages, prefix notation is
used only for calls to procedures whose names are
identifiers.

Primitive type A primitive type is one whose values
are primitive.

Primitive value A primitive value is one that cannot
be decomposed into simpler values.

Priority inversion In concurrent programming, a
priority inversion happens when a high-priority
process is forced to wait until a low-priority process
leaves a critical section.

Private A private component of a program unit is
one that is visible only inside that unit.

Procedural parameter A procedural parameter is a
formal parameter that is bound to the correspond-
ing argument procedure.

Procedure A procedure is an entity that embodies a
computation. See also function procedure, proper
procedure.

Procedure definition A procedure definition is a
declaration that binds an identifier to a procedure.
See also function definition.

Process In concurrent programming, a heavyweight
process is the execution of a complete program,
supported by an operating system that allocates an
address space, a share of main storage, a share of
the CPU time, and so on. For lightweight process,
see thread.

Program unit A program unit is a named part of
a program that can be designed and implemented
more-or-less independently. Examples are proce-
dures, packages, and classes.

Programming linguistics Programming linguistics is
the study of programming languages.

Projection Projection is an operation that recovers
a particular variant of a disjoint union.

Proper procedure A proper procedure is a proce-
dure that, when called, updates variables.

Proper procedure call A proper procedure call is a
command that calls a proper procedure. It passes
arguments, and executes the proper procedure’s
body to update variables.

Protected A protected component of a program
unit is one that is visible both inside that unit
and inside certain related units. In particular, a
protected component of a class is visible inside all
subclasses.

Protected module In ADA95, a protected module is
a program unit that implements automatic mutual
exclusion, implicit signaling of conditions, and sim-
ple encapsulation of data.

Public A public component of a program unit is
one that is visible both inside and outside that unit.

Qualification Principle The Qualification Principle
states: It is possible to include a block in any
syntactic category, provided that the constructs
in that syntactic category specify some kind of
computation.

Query A query is an assertion (or sequence of
assertions) that is to be tested against the clauses
of a logic program.

Reachable A heap variable is reachable if it can
be accessed by following pointers from a global or
local variable. An unreachable heap variable may
safely be destroyed.

Record A record is a tuple of named components.
Recursive declaration A recursive declaration is

one whose scope includes itself.
Recursive type A recursive type is one defined in

terms of itself. The representation of a recursive
type always uses pointers.

Reference parameter mechanism A reference para-
meter mechanism allows for an argument to be
accessed indirectly through the corresponding for-
mal parameter.

Reference semantics Reference semantics means
that, when a value is assigned to a variable, that
variable is made to contain a reference to that
value.

Referent The referent of a non-null pointer is the
variable to which it points.

Regular expression A regular expression is a kind
of pattern that matches a set of strings.

Relation In logic, r is a relation between two sets S
and T if, for every x in S and y in T, r(x, y) is either
true or false. In logic programming, a relation may
be defined by one or more Horn clauses.

462 Glossary

Rendezvous In concurrent programming, a ren-
dezvous is an unbuffered interaction between two
processes. In order to rendezvous, each process
executes a command indicating its willingness to
interact. Each process waits if the other one has not
yet reached its rendezvous point. When both pro-
cesses are ready, a message may be copied from one
to the other; then both continue independently.

Requeue command In ADA95, a requeue command
puts back an accepted entry call (either in its own
queue, or on the queue of another entry with
a compatible parameter list). This provides the
entry with a way of deferring an accepted call, so
implementing admission control that depends on
parameters of the call.

Resolution In logic programming, resolution is a
technique used for testing a query Q. If the pro-
gram contains a clause whose left-hand assertion
matches Q, test the clause’s right-hand assertions
separately as subqueries. If all subqueries succeed,
then conclude that Q succeeds. If any subquery
fails, then backtrack and try some other clause.

Result A function procedure’s result is the value it
returns to the function call.

Return sequencer A return sequencer is one that
terminates execution of a procedure. If the latter is
a function procedure, the return sequencer carries
a result.

Safety A concurrent program has the safety prop-
erty if its accesses to a shared resource r never
overlap in time, so that all of the commands it
applies to r have their normal, sequential, effect.

Scheduling In concurrent programming, scheduling
is the allocation of resources to processes over
time, aiming to further some objective (such as
good response time).

Scope The scope of a declaration is the part of the
program in which the bindings produced by the
declaration are available.

Scripting Scripting is a paradigm characterized by
gluing together of subsystems, rapid development
and evolution, modest efficiency requirements, and
very high-level functionality.

Second-class value A second-class value is one that
is restricted in the operations that may be applied
to it. Typically, a second-class value may be passed
as an argument, but may not be stored or used as
a component of a composite value. Examples are
C, C++, and ADA procedures (although pointers to
procedures are first-class values).

Selection Selection is an operation that accesses a
particular component of a tuple.

Selective update Selective update is an operation
that updates one component of a composite vari-
able, without affecting its other components.

Selective wait command A selective wait is an ADA

composite command allowing a task bounded non-
deterministic choice between accepting entry calls
and executing alternative courses of action.

Selector procedure A selector procedure is a pro-
cedure that, when called, returns a variable as its
result.

Semantics A programming language’s semantics is
concerned with the meaning of programs in the
language, i.e., how they are expected to behave
when executed.

Semaphore In concurrent programming, a sema-
phore is a variable used for inter-process mutual
exclusion and communication.

Separate compilation Separate compilation means
that each compilation unit is compiled on its
own, but with full type information from the
other compilation units in the same program. Type
inconsistencies between compilation units can be
detected.

Sequencer A sequencer is a program construct that
transfers control to another point in the program.
See also escape, exception, jump.

Sequential command A sequential command con-
sists of two or more subcommands, which are
executed in order from first to last.

Sequential declaration A sequential declaration
consists of two or more subdeclarations, whose
bindings are combined. The scope of each subdec-
laration includes the following subdeclarations.

Sequential file A sequential file is one whose com-
ponents may be accessed only in order from first
to last.

Sequential process A sequential process is a totally
ordered set of actions, each of which changes the
state of a component of a computing system.

Sequential program A sequential program specifies
the possible state changes of a sequential process,
which take place in an order determined by the
program’s control structures and its inputs.

Share Two composite variables share components
if these components can be accessed by follow-
ing pointers from both composite variables. If the
shared components can be selectively updated, the
composite variables are updated simultaneously.

Glossary 463

Side effect A side effect occurs if evaluation of an
expression updates a variable, or if elaboration of
a declaration creates a variable.

Simple variable A simple variable is one that occu-
pies a single storage cell. It cannot be selectively
updated.

Single inheritance Single inheritance allows a class
to have at most one superclass.

Skip A skip is a command that has no effect
whatsoever.

Speed-dependent A concurrent program is speed-
dependent if its outcome depends on the relative
speeds at which its constituent sequential processes
run.

Spin lock In concurrent programming, a spin lock
is a busy-waiting loop, in which a process waits for
access to a shared resource by repeatedly testing a
flag that indicates whether the resource is free.

Starvation In concurrent programming, a process
is said to starve when it is deprived of needed
resources by scheduling rules that do not ensure
fairness.

Static array A static array is one whose index
bounds are fixed at compile-time.

Static variable A static variable is one whose scope
is restricted but whose lifetime is the program’s
entire run-time. Examples are C static variables
and C++ or JAVA class variables.

Statically scoped A programming language is stati-
cally scoped if each procedure’s body is executed
in the environment of the procedure definition.
For each applied occurrence of an identifier in the
program, there is a unique binding occurrence.

Statically typed A programming language is stat-
ically typed if every variable and expression has
a fixed type. Every operation is type-checked at
compile-time.

Storable A value is storable if it can be stored in a
single storage cell.

Storage Storage is a collection of storage cells, each
of which has a unique address.

Storage cell Each storage cell has a current status,
which is either allocated or unallocated. Each allo-
cated storage cell has a current content, which is
either a storable value or undefined.

Strict A function is strict in a particular argument
if that argument is always used.

String A string is a sequence of characters.
Structural equivalence Two types are structurally

equivalent if they have the same set of values.

Structure In C or C++, a structure is a tuple of
named components. In PROLOG, a structure is a
tagged tuple.

Subclass Given a class C, a subclass of C is a set of
objects that are similar to one another but richer
than the objects of class C. An object of the subclass
may have extra variable components and may be
equipped with extra methods.

Subtype Given a type T, a subtype of T is a subset of
the values of T, equipped with the same operations
as T.

Succeed In logic programming, a query succeeds if
it can be inferred from the clauses in the program
that the query is true.

Superclass If S is a subclass of C, then C is a
superclass of S.

Synchronized In JAVA, a synchronized method or
block automatically enforces mutually exclusive
access to a designated object.

Syntax A programming language’s syntax is con-
cerned with the form of programs in the language,
i.e., how they are composed of expressions, com-
mands, declarations, and other constructs.

Tag test Tag test is an operation that checks the tag
of a disjoint union.

Tagged record In ADA95, a tagged record is a record
that is tagged with an indication of its type. Tagged
record types can be extended.

Target object Each method call names a method
and identifies a target object, which must be an
object equipped with an instance method of that
name. The instance method accesses the target
object using a keyword such as this.

Task See thread.
Task module In ADA, a task module is a program

unit that executes concurrently, as a task.
Template In C++, a template is a generic function

or class.
Terminate abruptly A command terminates abrup-

tly if it executes a sequencer that transfers control
out of it.

Terminate normally A command terminates nor-
mally if it reaches its normal end.

Thread In concurrent programming, a thread is a
flow of control through a program, but it does
not possess independent computational resources.
Instead, a thread exists within a process and uses
the resources of the process. A JAVA thread is
created as an object whose class is a subclass of
Thread or implements theRunnable interface.

464 Glossary

An ADA thread is created by declaring or allocating
a task object.

Throw Throwing an exception transfers control to
a corresponding exception handler.

Total update Total update is an operation that
updates all components of a composite variable
at the same time.

Transient variable A transient variable is one that
is not persistent. Its lifetime is bounded by the
program’s run-time.

Type A type is a set of values, equipped with one or
more operations that can be applied uniformly to
all these values. See also composite type, primitive
type, recursive type.

Type check A type check ensures that the operands
of an operation have the expected types. Type
checks can be performed at compile-time if the
programming language is statically typed, but must
be performed at run-time if the programming lan-
guage is dynamically typed.

Type class In HASKELL, a type class is a family
of types all of which are equipped with specified
operations.

Type Completeness Principle The Type Complete-
ness Principle states: No operation should be arbi-
trarily restricted in the types of its operands.

Type conversion A type conversion is a mapping
from values of one type to corresponding values of
a different type.

Type declaration A type declaration is a declaration
that binds an identifier to a new or existing type.
See also new-type declaration, type definition.

Type definition A type declaration is a declaration
that binds an identifier to an existing type.

Type error A type error is an inconsistency exposed
by a type check.

Type inference In a statically typed language, type
inference must be performed wherever the type of
a variable or expression is not explicitly stated.

Type system A programming language’s type sys-
tem groups values into types.

Type variable A type variable is an identifier that
stands for any one of a family of types.

Union In C and C++, a union is a group of variants
without a tag.

Universal A programming language must be uni-
versal, meaning that every solvable problem has a
solution expressible in the language.

Untyped A programming language is untyped if its
values are not grouped into types.

Upper bound An array’s upper bound is the maxi-
mum value of its index range.

Value A value is an entity that can be manipulated
by a program. Values can be evaluated, stored,
passed as arguments, returned as function results,
and so on.

Variable In imperative and object-oriented pro-
gramming, a variable is a container for a value,
which may be inspected and updated. In func-
tional and logic programming, a variable stands
for an unknown value.

Variable access A variable access is a simple expres-
sion that accesses a variable.

Variable declaration A variable declaration is a
declaration that creates and binds an identifier
to a variable, and possibly also initializes that
variable.

Variable parameter A variable parameter is a for-
mal parameter that is bound to the corresponding
argument variable.

Variable renaming definition A variable renaming
definition is a declaration that binds an identifier
to an existing variable.

Visible A declaration of an identifier is visible
throughout its scope, except where hidden by
a declaration of the same identifier in an inner
block.

Volatile In concurrent programming, a variable
that is used by more than one process may be
declared volatile, to inhibit optimizations that
might prevent some processes from observing an
up-to-date value.

Wait set In JAVA, a wait set is the set of threads
blocked on an object in a synchronized method or
block.

While-command A while-command consists of a
condition (boolean expression) and a body (sub-
command). It repeatedly evaluates the condition
and then executes the body, terminating as soon as
the condition yields false.

Index

Abelson, H., 388, 449
abnormal situation, 221–2,

453
abort-deferred, 38, 453
Abrahams, P. W., 450
abstract class, see class
abstract data type, see abstract

type
abstract method, see method
abstract type, 137, 140–5, 150–1,

167, 210, 267–9, 284–5,
368, 370, 381, 431–3, 437–8,
453

abstraction, 115
data, 135–67, 265–7, 283–5,

302–6, 315–6, 325–8,
334–5, 367–8, 381, 437

generic, 171–89, 285–8,
306–7, 317–8, 382–4

procedural, 115–31, 283,
301–2, 314–5

Abstraction Principle, 120–2,
131, 171, 228, 438, 453

accept command (ADA), see task
action (HASKELL), 384–6
activation, 66–8, 71, 453
actual parameter, 116, 119, 123,

368, 453
ADA, 3, 6–8, 11, 15–6, 18–22,

25–6, 29–31, 36, 42, 44–5,
47, 49–51, 58, 62–3, 66,
69–74, 76–8, 81–2, 84–7,
90–1, 95–7, 99, 102–7,
110–1, 117–20, 122–7,
129–30, 136–46, 151, 160,
162, 164, 167, 172–3,
176–80, 186–7, 189, 191–4,
200, 205–8, 211, 218–20,
222–4, 231, 235, 246, 256–8,
266, 281–93, 322–9,
333–58, 361–3, 369, 433–6,
439–40, 442–4

ad-hoc polymorphism, see
overloading

address, 58, 453

admission control, 339–47,
359–61, 453

Aho, A. V., 10, 449
Albahari, B., 449
algebraic type (HASKELL), 20, 28,

371, 453
construction, 29, 373
projection, 29
representation, 51
see also disjoint union

ALGOL60, 7, 11
ALGOL68, 7–8, 11, 42, 84, 87, 231
aliasing, 127–8, 283, 453
allocator, 70, 453
ANSI, 11, 449
API (application program

interface), 135, 137, 453
Appel, A., 10, 449
applet, 311–2
applied occurrence, 99–101, 453
architecture, 266–9, 298–9, 370,

385–6, 396–7, 453
argument, 27, 46, 78, 123–8,

368–9, 453
array, 15, 20, 24–7, 269, 281, 312,

373, 453
construction, 24, 44–5, 270,

282, 313
dynamic, 62, 90–1, 456
flexible, 63, 90, 457
index range, 24–5, 61–3,

90–1, 458
indexing, 24, 51, 458
lower bound, 24–5, 61–2, 459
multidimensional, 26
representation, 50–1
static, 61–2, 463
subtype, 193
upper bound, 24, 61–2, 464

array processor, 232
array variable, 58–63

see also dynamic array,
flexible array, static array

aspect-oriented programming,
445–6

assertion, 395–6, 398, 402, 404,
451

see also fail, succeed
assignment, 63–5, 77–8, 125,

147, 270, 282, 419, 451
multiple, 78, 460
simultaneous, 419

Atkinson, M. P., 91, 449
atom (PROLOG), 396–7, 451
atomic (variable), 235–6, 246,

451

backtracking, 395–6, 405, 453–4
banker’s algorithm, 349–55
Barron, D., 10, 427, 449
BASIC, 442

see also VISUAL BASIC

basic loop (ADA), 218–9, 282
Bauer, F. L., 442
Beazley, D. M., 11, 449
bindable, 97, 453
binding, 96–7, 125, 127, 137–8,

140, 453
binding occurrence, 99, 101, 453
Bird, R. A., 388, 449
Birtwistle, G. M., 11, 167, 328,

449
block, 66–8, 87–9, 108–11, 438,

454
block command, 97, 109–10, 117,

120, 218, 273, 282–3, 454
block declaration, 111
block expression, 109–10, 373,

454
block structure, 97–9, 454

flat, 98–9, 457
monolithic, 97–8, 460
nested, 98–100, 460

body, see function body, loop
body, proper procedure
body

Böhm, C., 228, 449
Booch, G., 329, 449
Boolean (type), 17

465

466 Index

boolean value, 15, 17, 49, 80
bounded (class/type parameter),

184–6, 454
Bracha, G., 189, 449–50
Bratko, I., 11, 410, 449
break sequencer, 220, 273, 420,

454
Brinch Hansen, P., 255, 449
Brown, D. F., 10, 451
Buneman, O. P., 91, 449
Burns, A., 258, 363, 449
Bustard, D., 363, 449
Butenhof, D. R., 363, 449

C, 3–4, 6–8, 11, 15, 17–20, 24,
27, 32–3, 36, 42, 44, 47, 51,
59, 61, 63, 66, 68, 71, 76–8,
81–3, 86, 97, 99, 102–3,
107–10, 116–7, 119, 123–4,
126, 136, 191–2, 200, 204,
206–8, 217–8, 220–1, 246,
266, 269–80, 293, 299–300,
307, 312, 363, 369, 413, 419,
422, 433–6, 443–4

C++, 3, 6–7, 9, 11, 15, 17–20, 22,
24–7, 36, 38–9, 42, 44–5,
47, 50–1, 58–64, 66–7,
70–1, 73–8, 81–2, 102–5,
107, 109–10, 116–7, 119,
121–4, 126–9, 146, 148–50,
154–6, 160–2, 164, 172,
174–6, 180–3, 187, 189, 191,
198, 200, 204, 207, 220–2,
224, 228, 246, 269, 299–312,
314–5, 321–2, 325, 329, 363,
369, 433–6, 439–41, 443–4

C#, 9, 11
cache, 247–8
Cardelli, L., 210, 449
cardinality, 17, 19, 21–3, 37, 49,

454
carry, 216, 220–1, 224, 282, 300,

420, 454
Cartesian product, 21–3, 454

representation, 50
see also record, structure,

tuple
case command, 81–2, 282, 454
case expression, 47–8, 373, 454
cast, 207–8, 270, 454

catch, see exception
ceiling priority protocol, 362–3,

454
channel, 252
channel operation
connect, 252
disconnect, 252
receive, 252
send, 252
test, 252

character, 15–7, 49
Character (type), 17
Christiansen, T., 451
Church–Rosser Property, 369,

389, 454
class, 31–2, 97, 111, 137, 146–64,

167, 195–8, 297–300,
302–6, 314–6, 328, 335,
422–4, 431–3, 437–8, 454

abstract, 157–9, 453
see also generic class, subclass,

superclass
class declaration, 97, 146–50,

302–3, 305, 314
class method, 299, 303, 315, 454
class variable, 97, 302–3, 313,

315, 423, 454
class-wide type, 197–8, 324, 454
clause, see Horn clause
closed-world assumption, 402–3,

454
COBOL, 7, 11, 16, 77–8, 97, 107,

440–1
coercion, 207–8, 210, 313, 454

see also dereferencing
Cohen, N. H., 258, 329, 449
collateral command, 77, 79–80,

455
collateral declaration, 105–6,

108–9, 455
Colmerauer, A., 396
command, 77–85, 120, 265, 414,

455
see also assignment, block

command, collateral
command, conditional
command,
exception-handling
command, iterative
command, parallel
command, proper

procedure call, sequential
command, skip command

command expression, 86, 455
communication, 239–40, 253–8,

333–4, 455
compatible, see type

compatibility
competition, 238–9, 455
compilation unit, 97, 275–8, 433,

455
see also independent

compilation, separate
compilation

compiler, 6, 433–4
composite type, 20–33, 127, 269,

281, 300, 371–3, 418–9, 455
representation, 50–1
see also Cartesian product,

disjoint union, mapping
composite value, 15, 20–33, 63,

65–6, 455
composite variable, 59–63, 455
concept, 4, 265–6, 297–8, 333–4,

367–70, 393–6, 414–7
concurrency, 231–58, 333–63,

433–4, 437
concurrent control abstraction,

253–8, 334, 336–47, 355–61
CONCURRENT PASCAL, 255
concurrent program, 233, 455
concurrent programming, 5, 8,

333–63, 455
key concepts, 333–4
pragmatics, 334–6

conditional command, 77, 80–2,
91, 215, 272, 282, 419, 455

see also case command,
if-command, switch
command

conditional critical region,
253–6, 334, 455

await command, 253–4
conditional expression, 43, 47–8,

270, 313, 373, 455
see also case expression,

if-expression
connectionism, 232
constant access, 43, 49, 455
constant declaration, 104, 128,

130, 375, 455

Index 467

construction, 43–6, 455
see also array, dictionary,

disjoint union, object,
record, tuple

constructor, 46, 146–50, 300,
303, 314–5, 455

constructor call, see object
construction

context switching, 240, 243
continue sequencer, 273, 420,

455
control flow, 77, 79, 215–28, 228,

404–6
multi-entry, 215, 228
multi-exit, 77, 91, 215, 218,

228, 273, 282
single-entry, 77, 215, 218, 273,

282
single-exit, 77, 215
see also control structure

control sequence, see definite
iteration

control variable, see definite
iteration

Conway, R., 446, 450
copy semantics, 63–5, 74–5, 303,

312, 455
Correspondence Principle,

128–31, 438, 456
Coulouris, G. F., 258, 449
coupling, 266–8, 298, 334, 370,

456
Cox, B., 329, 449
create, see variable
critical section, 239, 253–4, 456
CSP (communicating sequential

processes), 256
cut (PROLOG), 405–6, 456

Dahl, O.-J., 449
data, see value
dataflow computer, 232
data modeling, 432, 434–5
data type, see type
deadlock, 236–7, 347–55, 456

prevention, 348–55
deallocator, 70, 75–6, 456
declaration, 102–8, 122, 171, 456

side effect, 102, 463
see also collateral declaration,

constant declaration,

definition, procedure
definition, recursive
declaration, sequential
declaration, type
declaration, variable
declaration

definite iteration, 82, 84–5,
419–20, 456

control sequence, 84–5, 455
control variable, 84–5, 455
over array/list/set, 84–5,

419–20
definition, 102, 456

see also function definition,
procedure definition, type
definition

denote, 99, 456
Dekker’s algorithm, 244–6
dereferencing, 78, 456
design, see language design
destination (of sequencer),

215–6, 218, 456
destroy, see variable
determinism, 79–80, 85, 234,

405, 456
effective, 80, 234, 457

Dibble, P., 363, 449
dictionary, 418–9

construction, 418–9
Dijkstra, E. W., 91, 228, 244, 449
discriminated record (ADA), 15,

20, 29–31, 197, 281, 456
subtype, 193

disjoint union, 27–33, 51, 456
construction, 28
projection, 28–30, 461
representation, 51
tag, 29–33, 51
tag test, 28–30, 463
variant, 29–31, 51
see also algebraic type,

discriminated record,
object

distributed system, 232, 251–3,
258, 456

Dollimore, J., 449
do-while command, 82–3, 272,

456
Drake, F. L., 451
Drayton, P., 11, 449

dynamic dispatch, 153–4, 306,
316, 456

implementation, 164–6
dynamic linking, 318–9, 433, 456
dynamic scoping, 100–2, 328, 456
dynamic typing, 38–40, 101, 328,

397–8, 414–5, 418–9, 422,
425, 441, 457

dynamically scoped, see dynamic
scoping

dynamically typed, see dynamic
typing

eager evaluation, 368–9, 457
Edwards, D. J., 450
efficiency, 4, 432, 434–6, 441–2,

446
EIFFEL, 167, 328
elaborate (declaration), 102, 457
Elder, J., 449
Elrad, T., 446, 449
encapsulation, 137–40, 167, 255,

335, 457
entry (ADA), see task
enumerand, 15, 19, 50, 457
enumeration type, 19, 269, 457
environment, 96–7, 457
equivalent, see type equivalence
equality test, 65–6, 147–8
escape, 83, 218–21, 457

implementation, 226
see also break sequencer, exit

sequencer, halt sequencer,
return sequencer

evaluate (expression), 43, 457
event, 248–9, 256, 457
event operation
event_signal, 248–9
event_wait, 248

exception, 97, 222–6, 228, 282,
300, 314, 335, 420, 434, 457

catch, 222–6, 454
implementation, 227
throw, 222–6, 464

exception declaration, 224
exception handler, 222–6, 457
exception specification, 225, 228,

300, 314, 457
exception-handling command,

222–6, 282, 419, 457

468 Index

exclusion, see mutual exclusion
execute (command), 77, 457
exit sequencer, 218–20, 282, 457
expression, 43–9, 117, 120, 367,

457
side effect, 85–7, 272, 282–3,

369, 389, 463
see also block expression,

command expression,
conditional expression,
constant access,
construction, function call,
function construction,
iterative expression, literal,
variable access

expression-oriented language,
87, 272, 300, 457

extensibility, 197

fact, 395, 398, 457
fail (assertion/query), 395, 402,

457
fairness, 237, 361, 457
familiarity, 433, 435
file, 20, 71–3, 457

direct, 20, 71, 456
sequential, 20, 71, 462

Filman, R. E., 449
finally-clause (JAVA), 225
first-class value, 42, 68, 123, 270,

457
Flanagan, D., 11, 329, 449
Float (type), 17
floating-point number, see real

number
for-command, 84–5, 272–4, 282,

419–20, 457–8
formal parameter, 123, 458
FORTRAN, 4, 6–7, 11, 16, 77, 85,

98, 107, 221, 440–2
free, 102, 458
function (mathematics), 27, 458
function body, 97, 116–7, 120,

282, 454
function call, 43, 46–7, 116–8,

270, 272, 282, 373, 458
function construction, 118, 373
function definition, 116–8,

274–6, 300, 375–6, 458
see also procedure definition

function procedure, 26–7, 46, 58,
116–8, 120, 274, 283, 301–2,
367–70, 374–9, 458

curried, 377, 456
higher-order, 370, 376–9, 388,

458
function specification, 275, 458
functional programming, 5, 9,

367–89, 445, 458
key concepts, 367–70
pragmatics, 370

garbage collection, 89–90, 314,
432, 434, 441

Gehani, N., 258, 449
generic class, 180–6, 198, 306–7,

318
generic function, 307
generic package, 172–3
generic procedure, 287–8
generic unit, 122, 171–89, 282–3,

432, 437, 458
bounded class parameter,

184–6
class parameter, 180–6
function parameter, 178–9
implementation, 186–8
type parameter, 176–83,

285–7
value parameter, 172–7
see also instantiation

Ghezzi, C., 10, 167, 450
global, see variable
Goldberg, A., 11, 328, 450
Goldsmith, M., 363, 450
Gosling, J., 450
guard, 340–7, 458

halt sequencer, 221, 458
Hader, A., 449
handler, 221–2

see also exception handler
Harbison, S. P., 293, 450
Harper, R., 451
HASKELL, 7, 9, 11, 28–9, 34–7, 42,

45–8, 51–2, 103, 110, 117,
128, 191, 198–204, 209, 211,
367, 369–88, 417, 439,
443–4

heap variable, see variable

heterogeneous, 33, 397–8, 418
hidden, 100, 458

see also visibility
Hindley, J. R., 211, 450
history, 6–10
Hoare, C. A. R., 52, 256, 258,

293, 438, 446, 450
homogeneous, 33, 458
Horn clause, 395, 398–405, 458
Horowitz, E., 10, 450
Hughes, R. J. M., 370

Ichbiah, J., 167, 189, 211, 228,
281, 293, 450

IDE (integrated development
environment), 433–4

if-command, 80–1, 215–6, 228,
272–3, 282, 419, 458

if-expression, 47, 373, 458
imperative programming, 5–8,

265–93, 458
key concepts, 265–6
pragmatics, 266–9

implementable, 4, 458
implementation, 49–52, 87–91,

129–31, 164–6, 186–8,
209–10, 226–7

inclusion polymorphism, 191–8,
297–8, 300, 304–6, 315–8,
327–8, 437, 439, 458

see also inheritance
indefinite iteration, 82–3, 85, 458

see also do-while command,
while-command

independent
(commands/processes),
238, 458

independent compilation, 275–6,
307, 433, 458

index range, see array
indexing, see array
infix notation, 46, 458
inheritance, 151–8, 164, 167, 191,

194, 210, 297–8, 328,
439–40, 458–9

multiple, 160–3, 165–6, 304,
424, 460

single, 160, 164, 166, 463
see also overriding

inheritance anomaly, 335–6, 459

Index 469

in-out-parameter (ADA), 283,
459

in-parameter (ADA), 283, 459
instance, see type class
instance method, 303, 315, 423,

459
instance variable, 303, 315,

423–4, 459
see also variable component

instantiation, 171, 173, 175–7,
179–86, 286–8, 459

Integer (type), 17
integer number, 15–9, 25, 49–50,

82
intercommunication, 240
interface, 162–4, 459
interpreter, 6, 432, 434
interrupt, 243
interruption status, see thread
invisible, see visibility
ISO, 11, 450
iteration, 82–5, 459

see also definite iteration,
indefinite iteration

iterative command, 82–5, 91,
215, 272–4, 282, 419, 459

see also definite iteration,
for-command, indefinite
iteration, do-while
command, while-command

iterative expression, 43, 48, 77,
82–5, 373–4, 418, 459

see also list comprehension

Jacopini, G., 228, 449
Japanese Institute for New

Generation Computing
Technology, 396

JAVA, 3, 6–7, 9, 11, 15–8, 25,
31–2, 34–6, 42, 45–7, 51–2,
63–6, 70–1, 76–8, 81–2,
84–5, 90–1, 97, 99, 102, 104,
109, 111, 122, 124, 146–8,
150–4, 156–60, 162–5, 172,
176, 183–6, 188–9, 191,
195–8, 204, 207–8, 217, 220,
222, 224–6, 228, 231, 235,
246, 258, 269, 311–25, 329,
333, 335–6, 35–63, 369,
433–6, 439–43

JAVASCRIPT, 426
Jazayeri, M., 10, 167, 450
Jones, G., 363, 450
Joy, W., 11, 311, 329, 450
jump, 216–8, 228, 273, 282, 459

implementation, 226

Kernighan, B. W., 11, 293, 450
Kindberg, K., 449
Knuth, D. E., 228, 450
Koenig, A., 293, 450
Kowalski, R., 396

label, 216–7, 459
lambda-calculus, 389
Landin, P. J., 131, 450
language design, 437–46
language life cycle, 444–5
language processor, 6, 459

see also compiler, IDE,
interpreter

language selection, 431–6
lazy evaluation, 368–70, 379–81,

389, 459
lazy list, 379, 459
Lea, D., 258, 363, 450
Ledgard, H. F., 293, 450
level (language), 432, 434–5
library, 277–8, 289, 307–8,

319–20, 425, 433, 440–1
lifetime, 66–73, 88–9, 140, 459
Liskov, B. H., 167, 450
LISP, 7, 9, 11, 38, 101
list, 20, 33–5, 74–5, 371–3, 397,

418, 459
comprehension, 48, 373,

418–9, 459
concatenation, 33
construction, 45, 373–4, 418
emptiness test, 33
empty, 33, 457
heterogeneous, 33, 397–8, 418
homogeneous, 33
head selection, 33
length, 33, 459
representation, 51–2, 373
tail selection, 33,

literal, 43–4, 459
liveness property, 237, 459
local, see variable

logic programming, 5, 9,
393–410, 445, 459

key concepts, 393–6
pragmatics, 396

loop, see iterative command
loop body, 82–5, 218–9
loop condition, 82–3
lower bound, see array

maintainability, 266, 415
see also readability

Malpas, J., 410, 450
mapping, 23–7, 459

finite, 24
see also array, function

procedure
match (pattern), 375–6, 459
match (query), 396, 459
match (regular expression),

415–7, 459
McCarthy, J., 11, 52, 450
McGettrick, A. D., 258, 449
McIver, L., 446, 450
McQueen, D., 451
member variable, see instance

variable
message, 251–2, 256

see also channel
method, 97, 116, 146–56, 162,

195, 197, 301, 314–6, 459
abstract, 157–9, 453
initialization (PYTHON), 423–4
overridable, 154–6, 460
virtual, see overridable
see also class method, instance

method
method body, 97, 147–8
method call, 147–51, 156, 162,

304–5, 313
implementation, 165–6

Meyer, B., 167, 328, 451
Milner, R., 11, 211, 451
MIRANDA, 370
ML, 7, 9, 11, 36, 42, 87, 106–9,

117–8, 143, 198, 200, 209,
211, 367, 369–70, 388

MODULA, 7, 11, 255–6, 360
modularity, 431, 433, 435
module (HASKELL), 374–5, 381
module (PYTHON), 421–5

470 Index

monitor, 255, 334–5, 459–60
see also signal

monomorphic procedure,
198–200, 460

monotype, 203, 460
MS-DOS, 240
multiaccess system, 231–2
multiprocessor system, 232, 243,

247
multiprogramming system,

231–2
mutual exclusion, 236, 239,

242–6, 249, 253–5, 333–4,
338–9, 358–9

Myhrhaug, B., 449

name equivalence, see type
equivalence

name space, see environment
natural language, 1
naturalness, 4
Naur, P., 11, 451
Neward, E., 449
new-type declaration, see type

declaration
nondeterminism, 79–81, 85, 87,

91, 234, 239, 339, 460
bounded, 239, 454

normal-order evaluation, 368–9,
460

null pointer, 69, 73, 460
Nygaard, K., 449

object, 15, 20, 31–2, 58, 64–5,
145–64, 297, 300, 312–3,
315, 324–5, 328, 418, 460

construction, 45, 304, 313, 418,
423–4

representation, 164–5
target (of method call),

147–8, 156, 165–6, 325, 463
object-oriented programming, 5,

9, 297–329, 445, 460
key concepts, 297–8
pragmatics, 298–9

observable, 135, 145, 460
OCCAM, 256, 363
Odersky, M., 449
on-command (PL/I), 222
operation, see constructor,

method, procedure

operator, 46–7, 283, 301–2, 460
binary, 46–7, 373
unary, 46–7

Orwant, J., 451
Ousterhout, J. K., 427, 451
out-parameter (ADA), 283, 460
overloading, 204–8, 300, 384,

439–40, 460
context-dependent, 206, 283,

455
context-independent, 205,

301–2, 315, 455
overridable, see method
overriding, 151–2, 154, 156, 165,

315, 460

package, 97, 111, 136–40, 267,
282–5, 314, 319–20, 335,
421–3, 431–2, 437, 460

see also generic package
package body (ADA), 137–45,

283–5, 288–9, 460
package specification (ADA),

137–45, 162, 283–5, 288–9,
460

pair, see tuple
paradigm, 5, 460

see also concurrent
programming, functional
programming, imperative
programming, logic
programming,
object-oriented
programming, scripting

parallel command, 238–40, 460
parallel distributed processing,

see connectionism
parallelism, see concurrency
parameter, 122–3

constant parameter, 126–8,
455

copy-in (value) parameter,
124–5, 128–9, 131, 283, 301,
314, 455

copy-in-copy-out
(value-result) parameter,
124–5, 131, 283, 455

copy-out (result) parameter,
124–5, 131, 283, 455

procedural parameter, 126,
461

reference parameter, 125–9,
283, 301, 314, 461

variable parameter, 126–8,
464

see also actual parameter,
formal parameter,
parameter mechanism

parameterized type, 200–2, 382,
438, 460

parameter mechanism, 123–9,
438, 460

copy, 124–5, 127, 274, 283, 455
implementation, 130–1
reference, 125–9, 283, 301,

314, 461
parametric polymorphism,

198–204, 206–10, 367, 379,
382, 437, 439, 441, 460

implementation, 208–10
Parnas, D. L., 167, 451
partial application, 377, 460
PASCAL, 4, 7–8, 11, 42, 85, 136,

191–2, 208, 231, 266,
439–40

pattern (HASKELL), 375–6, 460
PERL, 10–1, 38, 417, 427, 440
Perrott, R. H., 363, 451
Peterson’s algorithm, 245–6
Peyton Jones, S., 370
pipeline (MS-DOS/UNIX), 240
PL/I, 7–8, 11, 77, 222, 439–40
pointer, 15, 34, 58, 63–4, 66,

68–70, 73–6, 123, 126, 129,
149–50, 164, 269–70,
304–6, 434, 461

arithmetic (C/C++), 270–1,
300, 434

dangling, 70, 75–6, 270, 434,
456

see also null pointer
polymorphic procedure,

198–200, 367, 461
polymorphism, see inheritance

polymorphism, parametric
polymorphism

polytype, 199–200, 203, 461
portability, 432, 434
pragmatics, 5, 266–9, 461
Pratt, T. W., 10, 451
prefix notation, 46, 461
preprocessor (C/C++), 276–7

Index 471

preprocessor directive (C/C++),
277

primitive type, 16–20, 127, 192,
269, 281, 300, 312–3, 370,
396–7, 418, 461

discrete, 19–20, 25, 81–2, 456
representation, 49–50
see also Boolean, Character,

enumeration type, Integer,
Float

primitive value, 15–20, 58, 461
priority inversion, 362–3, 461
private, 137–45, 147, 149–50,

154, 302, 315, 318, 423–4,
461

private type (ADA), 143–5,
284–5, 325–6

procedure, 97, 115–31, 123, 126,
129, 135–7, 210, 220, 265–9,
282–3, 325, 414, 418, 421–2,
431, 461

see also function procedure,
proper procedure

procedure body, see function
body, proper procedure
body

procedure call, see function call,
proper procedure call

procedure definition, 105, 461
recursive, 107–8
see also function definition,

proper procedure definition
process, 233–4, 240–5, 333–5,

461
heavyweight, 240–1
lightweight, see thread
sequential, 233–4, 462
see also communication,

competition,
intercommunication,
mutual exclusion, task,
thread

process operation
acquire, 242–3, 250
create, 241
fork, 241–2
join, 241
load, 241
receive, 241
relinquish, 242–3, 250
resume, 241

start, 241
stop, 241
suspend, 241
transmit, 241
wait, 241
see also channel operation,

event operation,
semaphore operation

program unit, 115, 135–6, 140,
162, 171, 267–8, 282, 298,
461

programming linguistics, 3–6,
461

projection, see disjoint union
PROLOG, 7, 9, 11, 36, 38, 396–410
proper procedure, 115, 118–20,

283, 461
proper procedure body, 97, 120,

454
proper procedure call, 77–9,

119–20, 129–30, 282, 419,
461

protected, 153–4, 302, 315, 461
protected module (ADA95), 338,

461
protected type (ADA95), 336,

338–9, 341–7
public, 136–45, 147, 149–50, 154,

302, 315, 423–4, 461
PYTHON, 10–1, 38–40, 417–27,

440, 444

Qualification Principle, 110–2,
438, 461

query (PROLOG), 393–6, 398–406
see also fail, succeed

queue (entry calls), 337–8,
343–4, 361, 461

race condition, 235–6
reachable, 69–70, 314, 461
readability, 432, 434, 446
real number, 15–8, 50
real-time program, 235
record, 15, 20–2, 58, 281, 461

construction, 44, 282
representation, 50
selection, 22, 462

record variable, 59–61
recursive class, 312

recursive declaration, 107–9,
461

recursive procedure, 67–8, 130,
375

see also recursive procedure
definition

recursive relation, 401–2
recursive type, 33–7, 74–5, 373,

461
see also list, recursive type

definition, tree
reference (to variable), 78
reference semantics, 63–6, 75,

147, 312, 419, 461
referent, 73, 461
regular expression, 415–7,

425–7, 461
regularity, 438
relation, 393–6, 398–404, 406–7,

461
reliability, 432, 434–6
remote procedure call, 252–3
rendezvous, 256–7, 335, 462
resolution, 395, 404, 462
result (function), 116–7, 462
return sequencer, 116–7, 220–1,

273, 282, 420, 462
reusability, 171, 180, 183, 186,

298, 320, 432–3, 437
Reynolds, J. C., 210, 451
Ritchie, D. M., 11, 269, 293, 450
Robson, D., 11, 328, 450
robustness, 221
Rosser, J. B., 389, 451

safety property, 239, 462
scale, 431, 433, 435
scheduling, 237, 242, 361–3, 462

fair, 237, 361
preemptive, 362–3
non-preemptive, 362, 460

SCHEME, 388–9
scope, 97–102, 403, 462
script, 413–4, 417
scripting, 5, 9–10, 413–27, 445,

462
key concepts, 414–7
pragmatics, 413–4

Sebesta, R. W., 10, 451
second-class value, 42–3, 462

472 Index

security, 446
see also reliability

selection, see record, tuple
selective update, 60–1, 462
selective wait command (ADA),

see task
selector procedure, 121–2, 462
selector call, 121–2
semantics, 5, 462
semaphore, 249–51, 253, 255,

462
semaphore operation
sema_initialize, 249
sema_signal, 249–51
sema_wait, 249–51

separate compilation, 288–9,
318–9, 424–5, 431, 433,
462

sequencer, 77, 216–21, 228, 462
see also escape, exception, exit

sequencer, halt sequencer,
jump, return sequencer

sequential command, 77, 79,
215–6, 272, 282, 462

sequential declaration, 106–9,
462

sequential process, see process
sequential program, 233, 462
server system, see multi-access

system
Sethi, R., 10, 449, 451
shared variable, 243, 246–7, 253,

256–7, 333–5, 361, 453
sharing, 373, 462
side effect, see expression,

declaration
signal (MODULA), 255–6

send operation, 255
wait operation, 255

simple variable, 58–9, 463
simplicity, 438, 446
Simpson, H. R., 451
Simpson’s algorithm, 247–8
SIMULA, 7, 9, 11, 167, 328
Singer, A., 293, 450
skip command, 77, 80, 272, 282,

463
SMALLTALK, 7, 9, 11, 38, 101, 328
SNOBOL, 16
speed-dependence, 234–6, 463
spin lock, 243–8, 251, 463

stack, 88–9, 129–30
starvation, 237–8, 463
statement, see command
static scoping, 100–2, 328, 463
static typing, 38–40, 101, 328, 463
statically scoped, see static

scoping
statically typed, see static typing
Steele, G. L., 293, 450
storable, 58, 463
storage, 57–8, 463
storage cell, 58, 463
Stoutamire, D., 449
Strachey, C., 131, 451
Stroustrup, B., 11, 189, 299, 329,

451
strict (function), 369, 463
string, 15, 20, 35–6, 397, 418, 463

as array, 36
as list, 36
as object, 36
as primitive value, 36
character selection, 35
concatenation, 36
empty, 35, 457
equality test, 35
length, 35, 459
lexicographic comparison, 35
processing, 414–5
substring selection, 36

structural equivalence, see type
equivalence

structure (C/C++), 15, 20–2, 58,
269, 300, 463

see also record
structure (PROLOG), 397, 463
subclass, 151–8, 164–5, 195–8,

298, 453, 463
subtype, 191–6, 210, 281–2, 463
succeed (assertion/query), 395,

463
superclass, 151–2, 154–5, 157–9,

164–5, 304, 315, 463
Sussman, G. J., 449
Sussman, J., 449
Sutter, H., 228, 451
switch command, 82, 272–3
synchronization, 333–4
synchronized block (JAVA),

358–9, 463

synchronized method (JAVA),
336, 358–9, 463

syntax, 5, 442–4, 463

tag, 40
see also disjoint union

tag test, see disjoint union
tagged record (ADA), 15, 322,

324–7, 463
task (ADA), 97, 257–8, 336–41,

463
abort command, 338
accept command, 257, 453
cancellation, 338
creation, 336
entry, 257, 457
entry call, 257, 337, 361, 457
entry family, 346–7, 457
requeue command, 343, 462
selective wait command, 337,

339, 462
termination, 336–8

task module (ADA), 257, 334–5,
463

TCL, 427, 440
template (C++), 174–5, 189, 300,

306–7, 463
see also generic unit

Tennent, R. D., 10, 52, 131, 228,
451

term (PROLOG), 398
termination, 215, 218, 404

abrupt, 215, 223–5, 463
normal, 215, 223, 225, 463
see also task, thread

Thompson, S., 11, 211, 388, 451
thread, 241, 335–6, 356–63,

463–4
cancellation, 356–8
creation, 356
daemon, 356, 456
interruption status, 356, 459
termination, 356
wait set, 359–61, 464

throw (exception),
Tofte, M., 451
total update, 60–1, 464
tree, 37
tuple, 21–33, 371, 418

0-tuple, 23

Index 473

construction, 21, 373, 418
homogeneous, 23
selection, 21, 462

type, 15–43, 97, 102–3, 191–5,
432, 464

see also abstract type,
composite type,
parameterized type,
polytype, primitive type,
recursive type, subtype

type check, 38, 270, 276, 300, 307,
318–9, 418, 425, 434, 464

type class (HASKELL), 382–4, 464
instance, 382–4, 458

Type Completeness Principle,
42–3, 71, 270, 281, 312, 373,
418, 438, 464

type conversion, 207–8, 464
see also cast, coercion

type declaration, 102–3, 274–5,
300, 375, 464

new-type declaration, 102–3,
460

type definition, 102–3, 464
type equivalence, 40–2, 175, 457

name equivalence, 41–2,
102–3, 460

structural equivalence, 40–2,
102–3, 463

type error, 38, 464
type inference, 202–4, 211, 464
type system, 37–42, 191–211,

464
see also dynamic typing,

inclusion polymorphism,
overloading, parametric
polymorphism,
parameterized type, static
typing, type conversion

type variable, 198–9, 464

Ullman, J. D., 449
union (C/C++), 15, 20, 32–3, 58,

269, 464
representation, 51

Unit type, 23
universal, 4, 464
UNIX, 8–10, 240–3, 413, 416–7
untyped, 464
upper bound, see array
US Department of Defense, 293,

451

value, 15, 97, 104, 124–6, 128, 46
see also composite value,

first-class value, primitive
value, second-class value

van Rossum, G., 417, 451
van Wijngaarden, A., 11, 451
variable, 57–91, 97, 104–5,

123–9, 138–40, 265–6, 389,
414, 464

creation (or allocation), 66,
68–70, 456

destruction (or deallocation),
66, 68, 70, 456

global, 27, 66–8, 88, 167, 267,
269, 272, 274–5, 282, 300,
313, 419, 458

heap, 68–70, 75–6, 89–90,
272, 282, 300, 313–4, 458

local, 66–8, 75–6, 88–9, 124,
130–1, 272, 274, 282, 300,
313, 419, 459

persistent, 71–3, 91, 461
static, 68, 274, 463
storage allocation, 88–90

transient, 71, 91, 464
see also composite variable,

lifetime, primitive variable,
shared variable

variable access, 43, 49, 78, 121,
464

variable component (of object),
97, 146–56, 167, 195–6

see also instance variable
variable declaration, 104–5,

128–30, 274, 300, 464
renaming, 104–5, 128, 464

variant, see disjoint union
visibility, 99–100, 137, 464
VISUAL BASIC, 10, 427
void type, see Unit type
volatile (variable), 246–7, 464

Wadler, P. L., 388, 449
wait set, see thread
Wall, L., 451
Watt, D. A., 10, 451
Wegner, P., 210, 449
Wellings, A. J., 258, 363, 449
Welsh, J., 449
Wexelbrat, R. L., 10, 451
while-command, 82–3, 85,

215–6, 228, 272–3, 282,
419–20, 464

Wichmann, B. A., 293, 451
Wikström, Å., 211, 388, 451
Wirth, N., 11, 255, 446, 451
wrapper class (JAVA), 208,

313

Zahn, C. T., 91, 228, 451
Zelcowitz, N. V., 10, 451
Zilles, S. N., 167, 450

	Programming Language Design Concepts
	Cover

	Contents
	Preface
	Part I: Introduction
	1 Programming languages
	1.1 Programming linguistics
	1.1.1 Concepts and paradigms
	1.1.2 Syntax, semantics, and pragmatics
	1.1.3 Language processors

	1.2 Historical development
	Summary
	Further reading
	Exercises

	Part II: Basic Concepts
	2 Values and types
	2.1 Types
	2.2 Primitive types
	2.2.1 Built-in primitive types
	2.2.2 Defined primitive types
	2.2.3 Discrete primitive types

	2.3 Composite types
	2.3.1 Cartesian products, structures, and records
	2.3.2 Mappings, arrays, and functions
	2.3.3 Disjoint unions, discriminated records, and objects

	2.4 Recursive types
	2.4.1 Lists
	2.4.2 Strings
	2.4.3 Recursive types in general

	2.5 Type systems
	2.5.1 Static vs dynamic typing
	2.5.2 Type equivalence
	2.5.3 The Type Completeness Principle

	2.6 Expressions
	2.6.1 Literals
	2.6.2 Constructions
	2.6.3 Function calls
	2.6.4 Conditional expressions
	2.6.5 Iterative expressions
	2.6.6 Constant and variable accesses

	2.7 Implementation notes
	2.7.1 Representation of primitive types
	2.7.2 Representation of Cartesian products
	2.7.3 Representation of arrays
	2.7.4 Representation of disjoint unions
	2.7.5 Representation of recursive types

	Summary
	Further reading
	Exercises

	3 Variables and storage
	3.1 Variables and storage
	3.2 Simple variables
	3.3 Composite variables
	3.3.1 Total vs selective update
	3.3.2 Static vs dynamic vs flexible arrays

	3.4 Copy semantics vs reference semantics
	3.5 Lifetime
	3.5.1 Global and local variables
	3.5.2 Heap variables
	3.5.3 Persistent variables

	3.6 Pointers
	3.6.1 Pointers and recursive types
	3.6.2 Dangling pointers

	3.7 Commands
	3.7.1 Skips
	3.7.2 Assignments
	3.7.3 Proper procedure calls
	3.7.4 Sequential commands
	3.7.5 Collateral commands
	3.7.6 Conditional commands
	3.7.7 Iterative commands

	3.8 Expressions with side effects
	3.8.1 Command expressions
	3.8.2 Expression-oriented languages

	3.9 Implementation notes
	3.9.1 Storage for global and local variables
	3.9.2 Storage for heap variables
	3.9.3 Representation of dynamic and flexible arrays

	Summary
	Further reading
	Exercises

	4 Bindings and scope
	4.1 Bindings and environments
	4.2 Scope
	4.2.1 Block structure
	4.2.2 Scope and visibility
	4.2.3 Static vs dynamic scoping

	4.3 Declarations
	4.3.1 Type declarations
	4.3.2 Constant declarations
	4.3.3 Variable declarations
	4.3.4 Procedure definitions
	4.3.5 Collateral declarations
	4.3.6 Sequential declarations
	4.3.7 Recursive declarations
	4.3.8 Scopes of declarations

	4.4 Blocks
	4.4.1 Block commands
	4.4.2 Block expressions
	4.4.3 The Qualification Principle

	Summary
	Further reading
	Exercises

	5 Procedural abstraction
	5.1 Function procedures and proper procedures
	5.1.1 Function procedures
	5.1.2 Proper procedures
	5.1.3 The Abstraction Principle

	5.2 Parameters and arguments
	5.2.1 Copy parameter mechanisms
	5.2.2 Reference parameter mechanisms
	5.2.3 The Correspondence Principle

	5.3 Implementation notes
	5.3.1 Implementation of procedure calls
	5.3.2 Implementation of parameter mechanisms

	Summary
	Further reading
	Exercises

	Part III: Advanced Concepts
	6 Data abstraction
	6.1 Program units, packages, and encapsulation
	6.1.1 Packages
	6.1.2 Encapsulation

	6.2 Abstract types
	6.3 Objects and classes
	6.3.1 Classes
	6.3.2 Subclasses and inheritance
	6.3.3 Abstract classes
	6.3.4 Single vs multiple inheritance
	6.3.5 Interfaces

	6.4 Implementation notes
	6.4.1 Representation of objects
	6.4.2 Implementation of method calls

	Summary
	Further reading
	Exercises

	7 Generic abstraction
	7.1 Generic units and instantiation
	7.1.1 Generic packages in ADA
	7.1.2 Generic classes in C++

	7.2 Type and class parameters
	7.2.1 Type parameters in ADA
	7.2.2 Type parameters in C++
	7.2.3 Class parameters in JAVA

	7.3 Implementation notes
	7.3.1 Implementation of ADA generic units
	7.3.2 Implementation of C++ generic units
	7.3.3 Implementation of JAVA generic units

	Summary
	Further reading
	Exercises

	8 Type systems
	8.1 Inclusion polymorphism
	8.1.1 Types and subtypes
	8.1.2 Classes and subclasses

	8.2 Parametric polymorphism
	8.2.1 Polymorphic procedures
	8.2.2 Parameterized types
	8.2.3 Type inference

	8.3 Overloading
	8.4 Type conversions
	8.5 Implementation notes
	8.5.1 Implementation of parametric polymorphism

	Summary
	Further reading
	Exercises

	9 Control flow
	9.1 Sequencers
	9.2 Jumps
	9.3 Escapes
	9.4 Exceptions
	9.5 Implementation notes
	9.5.1 Implementation of jumps and escapes
	9.5.2 Implementation of exceptions

	Summary
	Further reading
	Exercises

	10 Concurrency
	10.1 Why concurrency?
	10.2 Programs and processes
	10.3 Problems with concurrency
	10.3.1 Nondeterminism
	10.3.2 Speed dependence
	10.3.3 Deadlock
	10.3.4 Starvation

	10.4 Process interactions
	10.4.1 Independent processes
	10.4.2 Competing processes
	10.4.3 Communicating processes

	10.5 Concurrency primitives
	10.5.1 Process creation and control
	10.5.2 Interrupts
	10.5.3 Spin locks and wait-free algorithms
	10.5.4 Events
	10.5.5 Semaphores
	10.5.6 Messages
	10.5.7 Remote procedure calls

	10.6 Concurrent control abstractions
	10.6.1 Conditional critical regions
	10.6.2 Monitors
	10.6.3 Rendezvous

	Summary
	Further reading
	Exercises

	Part IV: Paradigms
	11 Imperative programming
	11.1 Key concepts
	11.2 Pragmatics
	11.2.1 A simple spellchecker

	11.3 Case study: C
	11.3.1 Values and types
	11.3.2 Variables, storage, and control
	11.3.3 Bindings and scope
	11.3.4 Procedural abstraction
	11.3.5 Independent compilation
	11.3.6 Preprocessor directives
	11.3.7 Function library
	11.3.8 A simple spellchecker

	11.4 Case study: ADA
	11.4.1 Values and types
	11.4.2 Variables, storage, and control
	11.4.3 Bindings and scope
	11.4.4 Procedural abstraction
	11.4.5 Data abstraction
	11.4.6 Generic abstraction
	11.4.7 Separate compilation
	11.4.8 Package library
	11.4.9 A simple spellchecker

	Summary
	Further reading
	Exercises

	12 Object-oriented programming
	12.1 Key concepts
	12.2 Pragmatics
	12.3 Case study: C++
	12.3.1 Values and types
	12.3.2 Variables, storage, and control
	12.3.3 Bindings and scope
	12.3.4 Procedural abstraction
	12.3.5 Data abstraction
	12.3.6 Generic abstraction
	12.3.7 Independent compilation and preprocessor directives
	12.3.8 Class and template library
	12.3.9 A simple spellchecker

	12.4 Case study: JAVA
	12.4.1 Values and types
	12.4.2 Variables, storage, and control
	12.4.3 Bindings and scope
	12.4.4 Procedural abstraction
	12.4.5 Data abstraction
	12.4.6 Generic abstraction
	12.4.7 Separate compilation and dynamic linking
	12.4.8 Class library
	12.4.9 A simple spellchecker

	12.5 Case study: ADA95
	12.5.1 Types
	12.5.2 Data abstraction

	Summary
	Further reading
	Exercises

	13 Concurrent programming
	13.1 Key concepts
	13.2 Pragmatics
	13.3 Case study: ADA95
	13.3.1 Process creation and termination
	13.3.2 Mutual exclusion
	13.3.3 Admission control

	13.3.4 Scheduling away deadlock
	13.4 Case study: JAVA
	13.4.1 Process creation and termination
	13.4.2 Mutual exclusion
	13.4.3 Admission control

	13.5 Implementation notes
	Summary
	Further reading
	Exercises

	14 Functional programming
	14.1 Key concepts
	14.1.1 Eager vs normal-order vs lazy evaluation

	14.2 Pragmatics
	14.3 Case study: HASKELL
	14.3.1 Values and types
	14.3.2 Bindings and scope
	14.3.3 Procedural abstraction
	14.3.4 Lazy evaluation
	14.3.5 Data abstraction
	14.3.6 Generic abstraction
	14.3.7 Modeling state
	14.3.8 A simple spellchecker

	Summary
	Further reading
	Exercises

	15 Logic programming
	15.1 Key concepts
	15.2 Pragmatics
	15.3 Case study: PROLOG
	15.3.1 Values, variables, and terms
	15.3.2 Assertions and clauses
	15.3.3 Relations
	15.3.4 The closed-world assumption
	15.3.5 Bindings and scope
	15.3.6 Control
	15.3.7 Input/output
	15.3.8 A simple spellchecker

	Summary
	Further reading
	Exercises

	16 Scripting
	16.1 Pragmatics
	16.2 Key concepts
	16.2.1 Regular expressions

	16.3 Case study: PYTHON
	16.3.1 Values and types
	16.3.2 Variables, storage, and control
	16.3.3 Bindings and scope
	16.3.4 Procedural abstraction
	16.3.5 Data abstraction
	16.3.6 Separate compilation
	16.3.7 Module library

	Summary
	Further reading
	Exercises

	Part V: Conclusion
	17 Language selection
	17.1 Criteria
	17.2 Evaluation
	Summary
	Exercises

	18 Language design
	18.1 Selection of concepts
	18.2 Regularity
	18.3 Simplicity
	18.4 Efficiency
	18.5 Syntax
	18.6 Language life cycles
	18.7 The future
	Summary
	Further reading
	Exercises

	Bibliography
	Glossary
	Index
	Team DDU

