David A. Watt

with contributions by

- LR (18 (1 A ! A\ HITET) Flﬂdlﬂy
— " . Ll "r

ngéming
Language
Design Concepts

PROGRAMMING LANGUAGE
DESIGN CONCEPTS

PROGRAMMING LANGUAGE
DESIGN CONCEPTS

David A. Watt, University of Glasgow

with contributions by

William Findlay, University of Glasgow

John Wiley & Sons, Ltd

Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed
on a computer system for exclusive use by the purchase of the publication. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

ADA is a registered trademark of the US Government Ada Joint Program Office.

JAVA is aregistered trademark of Sun Microsystems Inc.

OCCAM is a registered trademark of the INMOS Group of Companies.

UNIX is a registered trademark of AT&T Bell Laboratories.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Watt, David A. (David Anthony)
Programming language design concepts / David A. Watt ; with
contributions by William Findlay.
p.cm.
Includes bibliographical references and index.
ISBN 0-470-85320-4 (pbk. : alk. paper)
1. Programming languages (Electronic computers) I. Findlay, William,
1947-11. Title.

QA76.7 .W388 2004
005.13 — dc22
2003026236

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0-470-85320-4

Typeset in 10/12pt TimesTen by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Biddles Ltd, King’s Lynn

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

To Carol

Contents

Preface

Part I: Introduction

1

Programming languages

1.1 Programming linguistics
1.1.1 Concepts and paradigms
1.1.2 Syntax, semantics, and pragmatics
1.1.3 Language processors

1.2 Historical development

Summary

Further reading

Exercises

Part II: Basic Concepts

2

Values and types
2.1 Types
2.2 Primitive types

23

24

25

2.6

2.2.1 Built-in primitive types

2.2.2 Defined primitive types

2.2.3 Discrete primitive types
Composite types

2.3.1 Cartesian products, structures, and records
232 Mappings, arrays, and functions
2.3.3 Disjoint unions, discriminated records, and objects
Recursive types

24.1 Lists

242 Strings

243 Recursive types in general

Type systems

2.5.1 Static vs dynamic typing

2.52 Type equivalence

2.53 The Type Completeness Principle
Expressions

2.6.1 Literals

2.6.2 Constructions

2.6.3 Function calls

2.6.4 Conditional expressions

2.6.5 Iterative expressions

2.6.6 Constant and variable accesses

vii

viii

Contents

2.7 Implementation notes
2.7.1 Representation of primitive types
272 Representation of Cartesian products
2.7.3 Representation of arrays
2.74 Representation of disjoint unions
2.7.5 Representation of recursive types

Summary

Further reading

Exercises

Variables and storage

3.1 Variables and storage
3.2 Simple variables
3.3 Composite variables
33.1 Total vs selective update
3.3.2 Static vs dynamic vs flexible arrays
3.4 Copy semantics vs reference semantics
3.5 Lifetime
35.1 Global and local variables
3.5.2 Heap variables
3.53 Persistent variables
3.6 Pointers
3.6.1 Pointers and recursive types
3.6.2 Dangling pointers
3.7 Commands
3.7.1 Skips
3.72 Assignments
3.7.3 Proper procedure calls
3.74 Sequential commands
3.7.5 Collateral commands
3.7.6 Conditional commands
3.7.7 Iterative commands
3.8 Expressions with side effects
3.8.1 Command expressions
3.8.2 Expression-oriented languages
3.9 Implementation notes
3.9.1 Storage for global and local variables
3.9.2 Storage for heap variables
3.9.3 Representation of dynamic and flexible arrays
Summary
Further reading
Exercises

Bindings and scope

4.1
42

Bindings and environments
Scope

49
49
50
50
51
51
52
52
52

57
57
58
59
60
61
63
66
66
68
71
73
74
75
77
77
77
78
79
79
80
82
85
86
87
87
88
89
90
91
91
92

95
95
97

42.1 Block structure
422 Scope and visibility
423 Static vs dynamic scoping

4.3 Declarations
4.3.1 Type declarations
432 Constant declarations
4.3.3 Variable declarations
4.3.4 Procedure definitions
4.3.5 Collateral declarations
43.6 Sequential declarations
437 Recursive declarations
4.3.8 Scopes of declarations
4.4 Blocks
44.1 Block commands
442 Block expressions
443 The Qualification Principle
Summary
Further reading
Exercises

Procedural abstraction

5.1 Function procedures and proper procedures
5.1.1 Function procedures
5.1.2 Proper procedures
5.1.3 The Abstraction Principle
5.2 Parameters and arguments
52.1 Copy parameter mechanisms
5.22 Reference parameter mechanisms
5.23 The Correspondence Principle
5.3 Implementation notes
53.1 Implementation of procedure calls
53.2 Implementation of parameter mechanisms
Summary
Further reading
Exercises

Part III: Advanced Concepts

6

Data abstraction

6.1

6.2
6.3

Program units, packages, and encapsulation
6.1.1 Packages

6.1.2 Encapsulation

Abstract types

Objects and classes

6.3.1 Classes

6.3.2 Subclasses and inheritance

Contents

X

97

99
100
102
102
104
104
105
105
106
107
108
108
109
110
110
111
112
112

115
115
116
118
120
122
124
125
128
129
130
130
131
131
131

133

135
135
136
137
140
145
146
151

X Contents

6.3.3 Abstract classes
6.3.4 Single vs multiple inheritance
6.3.5 Interfaces

6.4 Implementation notes
6.4.1 Representation of objects
6.4.2 Implementation of method calls
Summary
Further reading
Exercises

Generic abstraction

7.1 Generic units and instantiation
7.1.1 Generic packages in ApA
7.1.2 Generic classes in C++
7.2 Type and class parameters
7.2.1 Type parameters in ADA
722 Type parameters in C++
7.2.3 Class parameters in JAVA
7.3 Implementation notes
7.3.1 Implementation of ApA generic units
7.3.2 Implementation of C++ generic units
7.3.3 Implementation of JAvA generic units
Summary
Further reading
Exercises
Type systems
8.1 Inclusion polymorphism
8.1.1 Types and subtypes
8.1.2 Classes and subclasses
8.2 Parametric polymorphism
8.2.1 Polymorphic procedures
8.2.2 Parameterized types
8.2.3 Type inference
8.3 Overloading
8.4 Type conversions
8.5 Implementation notes
8.5.1 Implementation of parametric polymorphism
Summary
Further reading
Exercises

Control flow

9.1
9.2
9.3

Sequencers
Jumps
Escapes

157
160
162
164
164
165
166
167
167

171
171
172
174
176
176
180
183
186
186
187
188
188
189
189

191
191
191
195
198
198
200
202
204
207
208
208
210
210
211

215
215
216
218

Contents

9.4 Exceptions
9.5 Implementation notes
9.5.1 Implementation of jumps and escapes

9.52 Implementation of exceptions
Summary
Further reading
Exercises

10 Concurrency
10.1 Why concurrency?
10.2 Programs and processes
10.3 Problems with concurrency
10.3.1 Nondeterminism
10.3.2 Speed dependence
10.3.3 Deadlock
10.3.4 Starvation
10.4 Process interactions
10.4.1 Independent processes
10.4.2 Competing processes
10.4.3 Communicating processes
10.5 Concurrency primitives
10.5.1 Process creation and control
10.5.2 Interrupts
10.5.3 Spin locks and wait-free algorithms
10.5.4 Events
10.5.5 Semaphores
10.5.6 Messages
10.5.7 Remote procedure calls
10.6 Concurrent control abstractions
10.6.1 Conditional critical regions
10.6.2 Monitors
10.6.3 Rendezvous
Summary
Further reading
Exercises

Part I'V: Paradigms

11 Imperative programming
11.1 Key concepts
11.2 Pragmatics
11.2.1 A simple spellchecker
11.3 Case study: C
11.3.1 Values and types
11.3.2 Variables, storage, and control

xi

221
226
226
227
227
228
228

231
231
233
234
234
234
236
237
238
238
238
239
240
241
243
243
248
249
251
252
253
253
255
256
258
258
259

263

265
265
266
268
269
269
272

Xili

Contents

12

11.3.3
11.3.4
11.35
11.3.6
11.3.7
11.3.8

Bindings and scope
Procedural abstraction
Independent compilation
Preprocessor directives
Function library

A simple spellchecker

11.4 Case study: Apa

11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.4.6
11.4.7
11.4.8
11.4.9
Summary

Values and types

Variables, storage, and control
Bindings and scope
Procedural abstraction

Data abstraction

Generic abstraction

Separate compilation

Package library

A simple spellchecker

Further reading

Exercises

Object-oriented programming
12.1 Key concepts

12.2 Pragmatics

12.3 Case study: C++

12.3.1
1232
12.3.3
12.3.4
12.35
12.3.6
12.3.7
12.3.8
12.3.9

Values and types

Variables, storage, and control
Bindings and scope
Procedural abstraction

Data abstraction

Generic abstraction

Independent compilation and preprocessor directives

Class and template library
A simple spellchecker

12.4 Case study: Java

12.4.1
12.4.2
12.4.3
12.4.4
12.45
12.4.6
12.4.7
12.4.8
12.4.9

Values and types

Variables, storage, and control
Bindings and scope
Procedural abstraction

Data abstraction

Generic abstraction

Separate compilation and dynamic linking

Class library
A simple spellchecker

12.5 Case study: AbA9S

12.5.1
1252

Types
Data abstraction

274
274
275
276
277
278
281
281
282
282
283
283
285
288
289
289
292
293
293

297
297
298
299
300
300
300
301
302
306
307
307
308
311
312
313
314
314
315
317
318
319
320
322
322
325

13

14

15

Summary

Further reading

Exercises

Concurrent programming
13.1 Key concepts

13.2 Pragmatics

13.3 Case study: ApA9S

13.3.1 Process creation and termination

13.3.2
13.3.3
1334

Mutual exclusion
Admission control
Scheduling away deadlock

13.4 Case study: Java

13.4.1 Process creation and termination

13.4.2
13.4.3

Mutual exclusion
Admission control

13.5 Implementation notes

Summary

Further reading

Exercises

Functional programming
14.1 Key concepts

14.1.1 Eager vs normal-order vs lazy evaluation

14.2 Pragmatics
14.3 Case study: HASKELL

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
Summary

Values and types
Bindings and scope
Procedural abstraction
Lazy evaluation

Data abstraction
Generic abstraction
Modeling state

A simple spellchecker

Further reading

Exercises

Logic programming

15.1 Key concepts

15.2 Pragmatics

15.3 Case study: PrRoLOG

1531
15.3.2
15.3.3
15.3.4
15.35

Values, variables, and terms
Assertions and clauses
Relations

The closed-world assumption
Bindings and scope

Contents

xiii

328
328
329

333
333
334
336
336
338
339
347
355
356
358
359
361
363
363
363

367
367
368
370
370
370
374
376
379
381
382
384
386
387
388
389

393
393
396
396
396
398
398
402
403

Xiv

Contents

15.3.6
15.3.7
15.3.8

Summary
Further reading
Exercises

16 Scripting
16.1 Pragmatics
16.2 Key concepts

16.3

16.2.1

Control
Input/output
A simple spellchecker

Regular expressions

Case study: PyTHON

16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6
16.3.7

Summary
Further reading
Exercises

Values and types

Variables, storage, and control
Bindings and scope
Procedural abstraction

Data abstraction

Separate compilation

Module library

Part V: Conclusion

17 Language selection

17.1 Criteria

17.2 Evaluation
Summary
Exercises

18 Language design
Selection of concepts
Regularity
Simplicity
Efficiency

18.1
18.2
18.3
18.4
18.5
18.6
18.7

Syntax

Language life cycles
The future

Summary
Further reading
Exercises

Bibliography

Glossary

Index

404
406
407
409
410
410

413
413
414
415
417
418
419
421
421
422
424
425
427
427
427

429

431
431
433
436
436

437
437
438
438
441
442
444
445
446
446
447

449
453
465

Preface

Contents

The first programming language I ever learned was ALgoL60. This language was
notable for its elegance and its regularity; for all its imperfections, it stood head and
shoulders above its contemporaries. My interest in languages was awakened, and
I began to perceive the benefits of simplicity and consistency in language design.

Since then I have learned and programmed in about a dozen other languages,
and I have struck a nodding acquaintance with many more. Like many pro-
grammers, | have found that certain languages make programming distasteful, a
drudgery; others make programming enjoyable, even esthetically pleasing. A good
language, like a good mathematical notation, helps us to formulate and communi-
cate ideas clearly. My personal favorites have been PascaL, Apa, ML, and Java.
Each of these languages has sharpened my understanding of what programming
is (or should be) all about. PascaL taught me structured programming and data
types. ADA taught me data abstraction, exception handling, and large-scale pro-
gramming. ML taught me functional programming and parametric polymorphism.
Java taught me object-oriented programming and inclusion polymorphism. I had
previously met all of these concepts, and understood them in principle, but I did
not truly understand them until I had the opportunity to program in languages
that exposed them clearly.

This book consists of five parts.

Chapter 1 introduces the book with an overview of programming linguistics
(the study of programming languages) and a brief history of programming and
scripting languages.

Chapters 2-5 explain the basic concepts that underlie almost all programming
languages: values and types, variables and storage, bindings and scope, procedures
and parameters. The emphasis in these chapters is on identifying the basic
concepts and studying them individually. These basic concepts are found in almost
all languages.

Chapters 6—10 continue this theme by examining some more advanced con-
cepts: data abstraction (packages, abstract types, and classes), generic abstraction
(or templates), type systems (inclusion polymorphism, parametric polymor-
phism, overloading, and type conversions), sequencers (including exceptions), and
concurrency (primitives, conditional critical regions, monitors, and rendezvous).
These more advanced concepts are found in the more modern languages.

Chapters 11-16 survey the most important programming paradigms, compar-
ing and contrasting the long-established paradigm of imperative programming
with the increasingly important paradigms of object-oriented and concurrent pro-
gramming, the more specialized paradigms of functional and logic programming,
and the paradigm of scripting. These different paradigms are based on different

XV

Xxvi

Preface

selections of key concepts, and give rise to sharply contrasting styles of language
and of programming. Each chapter identifies the key concepts of the subject
paradigm, and presents an overview of one or more major languages, showing
how concepts were selected and combined when the language was designed.
Several designs and implementations of a simple spellchecker are presented to
illustrate the pragmatics of programming in all of the major languages.

Chapters 17 and 18 conclude the book by looking at two issues: how to select
a suitable language for a software development project, and how to design a
new language.

The book need not be read sequentially. Chapters 1-5 should certainly be
read first, but the remaining chapters could be read in many different orders.
Chapters 11-15 are largely self-contained; my recommendation is to read at least
some of them after Chapters 1-5, in order to gain some insight into how major
languages have been designed. Figure P.1 summarizes the dependencies between
the chapters.

Examples and case studies

The concepts studied in Chapters 2—10 are freely illustrated by examples. These
examples are drawn primarily from C, C++, Java, and Apa. I have chosen these
languages because they are well known, they contrast well, and even their flaws
are instructive!

1
Introduction

V A v

2 3 4 5
Values and Variables and Bindings and Procedural
Types Storage Scope Abstraction
— QS S -
6 7 8 9 10
Data Generic Type Control Concurrency
Abstraction Abstraction Systems Flow
L | L J
vy —
Y y y
11 12 13 14 15 16
Imperative 00 Concurrent Functional Logic Scripting
Programming | |Programming Programming Programming Programming

[| vI Iv | J

17 18
Language Language
Selection Design

Figure P.1 Dependencies between chapters of this book.

Exercises

Readership

Preface xvii

The paradigms studied in Chapters 11-16 are illustrated by case studies of
major languages: Apa, C, C++, HASkELL, Java, PrRoLOG, and PyTHON. These
languages are studied only impressionistically. It would certainly be valuable for
readers to learn to program in all of these languages, in order to gain deeper insight,
but this book makes no attempt to teach programming per se. The bibliography
contains suggested reading on all of these languages.

Each chapter is followed by a number of relevant exercises. These vary from
short exercises, through longer ones (marked *), up to truly demanding ones
(marked **) that could be treated as projects.

A typical exercise is to analyze some aspect of a favorite language, in the
same way that various languages are analyzed in the text. Exercises like this are
designed to deepen readers’ understanding of languages that they already know,
and to reinforce understanding of particular concepts by studying how they are
supported by different languages.

A typical project is to design some extension or modification to an existing
language. I should emphasize that language design should not be undertaken
lightly! These projects are aimed particularly at the most ambitious readers, but
all readers would benefit by at least thinking about the issues raised.

All programmers, not just language specialists, need a thorough understanding
of language concepts. This is because programming languages are our most
fundamental tools. They influence the very way we think about software design
and implementation, about algorithms and data structures.

This book is aimed at junior, senior, and graduate students of computer
science and information technology, all of whom need some understanding of
the fundamentals of programming languages. The book should also be of inter-
est to professional software engineers, especially project leaders responsible
for language evaluation and selection, designers and implementers of language
processors, and designers of new languages and of extensions to existing languages.

To derive maximum benefit from this book, the reader should be able to
program in at least two contrasting high-level languages. Language concepts can
best be understood by comparing how they are supported by different languages. A
reader who knows only a language like C, C++, or Java should learn a contrasting
language such as Apa (or vice versa) at the same time as studying this book.

The reader will also need to be comfortable with some elementary concepts
from discrete mathematics —sets, functions, relations, and predicate logic — as
these are used to explain a variety of language concepts. The relevant mathematical
concepts are briefly reviewed in Chapters 2 and 15, in order to keep this book
reasonably self-contained.

This book attempts to cover all the most important aspects of a large subject.
Where necessary, depth has been sacrificed for breadth. Thus the really serious

xviii Preface

student will need to follow up with more advanced studies. The book has an
extensive bibliography, and each chapter closes with suggestions for further
reading on the topics covered by the chapter.

Acknowledgments

Bob Tennent’s classic book Programming Language Principles has profoundly
influenced the way I have organized this book. Many books on programming
languages have tended to be syntax-oriented, examining several popular languages
feature by feature, without offering much insight into the underlying concepts
or how future languages might be designed. Some books are implementation-
oriented, attempting to explain concepts by showing how they are implemented
on computers. By contrast, Tennent’s book is semantics-oriented, first identifying
and explaining powerful and general semantic concepts, and only then analyzing
particular languages in terms of these concepts. In this book I have adopted Ten-
nent’s semantics-oriented approach, but placing far more emphasis on concepts
that have become more prominent in the intervening two decades.

I have also been strongly influenced, in many different ways, by the work
of Malcolm Atkinson, Peter Buneman, Luca Cardelli, Frank DeRemer, Edsger
Dijkstra, Tony Hoare, Jean Ichbiah, John Hughes, Mehdi Jazayeri, Bill Joy, Robin
Milner, Peter Mosses, Simon Peyton Jones, Phil Wadler, and Niklaus Wirth.

I wish to thank Bill Findlay for the two chapters (Chapters 10 and 13) he has
contributed to this book. His expertise on concurrent programming has made this
book broader in scope than I could have made it myself. His numerous suggestions
for my own chapters have been challenging and insightful.

Last but not least, I would like to thank the Wiley reviewers for their
constructive criticisms, and to acknowledge the assistance of the Wiley editorial
staff led by Gaynor Redvers-Mutton.

David A. Watt
Brisbane
March 2004

PART |

INTRODUCTION

Part I introduces the book with an overview of programming linguistics and a
brief history of programming and scripting languages.

Chapter]

Programming languages

In this chapter we shall:

e outline the discipline of programming linguistics, which is the study of program-
ming languages, encompassing concepts and paradigms, syntax, semantics, and
pragmatics, and language processors such as compilers and interpreters;

e briefly survey the historical development of programming languages, covering the
major programming languages and paradigms.

1.1 Programming linguistics

The first high-level programming languages were designed during the 1950s. Ever
since then, programming languages have been a fascinating and productive area
of study. Programmers endlessly debate the relative merits of their favorite pro-
gramming languages, sometimes with almost religious zeal. On a more academic
level, computer scientists search for ways to design programming languages that
combine expressive power with simplicity and efficiency.

We sometimes use the term programming linguistics to mean the study of
programming languages. This is by analogy with the older discipline of linguistics,
which is the study of natural languages. Both programming languages and natural
languages have syntax (form) and semantics (meaning). However, we cannot take
the analogy too far. Natural languages are far broader, more expressive, and
subtler than programming languages. A natural language is just what a human
population speaks and writes, so linguists are restricted to analyzing existing (and
dead) natural languages. On the other hand, programming linguists can not only
analyze existing programming languages; they can also design and specify new
programming languages, and they can implement these languages on computers.

Programming linguistics therefore has several aspects, which we discuss briefly
in the following subsections.

1.1.1 Concepts and paradigms

Every programming language is an artifact, and as such has been consciously
designed. Some programming languages have been designed by a single person
(such as C++), others by small groups (such as C and Java), and still others by
large groups (such as Apa).

A programming language, to be worthy of the name, must satisfy certain
fundamental requirements.

4 Chapter 1

Programming languages

A programming language must be universal. That is to say, every problem
must have a solution that can be programmed in the language, if that problem can
be solved at all by a computer. This might seem to be a very strong requirement,
but even a very small programming language can meet it. Any language in which
we can define recursive functions is universal. On the other hand, a language with
neither recursion nor iteration cannot be universal. Certain application languages
are not universal, but we do not generally classify them as programming languages.

A programming language should also be reasonably natural for solving prob-
lems, at least problems within its intended application area. For example, a
programming language whose only data types are numbers and arrays might be
natural for solving numerical problems, but would be less natural for solving prob-
lems in commerce or artificial intelligence. Conversely, a programming language
whose only data types are strings and lists would be an unnatural choice for solving
numerical problems.

A programming language must also be implementable on a computer. That is
to say, it must be possible to execute every well-formed program in the language.
Mathematical notation (in its full generality) is not implementable, because in
this notation it is possible to formulate problems that cannot be solved by any
computer. Natural languages also are not implementable, because they are impre-
cise and ambiguous. Therefore, mathematical notation and natural languages, for
entirely different reasons, cannot be classified as programming languages.

In practice, a programming language should be capable of an acceptably
efficient implementation. There is plenty of room for debate over whatis acceptably
efficient, especially as the efficiency of a programming language implementation
is strongly influenced by the computer architecture. FORTRAN, C, and PascaL
programmers might expect their programs to be almost as efficient (within a factor
of 2—4) as the corresponding assembly-language programs. PROLOG programmers
have to accept an order of magnitude lower efficiency, but would justify this on
the grounds that the language is far more natural within its own application area;
besides, they hope that new computer architectures will eventually appear that
are more suited for executing PROLOG programs than conventional architectures.

In Parts II and III of this book we shall study the concepts that underlie
the design of programming languages: data and types, variables and storage,
bindings and scope, procedural abstraction, data abstraction, generic abstraction,
type systems, control, and concurrency. Although few of us will ever design a
programming language (which is extremely difficult to do well), as programmers
we can all benefit by studying these concepts. Programming languages are our
most basic tools, and we must thoroughly master them to use them effectively.
Whenever we have to learn a new programming language and discover how it
can be effectively exploited to construct reliable and maintainable programs, and
whenever we have to decide which programming language is most suitable for
solving a given problem, we find that a good understanding of programming
language concepts is indispensable. We can master a new programming language
most effectively if we understand the underlying concepts that it shares with other
programming languages.

1.1 Programming linguistics 5

Just as important as the individual concepts are the ways in which they may
be put together to design complete programming languages. Different selections
of key concepts support radically different styles of programming, which are
called paradigms. There are six major paradigms. Imperative programming is
characterized by the use of variables, commands, and procedures; object-oriented
programming by the use of objects, classes, and inheritance; concurrent pro-
gramming by the use of concurrent processes, and various control abstractions;
functional programming by the use of functions; logic programming by the use of
relations; and scripting languages by the presence of very high-level features. We
shall study all of these paradigms in Part IV of this book.

1.1.2 Syntax, semantics, and pragmatics

Every programming language has syntax, semantics, and pragmatics. We have
seen that natural languages also have syntax and semantics, but pragmatics is
unique to programming languages.

e A programming language’s syntax is concerned with the form of programs:
how expressions, commands, declarations, and other constructs must be
arranged to make a well-formed program.

e A programming language’s semantics is concerned with the meaning of
programs: how a well-formed program may be expected to behave when
executed on a computer.

e A programming language’s pragmatics is concerned with the way in which
the language is intended to be used in practice.

Syntax influences how programs are written by the programmer, read by
other programmers, and parsed by the computer. Semantics determines how
programs are composed by the programmer, understood by other programmers,
and interpreted by the computer. Pragmatics influences how programmers are
expected to design and implement programs in practice. Syntax is important, but
semantics and pragmatics are more important still.

To underline this point, consider how an expert programmer thinks, given a
programming problem to solve. Firstly, the programmer decomposes the prob-
lem, identifying suitable program units (procedures, packages, abstract types,
or classes). Secondly, the programmer conceives a suitable implementation of
each program unit, deploying language concepts such as types, control structures,
exceptions, and so on. Lastly, the programmer codes each program unit. Only at
this last stage does the programming language’s syntax become relevant.

In this book we shall pay most attention to semantic and pragmatic issues. A
given construct might be provided in several programming languages, with varia-
tions in syntax that are essentially superficial. Semantic issues are more important.
We need to appreciate subtle differences in meaning between apparently similar
constructs. We need to see whether a given programming language confuses dis-
tinct concepts, or supports an important concept inadequately, or fails to support
it at all. In this book we study those concepts that are so important that they are
supported by a variety of programming languages.

6 Chapter 1

Programming languages

In order to avoid distracting syntactic variations, wherever possible we shall
illustrate each concept using the following programming languages: C, C++, Java,
and Apa. Cis now middle-aged, and its design defects are numerous; however, it is
very widely known and used, and even its defects are instructive. C++ and Java are
modern and popular object-oriented languages. ADpA is a programming language
that supports imperative, object-oriented, and concurrent programming. None of
these programming languages is by any means perfect. The ideal programming
language has not yet been designed, and is never likely to be!

1.1.3 Language processors

This book is concerned only with high-level languages, i.e., programming languages
that are (more or less) independent of the machines on which programs are
executed. High-level languages are implemented by compiling programs into
machine language, by interpreting them directly, or by some combination of
compilation and interpretation.

Any system for processing programs — executing programs, or preparing them
for execution — is called a language processor. Language processors include com-
pilers, interpreters, and auxiliary tools like source-code editors and debuggers.

We have seen that a programming language must be implementable. However,
this does not mean that programmers need to know in detail how a programming
language is implemented in order to understand it thoroughly. Accordingly,
implementation issues will receive limited attention in this book, except for a
short section (“Implementation notes”) at the end of each chapter.

1.2 Historical development

Today’s programming languages are the product of developments that started in
the 1950s. Numerous concepts have been invented, tested, and improved by being
incorporated in successive programming languages. With very few exceptions, the
design of each programming language has been strongly influenced by experience
with earlier languages. The following brief historical survey summarizes the
ancestry of the major programming languages and sketches the development of
the concepts introduced in this book. It also reminds us that today’s programming
languages are not the end product of developments in programming language
design; exciting new concepts, languages, and paradigms are still being developed,
and the programming language scene ten years from now will probably be rather
different from today’s.

Figure 1.1 summarizes the dates and ancestry of several important program-
ming languages. This is not the place for a comprehensive survey, so only the
major programming languages are mentioned.

ForTrAN was the earliest major high-level language. It introduced symbolic
expressions and arrays, and also procedures (‘‘subroutines’’) with parameters. In
other respects FORTRAN (in its original form) was fairly low-level; for example, con-
trol flow was largely effected by conditional and unconditional jumps. FORTRAN has
developed a long way from its original design; the latest version was standardized
as recently as 1997.

1.2 Historical development 7

object-oriented imperative concurrent functional logic
languages languages languages languages languages

1950

FORTRAN I
Lisp I
{ALGOL6O [CoBOL } 1960

PL/I
ALGOL68
[PascaL) 1970
Swur))
C
\&M@)
y 1980
ADA83 I
C++
\ 4
HASKELL i 1990

Key:
C# major minor 2000
influence | influence

Figure 1.1 Dates and ancestry of major programming languages.

CosoL was another early major high-level language. Its most important
contribution was the concept of data descriptions, a forerunner of today’s data
types. Like FORTRAN, CoBOL’s control flow was fairly low-level. Also like FORTRAN,
CosoL has developed a long way from its original design, the latest version being
standardized in 2002.

ArcoL60 was the first major programming language to be designed for
communicating algorithms, not just for programming a computer. ALGOL60 intro-
duced the concept of block structure, whereby variables and procedures could
be declared wherever in the program they were needed. It was also the first
major programming language to support recursive procedures. ALGOL60 influ-
enced numerous successor languages so strongly that they are collectively called
ALcGoL-like languages.

ForTrRAN and ALGoL60 were most useful for numerical computation, and
CosoL for commercial data processing. PL/I was an attempt to design a
general-purpose programming language by merging features from all three. On

8 Chapter 1

Programming languages

top of these it introduced many new features, including low-level forms of excep-
tions and concurrency. The resulting language was huge, complex, incoherent,
and difficult to implement. The PL/I experience showed that simply piling feature
upon feature is a bad way to make a programming language more powerful and
general-purpose.

A better way to gain expressive power is to choose an adequate set of concepts
and allow them to be combined systematically. This was the design philosophy
of ALGoL68. For instance, starting with concepts such as integers, arrays, and
procedures, the ALGOL68 programmer can declare an array of integers, an array of
arrays, or an array of procedures; likewise, the programmer can define a procedure
whose parameter or result is an integer, an array, or another procedure.

PascaL, however, turned out to be the most popular of the ALrcoL-like
languages. It is simple, systematic, and efficiently implementable. PascaL and
ALGOL68 were among the first major programming languages with both a rich
variety of control structures (conditional and iterative commands) and a rich
variety of data types (such as arrays, records, and recursive types).

C was originally designed to be the system programming language of the Unix
operating system. The symbiotic relationship between C and Unix has proved very
good for both of them. C is suitable for writing both low-level code (such as the
Unix system kernel) and higher-level applications. However, its low-level features
are easily misused, resulting in code that is unportable and unmaintainable.

PascaL’s powerful successor, Apa, introduced packages and generic units —
designed to aid the construction of large modular programs — as well as high-level
forms of exceptions and concurrency. Like PL/I, Apa was intended by its designers
to become the standard general-purpose programming language. Such a stated
ambition is perhaps very rash, and Apa also attracted a lot of criticism. (For
example, Tony Hoare quipped that PascaL, like ALGoL60 before it, was a marked
advance on its successors!) The critics were wrong: Apa was very well designed,
is particularly suitable for developing high-quality (reliable, robust, maintainable,
efficient) software, and is the language of choice for mission-critical applications
in fields such as aerospace.

We can discern certain trends in the history of programming languages. One
has been a trend towards higher levels of abstraction. The mnemonics and symbolic
labels of assembly languages abstract away from operation codes and machine
addresses. Variables and assignment abstract away from inspection and updating
of storage locations. Data types abstract away from storage structures. Control
structures abstract away from jumps. Procedures abstract away from subroutines.
Packages achieve encapsulation, and thus improve modularity. Generic units
abstract procedures and packages away from the types of data on which they
operate, and thus improve reusability.

Another trend has been a proliferation of paradigms. Nearly all the languages
mentioned so far have supported imperative programming, which is characterized
by the use of commands and procedures that update variables. PL/I and Apa sup-
port concurrent programming, characterized by the use of concurrent processes.
However, other paradigms have also become popular and important.

1.2 Historical development 9

Object-oriented programming is based on classes of objects. An object has
variable components and is equipped with certain operations. Only these opera-
tions can access the object’s variable components. A class is a family of objects with
similar variable components and operations. Classes turn out to be convenient
reusable program units, and all the major object-oriented languages are equipped
with rich class libraries.

The concepts of object and class had their origins in SiMuLA, yet another
ALrcoL-like language. SMALLTALK was the earliest pure object-oriented language,
in which entire programs are constructed from classes.

C++ was designed by adding object-oriented concepts to C. C++ brought
together the C and object-oriented programming communities, and thus became
very popular. Nevertheless, its design is clumsy; it inherited all C’s shortcomings,
and it added some more of its own.

Java was designed by drastically simplifying C++, removing nearly all its
shortcomings. Although primarily a simple object-oriented language, JAvA can
also be used for distributed and concurrent programming. JAva is well suited for
writing applets (small portable application programs embedded in Web pages), as
a consequence of a highly portable implementation (the Java Virtual Machine) that
has been incorporated into all the major Web browsers. Thus Java has enjoyed a
symbiotic relationship with the Web, and both have experienced enormous growth
in popularity. C# is very similar to JAva, apart from some relatively minor design
improvements, but its more efficient implementation makes it more suitable for
ordinary application programming.

Functional programming is based on functions over types such as lists and
trees. The ancestral functional language was Lisp, which demonstrated at a
remarkably early date that significant programs can be written without resorting
to variables and assignment.

ML and HaskeLL are modern functional languages. They treat functions as
ordinary values, which can be passed as parameters and returned as results from
other functions. Moreover, they incorporate advanced type systems, allowing us to
write polymorphic functions (functions that operate on data of a variety of types).
ML (like Lisp) is an impure functional language, since it does support variables
and assignment. HASKELL is a pure functional language.

As noted in Section 1.1.1, mathematical notation in its full generality is
not implementable. Nevertheless, many programming language designers have
sought to exploit subsets of mathematical notation in programming languages.
Logic programming is based on a subset of predicate logic. Logic programs infer
relationships between values, as opposed to computing output values from input
values. PRoLOG was the ancestral logic language, and is still the most popular.
In its pure logical form, however, PROLOG is rather weak and inefficient, so
it has been extended with extra-logical features to make it more usable as a
programming language.

Programming languages are intended for writing application programs and
systems programs. However, there are other niches in the ecology of computing.
An operating system such as UNix provides a language in which a user or system
administrator can issue commands from the keyboard, or store a command

10 Chapter 1

Summary

Programming languages

script that will later be called whenever required. An office system (such as a word
processor or spreadsheet system) might enable the user to store a script (‘“‘macro”
embodying a common sequence of commands, typically written in VISUAL BAsic.
The Internet has created a variety of new niches for scripting. For example, the
results of a database query might be converted to a dynamic Web page by a script,
typically written in PERL. All these applications are examples of scripting. Scripts
(“programs” written in scripting languages) typically are short and high-level, are
developed very quickly, and are used to glue together subsystems written in other
languages. So scripting languages, while having much in common with imperative
programming languages, have different design constraints. The most modern and
best-designed of these scripting languages is PYTHON.

In this introductory chapter:

e We have seen what is meant by programming linguistics, and the topics encompassed
by this term: concepts and paradigms; syntax, semantics, and pragmatics; and
language processors.

e We have briefly surveyed the history of programming languages. We saw how new
languages inherited successful concepts from their ancestors, and sometimes intro-
duced new concepts of their own. We also saw how the major paradigms evolved:
imperative programming, object-oriented programming, concurrent programming,
functional programming, logic programming, and scripting.

Further reading

Programming language concepts and paradigms are cov-
ered not only in this book, but also in TENNENT (1981),
GHEZzzI1 and JAZAYERI (1997), SEBESTA (2001), and SETHI
(1996). Programming language syntax and semantics are
covered in WATT (1991). Programming language proces-
sors are covered in AHO et al. (1986), APPEL (1998), and
WATT and BROWN (2000).

The early history of programming languages (up to the
1970s) was the theme of a major conference, reported

Exercises

Note: Harder exercises are marked *.

Exercises for Section 1.1

in WEXELBLAT (1980). Comparative studies of program-
ming languages may be found in HOrRowITZ (1995), PRATT
and ZELcowITZ (2001), and SEBESTA (2001). A survey
of scripting languages may be found in BARRON
(2000).

More detailed information on the programming languages
mentioned in this chapter may be found in the references
cited in Table 1.1.

1.1.1 Here is a whimsical exercise to get you started. For each programming language
that you know, write down the shortest program that does nothing at all.
How long is this program? This is quite a good measure of the programming

language’s verbosity!

Exercises 11

Table 1.1 Descriptions of major programming and scripting languages.
Programming

language Description

ADA ISO/IEC (1995); www . ada-auth.org/~acats/arm.html
Argor60 Naur (1963)

ALGOL68 van Wijngaarden et al. (1976)

C Kernighan and Ritchie (1989); ISO/TEC (1999)
C++ Stroustrup (1997); ISO/IEC (1998)

C# Drayton et al. (2002)

CoBoL ISO/TIEC (2002)

ForTrRAN ISO/IEC (1997)

Java Joy et al. (2000); Flanagan (2002)

Lisp McCarthy et al. (1965); ANSI (1994)

HASKELL Thompson (1999)

ML Milner et al. (1997)

MobuLa Wirth (1977)

PascaL ISO (1990)

PERL Wall et al. (2000)

PL/ ISO (1979)

ProLoG Bratko (1990)

PyTtHON Beazley (2001); www . python. org/doc/current/ref/
SmMuLa Birtwhistle et al. (1979)

SMALLTALK Goldberg and Robson (1989)

Exercises for Section 1.2
*1.2.1

*1.2.2

*1.2.3

The brief historical survey of Section 1.2 does not mention all major pro-
gramming languages (only those that have been particularly influential, in the
author’s opinion). If a favorite language of yours has been omitted, explain
why you think that it is important enough to be included, and show where your
language fits into Figure 1.1.

FortraN and CosoL are very old programming languages, but still widely used
today. How would you explain this paradox?

Imperative programming was the dominant paradigm from the dawn of com-
puting until about 1990, after which if was overtaken by object-oriented
programming. How would you explain this development? Why has functional
or logic programming never become dominant?

PART Il

BASIC CONCEPTS

Part II explains the more elementary programming language concepts, which are
supported by almost all programming languages:

e values and types
e variables and storage

bindings and scope

procedural abstraction (procedures and parameters).

13

Chapter 2

2.1

Types

Values and types

Data are the raw material of computation, and are just as important (and valuable) as the
programs that manipulate the data. In computer science, therefore, the study of data is
considered as an important topic in its own right.

In this chapter we shall study:

types of values that may be used as data in programming languages;
primitive, composite, and recursive types;

type systems, which group values into types and constrain the operations that may
be performed on these values;

expressions, which are program constructs that compute new values;
how values of primitive, composite, and recursive types are represented.

(In Chapter 3 we shall go on to study how values may be stored, and in Chapter 4 how
values may be bound to identifiers.)

A value is any entity that can be manipulated by a program. Values can be
evaluated, stored, passed as arguments, returned as function results, and so on.
Different programming languages support different types of values:

C supports integers, real numbers, structures, arrays, unions, pointers to
variables, and pointers to functions. (Integers, real numbers, and pointers
are primitive values; structures, arrays, and unions are composite values.)

C++, which is a superset of C, supports all the above types of values plus
objects. (Objects are composite values.)

Java supports booleans, integers, real numbers, arrays, and objects.
(Booleans, integers, and real numbers are primitive values; arrays and
objects are composite values.)

AbpA supports booleans, characters, enumerands, integers, real numbers,
records, arrays, discriminated records, objects (tagged records), strings,
pointers to data, and pointers to procedures. (Booleans, characters, enu-
merands, integers, real numbers, and pointers are primitive values; records,
arrays, discriminated records, objects, and strings are composite values.)

Most programming languages group values into fypes. For instance, nearly
all languages make a clear distinction between integer and real numbers. Most

15

16 Chapter 2 Values and types

languages also make a clear distinction between booleans and integers: integers
can be added and multiplied, while booleans can be subjected to operations like
not, and, and or.

What exactly is a type? The most obvious answer, perhaps, is that a type is a
set of values. When we say that v is a value of type T, we mean simply thatv € T.
When we say that an expression E is of type T, we are asserting that the result of
evaluating E will be a value of type 7.

However, not every set of values is suitable to be regarded as a type. We insist
that each operation associated with the type behaves uniformly when applied to all
values of the type. Thus {false, true} is a type because the operations not, and, and or
operate uniformly over the values false and true. Also, {..., -2, —1,0, +1, +2, ...}
is a type because operations such as addition and multiplication operate uniformly
over all these values. But {13, true, Monday} is not a type, since there are no useful
operations over this set of values. Thus we see that a type is characterized not only
by its set of values, but also by the operations over that set of values.

Therefore we define a type to be a set of values, equipped with one or more
operations that can be applied uniformly to all these values.

Every programming language supports both primitive types, whose values are
primitive, and composite types, whose values are composed from simpler values.
Some languages also have recursive types, a recursive type being one whose
values are composed from other values of the same type. We examine primitive,
composite, and recursive types in the next three sections.

2.2 Primitive types

2.2.1

A primitive value is one that cannot be decomposed into simpler values. A
primitive type is one whose values are primitive.

Every programming language provides built-in primitive types. Some lan-
guages also allow programs to define new primitive types.

Built-in primitive types

One or more primitive types are built-in to every programming language. The
choice of built-in primitive types tells us much about the programming language’s
intended application area. Languages intended for commercial data processing
(such as CoBoL) are likely to have primitive types whose values are fixed-length
strings and fixed-point numbers. Languages intended for numerical computation
(such as ForTrAN) are likely to have primitive types whose values are real
numbers (with a choice of precisions) and perhaps also complex numbers. A
language intended for string processing (such as Snxosor) is likely to have a
primitive type whose values are strings of arbitrary length.

Nevertheless, certain primitive types crop up in a variety of languages, often
under different names. For example, Java has boolean, char, int, and float,
whereas ADA has Boolean, Character, Integer, and Float. These name
differences are of no significance. For the sake of consistency, we shall use Boolean,

2.2 Primitive types 17

Character, Integer, and Float as names for the most common primitive types:

Boolean = {false, true} (2.1)
Character=1{...,‘a’,...,2’,...,0°, ...,'9, ..., 7, ...} (2.2)
Integer ={...,-2,-1,0,+1, +2,...} (2.3)
Float=1{...,-1.0,...,0.0,...,+1.0,...} 2.4)

(Here we are focusing on the set of values of each type.)

The Boolean type has exactly two values, false and true. In some languages
these two values are denoted by the literals false and true, in others by
predefined identifiers false and true.

The Character type is a language-defined or implementation-defined set of
characters. The chosen character set is usually ASCII (128 characters), ISO LATIN
(256 characters), or UNICODE (65 536 characters).

The Integer type is a language-defined or implementation-defined range of
whole numbers. The range is influenced by the computer’s word size and integer
arithmetic. For instance, on a 32-bit computer with two’s complement arithmetic,
Integer will be {—2147483648, ..., +2147483647}.

The Float type is a language-defined or implementation-defined subset of the
(rational) real numbers. The range and precision are determined by the computer’s
word size and floating-point arithmetic.

The Character, Integer, and Float types are usually implementation-defined,
i.e., the set of values is chosen by the compiler. Sometimes, however, these
types are language-defined, i.e., the set of values is defined by the programming
language. In particular, Java defines all its types precisely.

The cardinality of a type T, written #7, is the number of distinct values in 7.
For example:

#Boolean =2 (2.5)
#Character = 256 (ISO LATIN character set) (2.6a)
#Character = 65536 (UNICODE character set) (2.6b)

Although nearly all programming languages support the Boolean, Character,
Integer, and Float types in one way or another, there are many complications:

e Not all languages have a distinct type corresponding to Boolean. For
example, C++ has a type named bool, but its values are just small integers;
there is a convention that zero represents false and any other integer
represents frue. This convention originated in C.

e Not all languages have a distinct type corresponding to Character. For
example, C, C++, and Java all have a type char, but its values are just
small integers; no distinction is made between a character and its internal
representation.

e Some languages provide not one but several integer types.
For example, Java provides byte {—128,...,+127}, short
{—=32768,...,+32767}, int {—2147483648,...,+2147483647}, and
long {—9223372036854775808, ..., +9223372036854775807}. C and

18 Chapter 2 Values and types

EXAMPLE 2.1

C++ also provide a variety of integer types, but they are implementation-
defined.

e Some languages provide not one but several floating-point types. For
example, C, C++, and Java provide both float and double, of which the
latter provides greater range and precision.

Java and C++ integer types
Consider the following Java declarations:

int countryPop;
long worldPop;

The variable countryPop could be used to contain the current population of any country
(since no country yet has a population exceeding 2 billion). The variable wor1dPop could
be used to contain the world’s total population. But note that the program would fail if
worldPop’s type were int rather than long (since the world’s total population now
exceeds 6 billion).

A C++ program with the same declarations would be unportable: a C++ compiler may
choose {—65536, ..., +65535} as the set of int values!

If some types are implementation-defined, the behavior of programs may vary
from one computer to another, even programs written in high-level languages.
This gives rise to portability problems: a program that works well on one computer
might fail when moved to a different computer.

One way to avoid such portability problems is for the programming language
to define all its primitive types precisely. As we have seen, this approach is taken
by JAvA.

2.2.2 Defined primitive types

EXAMPLE 2.2

Another way to avoid portability problems is to allow programs to define their
own integer and floating-point types, stating explicitly the desired range and/or
precision for each type. This approach is taken by ApAa.

ADA integer types
Consider the following Apa declarations:
type Population is range 0 .. 1lelO;

countryPop: Population;
worldPop: Population;

The integer type defined here has the following set of values:

Population = {0, ..., 10'%)

2.2 Primitive types 19

and its cardinality is:
#Population = 10'° 4 1

This code is completely portable — provided only that the computer is capable of
supporting the specified range of integers.

In Apa we can define a completely new primitive type by enumerating its
values (more precisely, by enumerating identifiers that will denote its values).
Such a type is called an enumeration type, and its values are called enumerands.

C and C++ also support enumerations, but in these languages an enumeration
type is actually an integer type, and each enumerand denotes a small integer.

EXAMPLE 2.3 Apa and C++ enumeration types
The following Apa type definition:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

defines a completely new type, whose values are twelve enumerands:
Month = {jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec}
The cardinality of this type is:
#Month = 12

The enumerands of type Month are distinct from the values of any other type. Note
that we must carefully distinguish between these enumerands (which for convenience we
have written as jan, feb, etc.) and the identifiers that denote them in the program (jan,
feb, etc.). This distinction is necessary because the identifiers might later be redeclared.
(For example, we might later redeclare dec as a procedure that decrements an integer; but
the enumerand dec still exists and can be computed.)

By contrast, the C++ type definition:

enum Month {jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec};

defines Month to be an integer type, and binds jan to 0, feb to 1, and so on. Thus:

Month = {0, 1,2, ..., 11}

2.2.3 Discrete primitive types

A discrete primitive type is a primitive type whose values have a one-to-one
relationship with a range of integers.

This is an important concept in ADA, in which values of any discrete primitive
type may be used for array indexing, counting, and so on. The discrete primitive
types in ADA are Boolean, Character, integer types, and enumeration types.

20 Chapter 2 Values and types

EXAMPLE 2.4

Apa discrete primitive types

Consider the following Apa code:
freq: array (Character) of Natural;

fér ch in Character loop
freq(ch) := 0;
end loop;

The indices of the array freq are values of type Character. Likewise, the loop control
variable ch takes a sequence of values of type Character.
Also consider the following Apa code:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);
length: array (Month) of Natural :=
(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

fér mth in Month loop
put(length(mth));
end loop;

The indices of the array length are values of type Month. Likewise, the loop control
variable mth takes a sequence of values of type Month.

Most programming languages allow only integers to be used for counting and
array indexing. C and C++ allow enumerands also to be used for counting and
array indexing, since they classify enumeration types as integer types.

2.3 Composite types

A composite value (or data structure) is a value that is composed from simpler
values. A composite type is a type whose values are composite.

Programming languages support a huge variety of composite values: tuples,
structures, records, arrays, algebraic types, discriminated records, objects, unions,
strings, lists, trees, sequential files, direct files, relations, etc. The variety might
seem bewildering, but in fact nearly all these composite values can be understood
in terms of a small number of structuring concepts, which are:

e Cartesian products (tuples, records)
mappings (arrays)

disjoint unions (algebraic types, discriminated records, objects)

e recursive types (lists, trees).

(For sequential files, direct files, and relations see Exercise 2.3.6.)

We discuss Cartesian products, mappings, and disjoint unions in this section,
and recursive types in Section 2.4. Each programming language provides its own
notation for describing composite types. Here we shall use mathematical notation

2.3 Composite types 21

that is concise, standard, and suitable for defining sets of values structured as
Cartesian products, mappings, and disjoint unions.

2.3.1 Cartesian products, structures, and records

EXAMPLE 2.5

In a Cartesian product, values of several (possibly different) types are grouped
into tuples.

We use the notation (x, y) to stand for the pair whose first component is x and
whose second component is y. We use the notation § x T to stand for the set of all
pairs (x, y) such that x is chosen from set S and y is chosen from set 7. Formally:

SxT={xy) |xeS;yeT} 2.7

This is illustrated in Figure 2.1.
The basic operations on pairs are:

e construction of a pair from two component values;
e selection of the first or second component of a pair.

We can easily infer the cardinality of a Cartesian product:
#SEx T) =#S x #T 2.8)

This equation motivates the use of the notation ““x” for Cartesian product.

We can extend the notion of Cartesian product from pairs to tuples with any
number of components. In general, the notation S; x S, x ... x S, stands for the
set of all n-tuples, such that the first component of each n-tuple is chosen from S,
the second component from S5, . .., and the nth component from S,,.

The structures of C and C++, and the records of ApA, can be understood in
terms of Cartesian products.

ApA records

Consider the following Apa definitions:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);
type Day_Number is range 1 .. 31;
type Date is
record
m: Month;
d: Day_Number;
end record;

e o o
y [° ’ _ | wa @b wo
c

ol
N| @

[} [] [}
v,a) w,b) (0

Figure 2.1 Cartesian product of
SxT sets Sand 7.

22 Chapter 2 Values and types

This record type has the set of values:
Date = Month x Day-Number = {jan, feb, ..., dec} x {1, ..., 31}
This type’s cardinality is:
#Date = #Month x #Day-Number = 12 x 31 = 372

and its values are the following pairs:

(jan, 1) (jan,2) (jan, 3) e (jan, 31)
(feb, 1) (feb,2) (feb, 3) e (feb, 31)
(dec,1) (dec,2) (dec,3) ... (dec31)

Note that the Date type models real-world dates only approximately: some Date values,
such as (feb, 31), do not correspond to real-world dates. (This is a common problem in
data modeling. Some real-world data are too awkward to model exactly by programming
language types, so our data models have to be approximate.)

The following code illustrates record construction:

someday: Date := (m => jan, d => 1);
The following code illustrates record component selection:

put(someday.m + 1); put("/"); put(someday.d);
someday.d := 29; someday.m := feb;

Here someday .m selects the first component, and someday . d the second component,
of the record someday. Note that the use of component identifiers m and d in record
construction and selection enables us to write code that does not depend on the order of
the components.

EXAMPLE 2.6 C++ structures

Consider the following C++ definitions:

enum Month {jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec};
struct Date {
Month m;
byte d;
}s

This structure type has the set of values:
Date = Month x Byte = {jan, feb, ..., dec} x {0, ..., 255}

This type models dates even more crudely than its Apa counterpart in Example 2.5.
The following code illustrates structure construction:

struct Date someday = {jan, 1};
The following code illustrates structure selection:

printf("%d/%d", someday.m + 1, someday.d);
someday.d = 29; someday.m = feb;

2.3 Composite types 23

A special case of a Cartesian product is one where all tuple components are
chosen from the same set. The tuples in this case are said to be homogeneous.
For example:

$F=85xS 2.9)

means the set of homogeneous pairs whose components are both chosen from set
S. More generally we write:

S"=8x...x8 (2.10)
to mean the set of homogeneous n-tuples whose components are all chosen from
set S.

The cardinality of a set of homogeneous n-tuples is given by:
#(S") = (#S)" 2.11)

This motivates the superscript notation.

Finally, let us consider the special case where n = 0. Equation (2.11) tells us
that S° should have exactly one value. This value is the empty tuple (), which is
the unique tuple with no components at all. We shall find it useful to define a type
that has the empty tuple as its only value:

Unit = {0} (2.12)

This type’s cardinality is:
#Unit =1 (2.13)

Note that Unit is not the empty set (whose cardinality is 0).
Unit corresponds to the type named void in C, C++, and JAava, and to the
type null record in ADA.

2.3.2 Mappings, arrays, and functions

The notion of a mapping from one set to another is extremely important in
programming languages. This notion in fact underlies two apparently different
language features: arrays and functions.
We write:
m:S—T

to state that m is a mapping from set S to set 7. In other words, m maps every
value in § to a value in T. (Read the symbol “— " as “maps to”.)

If m maps value x in set S to value y in set T, we write y = m(x). The value y
is called the image of x under m.

Two different mappings from S = {u, v} to T = {a, b, ¢} are illustrated in
Figure 2.2. We use notation such as {u — a, v — c} to denote the mapping that
maps u toa and v to c.

The notation S — T stands for the set of all mappings from S to 7. Formally:

S>T={m|xeS=>mkx) eT} 2.14)

This is illustrated in Figure 2.3.
Let us deduce the cardinality of S — 7. Each value in S has #7T possible
images under a mapping in S — 7. There are #S such values in S. Therefore there

24 Chapter 2 Values and types

EXAMPLE 2.7

Figure 2.2 Two different mappings in

{fu—>a,v—-c} {u—>c,v-ocl} S T.

[} o o

{u—>a,v—a} {u—>a,v—b} {fu—>a,v-c}
® — [o o

‘ : :]_{ : z . (u—bv—al {u—bv—b)l f{u—bv—c)
[o o

S T {u—>c,voal {u—>c,v—ob} {fu—>c,v-oc}

S>T

Figure 2.3 Set of all mappingsin S — 7.

are #T x #T x ... x #T possible mappings (#S copies of #T multiplied together).
In short:
#S— T)= @D (2.15)

An array is an indexed sequence of components. An array has one component
of type T for each value in type S, so the array itself has type S — T. The length
of the array is its number of components, which is #S. Arrays are found in all
imperative and object-oriented languages.

The type S must be finite, so an array is a finite mapping. In practice, S is
always a range of consecutive values, which is called the array’s index range. The
limits of the index range are called its lower bound and upper bound.

The basic operations on arrays are:

e construction of an array from its components;
e indexing,i.c., selecting a particular component of an array, given its index.

The index used to select an array component is a computed value. Thus array index-
ing differs fundamentally from Cartesian-product selection (where the component
to be selected is always explicit).

C and C++ restrict an array’s index range to be a range of integers whose
lower bound is zero.

C++ arrays
Consider the C++ declaration:

bool p[3];

EXAMPLE 2.8

2.3 Composite types 25
The indices of this array range from the lower bound 0 to the upper bound 2. The set of
possible values of this array is therefore:
{0, 1,2} — {false, true}

The cardinality of this set of values is 23, and the values are the following eight
finite mappings:

{0 — false, 1 — false,2 — false} {0 — true, 1 — false,2 — false}

{0 — false, 1 — false,2 — true} {0 — true, 1 — false,2 — true}
{0 — false, 1 — true,2 — false} {0 — true, 1 — true,2 — false}
{0 — false, 1 — true,2 — true} {0 — true, 1 — true,2 — true}

The following code illustrates array construction:
bool p[] = {true, false, true};
The following code illustrates array indexing (using an int variable c):

plc] = !plc];

Java also restricts an array’s index range to be a range of integers whose
lower bound is zero. Java arrays are similar to C and C++ arrays, but they are in
fact objects.

Abpa allows an array’s index range to be chosen by the programmer, the only
restriction being that the index range must be a discrete primitive type.

ApA arrays
Consider the Apa type definitions:

type Color is (red, green, blue);
type Pixel is array (Color) of Boolean;

The set of values of this array type is:
Pixel = Color — Boolean = {red, green, blue} — {false, true}
This type’s cardinality is:
#Pixel = (#Boolean)*Color =23 = g8

and its values are the following eight finite mappings:

{red — false, green — false, blue — false} {red — true, green — false, blue — false}
{red — false, green — false, blue — true} {red — true, green — false, blue — true}
{red — false, green — true, blue — false} {red — true, green — true, blue — false}
{red — false, green — true, blue — true} {red — true, green — true, blue — true}

The following code illustrates array construction:

p: Pixel :=
(red => true, green => false, blue => true);

26 Chapter 2 Values and types

EXAMPLE 2.9

EXAMPLE 2.10

or more concisely:
p: Pixel := (true, false, true);
The following code illustrates array indexing (using a Coloxr variable c):

p(c) := not p(c);

Most programming languages support multidimensional arrays. A component
of an n-dimensional array is accessed using 7 index values. We can think of an
n-dimensional array as having a single index that happens to be an n-tuple.

Apa two-dimensional arrays

Consider the following Apa definitions:

type Xrange is range 0 .. 511;
type Yrange is range 0 .. 255;
type Window is array (YRange, XRange) of Pixel;

This two-dimensional array type has the following set of values:
Window = Yrange x Xrange — Pixel = {0, ..., 255} x {0, ..., 511} — Pixel

An array of this type is indexed by a pair of integers. Thus w(8,12) accesses that
component of w whose index is the pair (8, 12).

Mappings occur in programming languages, not only as arrays, but also as
Junction procedures (more usually called simply functions). We can implement a
mapping in § — T by means of a function procedure, which takes a value in §
(the argument) and computes its image in T (the result). Here the set S is not
necessarily finite.

Functions implementing mappings
Consider the following C++ function:

bool isEven (int n) {
return (n % 2 == 0);

}
This function implements one particular mapping in Integer — Boolean, namely:
{...,0 — true, 1 — false,2 — true,3 — false, ...}
We could employ a different algorithm:

bool isEven (int n) {
intm=(n<07? -n: n);

2.3 Composite types 27

while (m > 1) m -= 2;
return (m == 0);

}

but the function still implements the same mapping.
We can also write other functions that implement different mappings in Integer —
Boolean, such as:

is0dd {...,0— false,1 — true,2 — false,3 — true, ...}
isPositive {..., =2 — false, —1 — false, 0 — false, 1 — true,2 — true, ...}
isPrime {...,0 — false, 1 — false,2 — true,3 — true,4 — false, ...}

In most programming languages, a function may have multiple parameters. A
function with n parameters will have n arguments passed to it when called. We can
view such a function as receiving a single argument that happens to be an n-tuple.

EXAMPLE 2.11 Functions with multiple parameters
The following C or C++ function:
float power (float b, int n) {
) e

implements a particular mapping in Float x Integer — Float. Presumably, it maps the pair
(1.5,2) to 2.25, the pair (4.0, —2) to 0.0625, and so on.

It is noteworthy that mappings can be implemented by either arrays or
functions in programming languages (and that mappings from n-tuples can be
implemented by either n-dimensional arrays or n-parameter functions). Indeed,
we can sometimes use arrays and functions interchangeably — see Exercise 2.3.5.

It is important not to confuse function procedures with mathematical func-
tions. A function procedure implements a mapping by means of a particular
algorithm, and thus has properties (such as efficiency) that are not shared by
mathematical functions. Furthermore, a function procedure that inspects or mod-
ifies global variables (for example a function procedure that returns the current
time of day, or one that computes and returns a random number) does not corre-
spond to any mathematical function. For these reasons, when using the unqualified
term function in the context of programming languages, we must be very clear
whether we mean a mathematical function (mapping) or a function procedure.

2.3.3 Disjoint unions, discriminated records, and objects

Another kind of composite value is the disjoint union, whereby a value is chosen
from one of several (usually different) sets.

28 Chapter 2 Values and types

EXAMPLE 2.12

We use the notation S + 7 to stand for a set of disjoint-union values, each of
which consists of a tag together with a variant chosen from either set S or set 7.
The tag indicates the set from which the variant was chosen. Formally:

S+ T={leftx|xeS}U{righty|yeT} (2.16)

Here left x stands for a disjoint-union value with tag left and variant x chosen from
S, while right x stands for a disjoint-union value with tag right and variant y chosen
from T. This is illustrated in Figure 2.4.

When we wish to make the tags explicit, we will use the notation left S + right T

left S +right T = {leftx | x € S} U {righty |y € T} 2.17)

When the tags are irrelevant, we will still use the simpler notation S + 7.

Note that the tags serve only to distinguish the variants. They must be distinct,
but otherwise they may be chosen freely.

The basic operations on disjoint-union values in S + T are:

e construction of a disjoint-union value, by taking a value in either S or 7" and
tagging it accordingly;

e tag test, determining whether the variant was chosen from § or T;

e projection to recover the variant in S or the variant in 7 (as the case
may be).

For example, a tag test on the value right b determines that the variant was chosen
from T, so we can proceed to project it to recover the variant b.
We can easily infer the cardinality of a disjoint union:

#S+T)=#S+#T (2.18)

This motivates the use of the notation “+”” for disjoint union.

We can extend disjoint union to any number of sets. In general, the notation
S1+ 8> +...+S, stands for the set in which each value is chosen from one of
Sl,Sz, ..., 0T Sn.

The functional language HASKELL has algebraic types, which we can under-
stand in terms of disjoint unions. In fact, the HASKELL notation is very close to our
mathematical disjoint-union notation.

Haskew algebraic types

Consider the HAsSKELL type definition:

data Number = Exact Int | Inexact Float

([] []
o0 || 000 | - leftu—leftv
u v a b ¢ ([] (] (]
righta right b right c . s .
S T al g Figure 2.4 Disjoint union of sets

S+ T (or left S+ right T) Sand 7.

EXAMPLE 2.13

2.3 Composite types 29

The set of values of this algebraic type is:
Number = Exact Integer 4 Inexact Float
The values of the type are therefore:
{..., Exact(=2), Exact(—1), Exact 0, Exact(+1), Exact(+2), ...}
U{..., Inexact(—1.0), ..., Inexact 0.0, ..., Inexact(+1.0), ...}

The following code illustrates construction of an algebraic value:

let pi = Inexact 3.1416
in ...

The following function illustrates tag test and projection:

rounded num =
—-— Return the result of rounding the number num to the nearest integer.
case num of
Exact i -> 1i
Inexact r -> round r

This uses pattern matching. If the value of num is Inexact 3.1416, the pattern “Inexact
r”’ matches it, r is bound to 3.1416, and the subexpression “round r” is evaluated,
yielding 3.

We can also understand the discriminated records of Apa in terms of
disjoint unions.

Aba discriminated records (1)
Consider the following Apa definitions:

type Accuracy is (exact, inexact);
type Number (acc: Accuracy := exact) is
record
case acc of
when exact =>
ival: Integer;
when inexact =>
rval: Float;
end case;
end record;

This discriminated record type has the following set of values:
Number = exact Integer + inexact Float

Note that the values of type Accuracy serve as tags.
The following code illustrates construction of a discriminated record:

pi: constant Number :=
(acc => inexact, rval => 3.1416);

30 Chapter 2 Values and types

EXAMPLE 2.14

The following function illustrates tag test and projection:

function rounded (num: Number) return Float is
—-- Return the result of rounding the number num to the nearest integer.
case num.acc is
when exact =>
return num.ival;
when inexact =>
return Integer(num.rval);
end case;
end;

A discriminated record’s tag and variant components are selected in the same
way as ordinary record components. When a variant such as rval is selected,
a run-time check is needed to ensure that the tag is currently inexact. The
safest way to select from a discriminated record is by using a case command, as
illustrated in Example 2.13.

In general, discriminated records may be more complicated. A given variant
may have any number of components, not necessarily one. Moreover, there may
be some components that are common to all variants.

Aba discriminated records (2)
Consider the following Apa definitions:

type Form is (pointy, circular, rectangular);
type Figure (f: Form) is
record
x, y: Float;
case f is
when pointy =>
null;
when circular =>
r: Float;
when rectangular =>
w, h: Float;
end case;
end record;

This discriminated record type has the following set of values:

Figure = pointy(Float x Float)
+ circular(Float x Float x Float)
+ rectangular(Float x Float x Float x Float)

Here are a few of these values:

pointy(1.0, 2.0) —represents the point (1, 2)
circular(0.0, 0.0, 5.0) —represents a circle of radius 5 centered at (0, 0)
rectangular(1.5, 2.0, 3.0, 4.0) —represents a 3x4 box centered at (1.5, 2)

EXAMPLE 2.15

2.3 Composite types 31

Each value in Figure is a tagged tuple. The first and second components of each tuple
(named x and y) are common to all variants. The remaining components depend on the
tag. When the tag is pointy, there are no other components. When the tag is circular,
there is one other component (named r). When the tag is rectangular, there are two other
components (named w and h).

How should we understand objects? Simplistically we could view each object
of a particular class as a tuple of components. However, any object-oriented
language allows objects of different classes to be used interchangeably (to a
certain extent), and therefore provides an operation to test the class of a particular
object. Thus each object must have a tag that identifies its class. So we shall view
each object as a tagged tuple.

Java objects

Consider a Java program containing the following class declarations:

class Point {
private float x, y;

// methods
¥

class Circle extends Point {
private float r;

// methods
¥

class Rectangle extends Point {
private float w, h;

// methods
¥

Objects of these classes represent points, circles, and rectangles on the xy plane, respecti-
vely. The Circle class extends (is a subclass of) the Point class, so Circle objects
inherit components x and y from Point, as well as having their own component r.
The Rectangle class likewise extends the Point class, so Rectangle objects inherit
components x and y from Point, as well as having their own components w and h.

The set of objects of this program is:

Point(Float x Float)

+ Circle(Float x Float x Float)

+ Rectangle(Float x Float x Float x Float)
+...

Here “+4...” reminds us that the set of objects is open-ended. The following class
declaration:

class Date {
private int m, d;

32 Chapter 2 Values and types

EXAMPLE 2.16

public Date (int month, int day) {
this.m = month; this.d = day;
¥

// methods
}

augments the set of objects in this program to:

Point(Float x Float)

+ Circle(Float x Float x Float)

+ Rectangle(Float x Float x Float x Float)
+ Date(Integer x Integer)

+...

Compare Example 2.15 with Example 2.14. The important difference is that
the set of objects in a program is open-ended, and can be augmented at any time
simply by defining a new class (not necessarily related to existing classes). This
open-endedness helps to explain the power of object-oriented programming.

It is important not to confuse disjoint union with ordinary set union. The tags
in a disjoint union S + 7" allow us to test whether the variant was chosen from
S or T. This is not necessarily the case in the ordinary union SU 7. In fact, if
T ={a, b, c}, then:

TUT ={a,b,c}=T
T+ T = {left a, left b, left c, right a, right b, right ¢} # T
The unions of C and C++ are not disjoint unions, since they have no tags. This
obviously makes tag test impossible, and makes projection unsafe. In practice,

therefore, C programmers enclose each union within a structure that also contains
a tag.

C unions

Consider the following C type definition:
union Untagged_Number {
int ival;
float rval;
};
The set of values of this union type is:
Untagged-Number = Integer U Float

Such a union type is useless on its own. Lacking a tag, we cannot perform a tag test,
nor can we safely project a variant out of the union.
Now consider the following C type definitions:

enum Accuracy {exact, inexact};
struct Number{

2.4

2.4.1

2.4 Recursive types 33

Accuracy acc;

union {
int ival; /* used when acc contains exact */
float rval; /* usedwhen acc contains inexact */

} content;

};

This structure crudely models a disjoint union, but it is very error-prone. The programmer’s
intentions are indicated by the comments, but only great care and self-discipline by the
programmer can ensure that the structure is used in the way intended.

Recursive types

A recursive type is one defined in terms of itself. In this section we discuss two
common recursive types, lists and strings, as well as recursive types in general.

Lists

A list is a sequence of values. A list may have any number of components,
including none. The number of components is called the length of the list. The
unique list with no components is called the empty list.

A list is homogeneous if all its components are of the same type; otherwise it
is heterogeneous. Here we shall consider only homogeneous lists.

Typical list operations are:

e length
e emptiness test
e head selection (i.e., selection of the list’s first component)

o tail selection (i.e., selection of the list consisting of all but the first
component)

e concatenation.
Suppose that we wish to define a type of integer-lists, whose values are lists
of integers. We may define an integer-list to be a value that is either empty or

a pair consisting of an integer (its head) and a further integer-list (its tail). This
definition is recursive. We may write this definition as a set equation:

Integer-List = nil Unit + cons(Integer x Integer-List) (2.19)
or, in other words:
Integer-List = {nil()} U {cons(i,) | i € Integer;! € Integer-List} (2.20)

where we have chosen the tags nil for an empty list and cons for a nonempty list.
Henceforth we shall abbreviate nil() to nil.

Equations (2.19) and (2.20) are recursive, like our informal definition of
integer-lists. But what exactly do these equations mean? Consider the following

34 Chapter 2 Values and types

EXAMPLE 2.17

set of values:

{nil}

U {cons(i, nil) | i € Integer}

U {cons(i, cons(j, nil)) | i, € Integer}

U {cons(i, cons(j, cons(k, nil))) | i, j, k € Integer}
U...

i.e., the set:
{cons(ii, cons(..., cons(iy, nil)...)) | n > 0;iy, ..., i, € Integer} (2.21)

Set (2.21) corresponds to the set of all finite lists of integers, and is a solution
of (2.20).

Set (2.21) is not, however, the only solution of (2.20). Another solution is the
set of all finite and infinite lists of integers. This alternative solution is a superset
of (2.21). It seems reasonable to discount this alternative solution, however, since
we are really interested only in values that can be computed, and no infinite list
can be computed in a finite amount of time.

Let us now generalize. The recursive set equation:

L =Unit+ (T x L) (2.22)

has a least solution for L that corresponds to the set of all finite lists of values
chosen from 7. Every other solution is a superset of the least solution.

Lists (or sequences) are so ubiquitous that they deserve a notation of their
own: T* stands for the set of all finite lists of values chosen from 7. Thus:

T" =Unit+ (T x T") (2.23)

In imperative languages (such as C, C++, and ADA), recursive types must be
defined in terms of pointers, for reasons that will be explained in Section 3.6.1.
In functional languages (such as HaskeLL) and in some object-oriented languages
(such as Java), recursive types can be defined directly.

Java lists
The following (unidiomatic) Java class declarations together define lists of integers:

class IntList {
public IntNode first;

public IntList (IntNode first) {
this.first = first;
¥
}

class IntNode {
public int elem;
public IntNode succ;

public IntNode (int elem, IntNode succ) {

EXAMPLE 2.18

2.4.2 Strings

2.4 Recursive types 35

this.elem = elem; this.succ = succ;
¥
¥

The IntNode class is defined in terms of itself. So each IntNode object contains an
IntNode component named succ. This might seem to imply that an IntNode object
contains an IntNode object, which in turn contains another IntNode object, and so on
forever; but sooner or later one of these objects will have its component succ set to null.
The following code constructs an IntList object with four nodes:

IntList primes = new IntList(
new IntNode(2, new IntNode(3,
new IntNode(5, new IntNode(7, null)))));

Hasket lists

We could define a type whose values are integer lists by writing the following HASKELL
declaration:

data IntList = Nil | Cons Int IntList

This corresponds to equation (2.19). The following expressions construct values of
type IntList:

Nil

Cons 13 Nil

Cons 2 (Cons 3 (Cons 5 (Cons 7 Nil)))
As it happens, HaskeLL has built-in list types, such as:
[Int] (whose values are integer lists)
[String] (whose values are string lists)

[[Int]] (whose values are integer-list lists)

We can construct the above integer lists more concisely as follows:

[]
[13]
(2, 3, 5, 7]

A string is a sequence of characters. A string may have any number of characters,
including none. The number of characters is called the length of the string. The
unique string with no characters is called the empty string.

Strings are supported by all modern programming languages. Typical string
operations are:

e length

e equality comparison

e lexicographic comparison

e character selection

36 Chapter 2 Values and types

e substring selection
e concatenation.

How should we classify strings? No consensus has emerged among program-
ming language designers.

One approach is to classify strings as primitive values. The basic string
operations must then be built-in; they could not be defined in the language itself.
The strings themselves may be of any length. ML adopts this approach.

Another approach is to treat strings as arrays of characters. This approach
makes all the usual array operations automatically applicable to strings. In
particular, character selection is just array indexing. A consequence of this
approach is that a given string variable is restricted to strings of a fixed length.
(This is because the length of an array is fixed once it is constructed. We will study
the properties of array variables in Section 3.3.2.) Useful operations peculiar to
strings, such as lexicographic comparison, must be provided in addition to the
general array operations. Apa adopts this approach (but also supports bounded
and unbounded string types using standard packages).

A slightly different and more flexible approach is to treat strings as pointers to
arrays of characters. C and C++ adopt this approach.

In a programming language that supports lists, the most natural approach is to
treat strings as lists of characters. This approach makes all the usual list operations
automatically applicable to strings. In particular, the first character of a string can
be selected immediately (by head selection), but the nth character cannot. Useful
operations peculiar to strings must be provided in addition to the general list
operations. HAskeLL and ProLOG adopt this approach.

In an object-oriented language, the most natural approach is to treat strings
as objects. This approach enables strings to be equipped with methods providing
all the desired operations, and avoids the disadvantages of treating strings just as
special cases of arrays or lists. Java adopts this approach.

2.4.3 Recursive types in general

As we have seen, a recursive type is one defined in terms of itself. Values of a
recursive type are composed from values of the same type. List types, discussed in
Section 2.4.1, are recursive types.

In general, the set of values of a recursive type, R, will be defined by a recursive
set equation of the form:

R=...+(..R...R..) (2.24)

A recursive set equation may have many solutions. Fortunately, a recursive set
equation always has a least solution that is a subset of every other solution. In
computation, the least solution is the one in which we are interested.

The least solution to equation (2.24) can be determined iteratively as follows.
Substitute the empty set for R in the right-hand side of (2.24), giving a first
approximation for R. Then substitute this first approximation for R in the right-
hand side of (2.24), giving a second and better approximation for R. Continue in
this way, at each step substituting the latest approximation for R in the right-hand

2.5 Typesystems 37

side of (2.24). The successive approximations are larger and larger subsets of the
least solution.

The cardinality of a recursive type is infinite, even if every individual value of
the type is finite. For example, the set of lists (2.21) is infinitely large, although
every individual list in that set is finite.

EXAMPLE 2.19 HasKELL recursive types

The following HaskeLL declaration defines a recursive type IntTree, whose values are
binary trees containing integers at their leaves:

data IntTree = Leaf Int | Branch IntTree IntTree
The following expressions construct some values of type IntTree:

Leaf 11

Branch(Leaf 11)(Leaf 5)

Branch(Branch(Leaf 5)(Leaf 7))
(Branch(Leaf 12)(Leaf 18))

The type definition corresponds to the following recursive set equation:
Int-Tree = Leaf Integer + Branch(Int-Tree x Int-Tree) (2.25)

Let us determine the least solution to (2.25) iteratively. Substituting the empty set for
Int-Tree in (2.25), we get our first approximation:

Leaf Integer (2.26)

which is in fact the set of all binary trees of depth 0. Substituting (2.26) for Int-Tree in
(2.25), we get our second approximation:
Leaf Integer
+ Branch(Leaf Integer x Leaf Integer) (2.27)
which is in fact the set of all binary trees of depth 0 or 1. Substituting (2.27) for Int-Tree in
(2.25), we get:
Leaf Integer
+ Branch(Leaf Integer x Leaf Integer)
+ Branch(Leaf Integer x Branch(Leaf Integer x Leaf Integer))
+ Branch(Branch(Leaf Integer x Leaf Integer) x Leaf Integer)
+ Branch(Branch(Leaf Integer x Leaf Integer)
x Branch(Leaf Integer x Leaf Integer)) (2.28)

which is in fact the set of all binary trees of depth 0—2. Continuing in this way, we get closer
and closer to the set of all finite binary trees.

2.5 Type systems

A programming language’s type system groups values into types. This allows
programmers to describe data effectively. It also helps prevent programs from

38 Chapter 2 Values and types

performing nonsensical operations, such as multiplying a string by a boolean.
Performing such a nonsensical operation is called a type error.

Possession of a type system is one of the most important ways in which high-
level languages differ from low-level languages. In a typical low-level language, the
only “‘types” are bytes and words, so nonsensical operations cannot be prevented.

In this section we introduce some basic concepts in type systems: static vs
dynamic typing, and type equivalence. In Chapter 8 we shall study more advanced
concepts in type systems.

2.5.1 Static vs dynamic typing

EXAMPLE 2.20

Before any operation is to be performed, the types of its operands must be checked
in order to prevent a type error. For example, before an integer multiplication
is performed, both operands must be checked to ensure that they are integers.
Similarly, before an and or or operation is performed, both operands must be
checked to ensure that they are booleans. Before an array indexing operation is
performed, the left operand must be checked to ensure that it is indeed an array
(and not a primitive value or record). Such checks are called #ype checks.

The type check must be performed before the operation itself is performed.
However, there may still be some freedom in the timing: the type check could
be performed either at compile-time or at run-time. This seemingly pragmatic
issue in fact underlies an important classification of programming languages, into
statically typed and dynamically typed languages.

In a statically typed language, each variable and each expression has a
fixed type (which is either explicitly stated by the programmer or inferred
by the compiler). Using this information, all operands can be type-checked at
compile-time.

In a dynamically typed language, values have fixed types, but variables and
expressions have no fixed types. Every time an operand is computed, it could
yield a value of a different type. So operands must be type-checked after they are
computed, but before performing the operation, at run-time.

Most high-level languages are statically typed. SMALLTALK, Lisp, PROLOG,
PERL, and PyTHON are examples of dynamically typed languages.

C++ static typing

Consider the following C++ function definition:

bool even (int n) {
return (n % 2 == 0);

3

Although the compiler does not know the value of the parameter n, it does know that this
value must be of type int, since that is stated in the declaration of n. From that knowledge
the compiler can infer that both operands of “%’* will be of type int, hence the result of
“%”” will also be of type int. Thus the compiler knows that both operands of ““=="" will be
of type int. Finally, the compiler can infer that the returned value will be of type bool,
which is consistent with the function’s stated result type.

EXAMPLE 2.21

2.5 Type systems 39

Now consider the function call “even(i+1)”, where i is declared to be of type int.
The compiler knows that both operands of “+°* will be of type int, so its result will be of
type int. Thus the type of the function’s argument is known to be consistent with the type
of the function’s parameter.

Thus, even without knowledge of any of the values involved (other than the literals),
the compiler can certify that no type errors are possible.

PytHON dynamic typing

Now consider a function similar to that of Example 2.20, but this time expressed in the
dynamically typed language PyTHON:

def even (n):
return (n % 2 == 0)

Here the type of n’s value is not known in advance, so the operation “%’’ needs a run-time
type check to ensure that its left operand is an integer.

This function could be called with arguments of different types, as in “even(i+1)”,
or “even("xyz")”. However, no type error will be detected unless and until the left
operand of “%” turns out not to be an integer.

The following function, also in PyTHoON, illustrates that dynamic typing is sometimes
genuinely useful:

def respond (prompt):
Print prompt and return the user’s response, as an integer if possible,
or as a string otherwise.
try:
response = raw_input(prompt)
return int(response)
except ValueError:
return response

The following commands might be used to read a date into two variables:

m respond("Month? ")
d = respond("Day? ")

In the first command, the user’s response (presumably a month name or number) is
assigned to the variable m. In the second command, the user’s response (presumably a day
number) is assigned to the variable d.

The following commands might then be used to manipulate the date into a standard
form, in which the values of both m and d are integers:

if m == "Jan":
m =1
elif m == "Dec":
m= 12
elif ! (isinstance(m, int) and 1 <=m <= 12):
raise DateError, \

"month is not a valid string or integer"
if ! (disinstance(d, int) and 1 <= d <= 31):
raise DateError, "day is not a valid integer"”

40 Chapter 2 Values and types
The expression “m == "Jan"” will yield true only if m’s value is the string “Jan”, false
if it is any other string, and false if it is not a string at all. Note how the type of m’s value
influences the flow of control.

This example would be awkward to program in a statically typed language, where the
type system tends to “‘get in the way”’.

The choice between static and dynamic typing is essentially pragmatic:

e Static typing is more efficient. Dynamic typing requires (possibly repeated)
run-time type checks, which slow down the program’s execution. Static
typing requires only compile-time type checks, whose cost is minimal (and
one-off). Moreover, dynamic typing forces all values to be tagged (in order
to make run-time type checks possible), and these tags take up storage
space. Static typing requires no such tagging.

e Static typing is more secure: the compiler can certify that the program
contains no type errors. Dynamic typing provides no such security. (This
point is important because type errors account for a significant proportion
of programming errors.)

e Dynamic typing provides greater flexibility, which is needed by some
applications where the types of the data are not known in advance.

In practice the greater security and efficiency of static typing outweigh the
greater flexibility of dynamic typing in the vast majority of applications. It is no
coincidence that most programming languages are statically typed.

2.5.2 Type equivalence

Consider some operation that expects an operand of type Tj. Suppose that
it is given instead an operand whose type turns out to be 7,. Then we must
check whether T is equivalent to T,, written 71 = T,. What exactly this means
depends on the programming language. (The following discussion assumes that
the language is statically typed.)

One possible definition of type equivalence is structural equivalence: Ty = T,
if and only if 7} and T, have the same set of values.

Structural equivalence is so called because it may be checked by comparing
the structures of the types 71 and T,. (It is unnecessary, and in general even
impossible, to enumerate all values of these types.)

The following rules illustrate how we can decide whether types 77 and
T, defined in terms of Cartesian products, disjoint unions, and mappings, are
structurally equivalent or not. (We could similarly phrase the rules in terms of the
types of a specific programming language.)

e If 71 and T, are both primitive, then 77 = T if and only if 77 and T, are
identical. For example:

Integer = Integer
but Integer /=Float

(The symbol ““/="" means ‘‘is not equivalent to”’.)

EXAMPLE 2.22

2.5 Typesystems 41

e IfT) =A) x Byand T, = A, x By,then T; = T, if and only if A} = A; and
B; = B;. For example:
Integer x Float = Integer x Float
but Integer x Float /=Float x Integer
e If T=A) - Byand T, = A, — By, then T; = T, if and only if A} = A,
and By = B,. For example:
Integer — Float = Integer — Float
but Integer — Float /=Integer — Boolean
o If ' =A1+B; and T, = A, + By, then T} =T, if and only if either
Ay = Aj;and By = By, or Ay = B, and B} = Aj;. For example:
Integer + Float = Integer + Float
Integer + Float = Float + Integer
but Integer + Float /= Integer + Boolean

e Otherwise, Ty /=T,.

Although these rules are simple, it is not easy to see whether two recursive
types are structurally equivalent. Consider the following:

Ty = Unit+ (S x T7)
T, = Unit 4 (S x T?)
T3 = Unit 4 (S x T?)

Intuitively, these three types are all structurally equivalent. However, the rea-
soning needed to decide whether two arbitrary recursive types are structurally
equivalent makes type checking uncomfortably hard.

Another possible definition of type equivalence is name equivalence: T, = T,
if and only if 77 and T, were defined in the same place.

Structural vs name equivalence
Consider the following declarations in a hypothetical C-like language:

struct Position { int x, y; };
struct Position pos;

struct Date { int m, d; };
struct Date today;

void show (struct Date d);

Here the call “show(today) ;” would pass its type check, whether the language adopts
structural or name equivalence. On the other hand, the call “show(pos) ;” would pass
its type check only if the language adopts structural equivalence.

Now consider the following declarations (in a different part of the program):

struct OtherDate { int m, d; };
struct OtherDate tomorrow;

42 Chapter 2 Values and types

The call “show(tomorrow) ;’’ would pass its type check only if the language adopts
structural equivalence. It would fail its type check if the language adopts name equivalence,
since the type of tomorrow is not name-equivalent to the type of the parameter of show:
the two types were defined in different places.

The following summarizes the advantages and disadvantages of structural and
name equivalence:

e Name equivalence forces each distinct type to be defined in one and only
one place. This is sometimes inconvenient, but it helps to make the program
more maintainable. (If the same type is defined in several places, and
subsequently it has to be changed, the change must be made consistently in
several places.)

e Structural equivalence allows confusion between types that are only coinci-
dentally similar (such as Position and Date in Example 2.22).

Structural equivalence is adopted by ALGoL68. Name equivalence is adopted
by most programming languages, including C++ and Apa. Confusingly, name and
structural equivalence are used for different types in C: a type definition introduced
by enum, struct, or union defines a new type, while a type definition introduced
by typedef simply introduces a synonym for an existing type.

2.5.3 The Type Completeness Principle

In Section 2.1 we listed the various types of values supported by various languages.
Now consider PASCAL:

e PascaL provides primitive values (booleans, characters, enumerands, inte-
gers, real numbers), composite values (records, arrays, sets, files), pointers,
and procedures.

PascaL procedures count as values because they can be passed as arguments
to other procedures. However (unlike primitive and composite values), proce-
dures cannot be assigned, nor used as components of composite values. We say
that PascaL procedures are second-class values, while PAscal primitive values,
composite values, and pointers are first-class values.

Even among PascaL’s first-class values there are finer class distinctions. For
example, a function result must be a primitive value or pointer, but not a composite
value. This restriction often makes coding awkward. For example, we might want
to write a function with a record as its result; instead we are forced to write a
proper procedure with a record variable parameter, which cannot be called from
within an expression.

Pascav’s class distinctions are unusually fine, but class distinctions are found
in nearly all the major programming languages including C, C++, JAva, and ADA.
On the other hand, the modern functional languages (such as ML and HASKELL)
manage to avoid such class distinctions altogether: they allow all values, including
functions, to be manipulated in similar ways.

2.6 Expressions 43

We can characterize a language’s class-consciousness in terms of its adherence
to the Type Completeness Principle:

No operation should be arbitrarily restricted in the types of its operands.

The word arbitrarily is important here. Insisting that the operands of the and
operation are booleans is not an arbitrary restriction, since it is inherent in the
nature of this operation. But insisting that only values of certain types can be
assigned is an arbitrary restriction, as is insisting that only values of certain types
can be passed as arguments or returned as function results.

The Type Completeness Principle is not meant to be dogma. It is merely
a principle that language designers ought to bear in mind, because arbitrary
restrictions tend to reduce the expressive power of a programming language.
Sometimes restrictions are justified by other, conflicting, design considerations.
For example, an imperative language’s treatment of procedures as second-class
values can be justified on the grounds that it avoids certain implementation
problems. However, there is very little justification for PascaL’s restriction on
function result types; more modern languages allow function results to be of

any type.

2.6 Expressions

2.6.1

Literals

Having studied values and types, let us now examine the programming language
constructs that compute values. An expression is a construct that will be evaluated
to yield a value.

Expressions may be formed in various ways. In this section we shall survey
the fundamental forms of expression:

o literals
e constructions

function calls
conditional expressions
iterative expressions

e constant and variable accesses.

We will consider two other forms of expression in later chapters: expressions with
side effects in Section 3.8, and block expressions in Section 4.4.2.

Here we are primarily interested in the concepts underlying expressions, not
in their syntactic details. From the point of view of programming language design,
what really matters is that the language provides all or most of the above forms
of expression. A language that omits (or arbitrarily restricts) too many of them is
likely to be impoverished. Conversely, a language that provides additional forms
of expression is likely to be bloated: the additional forms are probably unnecessary
accretions rather than genuine enhancements to the language’s expressive power.

The simplest kind of expression is a literal, which denotes a fixed value of
some type.

44 Chapter 2

EXAMPLE 2.23

Values and types

Literals
Here are some typical examples of literals in programming languages:
365 3.1416 false "% "What?"

These denote an integer, a real number, a boolean, a character, and a string, respectively.

2.6.2 Constructions

EXAMPLE 2.24

EXAMPLE 2.25

EXAMPLE 2.26

A construction is an expression that constructs a composite value from its
component values. In some languages the component values must be literals; in
others, the component values are computed by evaluating subexpressions.

C or C++ structure constructions
The following C or C++ structure construction:

{jan, 1}

constructs a value of the type Date (Example 2.6). The component values must be literals.

Apa record constructions
The following Apa record construction:
(m => today.m, d => today.d + 1)

constructs a value of the type Date (Example 2.5). The component values are computed.
More concise notation is also supported, but only in a syntactic context where the type
is apparent:

tomorrow: Date := (today.m, today.d + 1);

C++ array constructions
In the following C++ code:

int size[] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

if (is_leap(this_year))
size[feb] = 29;

an array construction is used to initialize the variable size. The component values must
be literals.

EXAMPLE 2.27

EXAMPLE 2.28

EXAMPLE 2.29

2.6 Expressions 45

ADA array constructions

In the following Apa code:

size: array (Month) of Integer :=
(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

if is_leap(this_year) then
size(feb) := 29;
end if;

an array construction is used to initialize the variable size. In Apa constructions,
component values may be computed, but in this example they are literals. (It would be nice
to use a conditional expression to compute the feb component, instead of the literal 28,
but Apa does not provide conditional expressions.)

The above array construction could also be expressed as:

size: array (Month) of Integer :=
(feb => 28, apr|jun|sep|nov => 30, others => 31);

Haske list constructions

The following HaskEeLL list construction:

[31, if isLeap(thisYear) then 29 else 28,
31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

constructs a value of type [Int]. The component values are computed.

As illustrated by these examples, C++ and ADA provide constructions for
structures (records) and arrays. C++ constructions are very restricted: they may
occur only as initializers in variable declarations, and the component values must
be literals. To construct a new structure or array value, we must assign to its
components one by one. For example:

Date today, last_day;

today.m = ...; today.d = ...;
last_day.m = today.m; last_day.d = size(today.m);

which is both tedious and error-prone. In Aba we would write:

today = (m => ..., d => ...);
last_day := (m => today.m, d => size(today.m));

Java object constructions

The following Java object construction:

new Date(today.m, size(today.m))

46 Chapter 2

Values and types

constructs an object of class Date (Example 2.15). And the following:
new IntList(null)

constructs an object of class IntList (Example 2.17).

A Java construction is a call to an operation called a constructor. The effect of
a constructor call is to construct a new object of a particular class, the constructor
itself being defined as part of the class declaration. The constructor’s parameters
are typically used to initialize at least some of the new object’s components; other
components may be initialized to default values or computed in some way.

2.6.3 Function calls

A function call computes a result by applying a function procedure (or method) to
one or more arguments. The function call typically has the form “F(FE)”’, where F
determines the function procedure to be applied, and the expression E is evaluated
to determine the argument.

In most programming languages, F is just the identifier of a specific function.
However, in those languages that treat functions as first-class values, F may be
any expression yielding a function. For example, the HAaskeLL function call:

(if ... then sin else cos)(x)

applies either the sine function or the cosine function to the value of x.

In the case of a function of n parameters, the function call typically has
the form “F(E1, ..., E,)”. We can view this function call as passing »n distinct
arguments; or we can view it as passing a single argument that is an n-tuple. We
may adopt whichever view is more convenient.

We shall study function procedures in greater detail in Section 5.1.1, and
parameters in Section 5.2.

An operator may be thought of as denoting a function. Applying a unary or
binary operator to its operand(s) is essentially equivalent to a function call with
one or two argument(s):

@ E is essentially equivalent to @(E) (where & is a unary operator)
E, ® E, is essentially equivalent to ®(E1, E,) (where ® is a binary operator)

For example, the conventional arithmetic expression:
a*b+c/d

is essentially equivalent to a composition of function calls:
+(*(a, b), /(c, d))

The convention whereby we write a binary operator between its two operands
is called the infix notation, which is adopted by nearly all programming languages.
The alternative convention whereby we write every operator before its operands
is called the prefix notation, which is adopted only by Lisp among the major
programming languages.

2.6 Expressions 47

Here are some examples of JAva operators:

e The unary operator “!”’ denotes the function {false — true, true — false} in
Boolean — Boolean.

e The binary operator “%” denotes the remainder function in Integer x
Integer — Integer.

e The binary operator ““+’’ denotes several functions at the same time: integer
addition in Integer x Integer — Integer, real addition in Float x Float —
Float, and concatenation in String x String — String. This is an example of
overloading (see Section 8.3).

Several modern programming languages (such as C++, Apa, and HASKELL)
explicitly recognize the analogy between operators and functions. “E; ® E,” is
then exactly equivalent to “®(E1, E;)”, and operators may be defined in exactly
the same way as function procedures. Such languages are a bit easier to learn,
because they do not have separate type rules for operators and functions. At the
same time, such languages are notationally more convenient, since they allow us
to define or redefine operators.

In other languages there is only a rough analogy between operators and
functions. Each operator has its own type rules. For example, the Java binary
operator ““+” allows its operands to be a mixture of integers, real numbers, and
strings. If one operand is a real number and the other is an integer, the integer
is converted to a real number and real addition is performed. If one operand
is a string and the other is a number, the number is converted to a string and
concatenation is performed.

2.6.4 Conditional expressions

EXAMPLE 2.30

A conditional expression computes a value that depends on a condition. It
has two or more subexpressions, from which exactly one is chosen to be
evaluated.

Choice is of course fundamental in computation. All programming languages
provide conditional expressions, or conditional commands, or both, and the
underlying concepts are similar. Conditional commands will be discussed in
Section 3.7.6.

C, C++,and Java provide if-expressions. HASKELL provides both if-expressions
and case expressions.

C if-expression

The following C (or C++ or Java) if-expression yields the maximum of the values of x
and y:

X>y ? X 1y

The syntax is cryptic, but this expression may be read as “if x>y then x else y”.

48 Chapter 2 Values and types

EXAMPLE 2.31

HaskeLL conditional expressions

The following HASKELL case expression yields the number of days in thisMonth and
thisYear:

case thisMonth of
Feb -> if isLeap(thisYear) then 29 else 28

Apr -> 30
Jun -> 30
Sep -> 30
Nov -> 30

-> 31

If the value of thisMonth is Feb, this yields the value of the if-expression “if ... then
29 else 28”. If the value of thisMonth is Apr or Jun or Sep or Nov, this yields 30.
Otherwise this yields 31. (The pattern “_"" matches any value not already matched.)

2.6.5 lterative expressions

EXAMPLE 2.32

An iterative expression is one that performs a computation over a series of values
(typically the components of an array or list), yielding some result.

Iterative commands are commonplace in programming languages, and we
shall study them in Section 3.7.7. Iterative expressions are rather more unusual,
but they are a prominent feature of the functional language HASKELL, in the form
of list comprehensions.

HaskeL list comprehensions

Given a list of characters cs, the following HaskeLL list comprehension converts any
lowercase letters to uppercase, yielding a modified list of characters:

[if isLowercase c then toUppercase c else c
| ¢ <- cs]

The generator “‘c <- cs” binds c to each component of s in turn. If the value of s is
[(C, a1, ‘0, '], this list comprehension will yield [‘C’, ‘A’, ‘R’, ‘O, ‘L’].

Given a list of integers ys, the following HAskELL list comprehension yields a list (in
the same order) of those integers in ys that are multiples of 100:

[y | v <- ys, v 'mod' 100 = 0]

The generator “y <- ys” binds y to each component of ys in turn. The filter ““y 'mod"'
100 = 0” rejects any such component that is not a multiple of 100. If the value of ys is
[1900, 1946, 2000, 2004], this list comprehension will yield [1900, 2000].

List comprehensions are inspired by the set comprehensions of mathematical
notation. For example, given a set of integers ys, the following set comprehension:

{y | y € ys;y mod 100 = 0}

denotes the set of those integers in the set ys that are multiples of 100.

2.7 Implementation notes 49

2.6.6 Constant and variable accesses

EXAMPLE 2.33

A constant access is a reference to a named constant, and yields the value of that
constant. A variable access is a reference to a named variable, and yields the
current value of that variable.

ApA constant and variable accesses
Within the scope of the Apa declarations:

pi: constant Float := 3.1416;
r: Float;

consider the expression:
2.0 * pi * v

Here “pi” is a constant access, yielding the value 3.1416 to which pi is bound. On the
other hand, “r” is a variable access, yielding the value currently contained in the variable
named r.

The value of an expression containing constant and variable identifiers
depends on how these identifiers were declared. In other words, it depends
on the environment of the expression. (See Section 4.1.)

2.7 Implementation notes

In this section we briefly review how values of primitive, composite, and recursive
types are represented in a computer. The purpose of this section is to reinforce
conceptual understanding, so it ignores certain complications that arise in practice.

2.7.1 Representation of primitive types

The values of each primitive type T are typically represented by single or multiple
bytes: 8-bit, 16-bit, 32-bit, and 64-bit representations are the most common.

The choice of representation is constrained by the type’s cardinality #7". With
n bits we can represent at most 2" different values. Therefore the smallest possible
representation is log, (#7') bits.

In principle, we could represent a boolean value by a single bit (0 for false and
1 for true). In practice the compiler will usually choose a whole byte, since most
computers make access to individual bits awkward.

ASCII or ISO LATIN characters have 8-bit representations. UNICODE characters
have 16-bit representations.

The representation of integers is related to the desired range. Assuming
two’s complement representation, in » bits we can represent integers in the range
{=27=1, ..., 2""1 —1}. Typically it is the compiler that chooses n, and from that
we can deduce the range of integers. On the other hand, if the programmer is

50 Chapter 2 Values and types

able to define the range of integers, the compiler must use the defined range to
determine the minimum #. In Example 2.2, the programmer has defined the range
{0, ..., 10'%); the two’s complement representation must therefore have at least
35 bits, but in practice the compiler is likely to choose 64 bits.

The representation of real numbers is related to the desired range and
precision. Nowadays most compilers adopt the IEEE floating-point standard
(either 32 or 64 bits).

Enumerands are typically represented by unsigned integers starting from 0. In
Example 2.3, the twelve enumerands of type Month would be represented by the
integers {0, ..., 11}; the representation must have at least 4 bits, but in practice
the compiler will choose a whole byte.

2.7.2 Representation of Cartesian products

The values of a Cartesian product type are represented simply by juxtaposing the
components in a fixed order.

In Example 2.5, each value of the record type Date is represented by juxta-
posing a component of type Month with a component of type Day_Number, as
illustrated in Figure 2.5. The structure type of Example 2.6 is represented similarly.

Any record or structure component can be accessed efficiently, since the
compiler can determine its offset relative to the start of the record or structure.

2.7.3 Representation of arrays

The values of an array type are represented by juxtaposing the components in
ascending order of indices.

In Example 2.7, the variable p is an array of three boolean components, with
indices {0, 1, 2}. The array is represented by juxtaposing the three components in
ascending order of indices. This is illustrated in Figure 2.6(a), which also shows an
array of five boolean components.

Figure 2.5 Representation of Apa records of type Date

m| Jjan m| dec (Example 2.5), or C/C++ structures of type Date
al 1 d| 25 (Example 2.6).
(@ 0] false 0| false
true 1| false
2| false 2| true
3| true
4| false
(b) red| false red | true Figure 2.6 Representation of (a) C++ arrays of type
green | rue | green | true bool[] (Example 2.7); (b) Apa arrays of type Pixel
blue | false blue | _true (Example 2.8).

2.7 Implementation notes 51

In Example 2.8, each value of type Pixel is an array of three boolean
components, with indices {red, green, blue}. Once again, the array is represented
by juxtaposing the three components in ascending order of indices, as illustrated
in Figure 2.6(b).

If a is an array, the component a[i] can be accessed by using i to compute
the component’s offset relative to the start of a, assuming that every component
of a occupies the same fixed amount of space, say s bytes. If the lower bound of
a is [, the component’s offset is s(i — [) bytes. If the lower bound / is 0 (as in C,
C++, and Java), this simplifies to si bytes. This offset computation must be done
at run-time, since the value of i is not known until run-time.

2.7.4 Representation of disjoint unions

Each value of a disjoint union type is represented by a tag field followed by one of
several possible variants. The type (and therefore representation) of the variant
depends on the current value of the tag field.

In Example 2.12, each value of the HASKELL algebraic type Number is repre-
sented by a tag field followed by either a variant of type Int (if the tag is exact) or
a variant of type Float (if the tag is inexact). This is illustrated in Figure 2.7(a).

In Example 2.13, each value of the Apa discriminated record type Number
is represented by a tag field of type Accuracy followed by either a component
ival of type Integer (if the tag is exact) or a component rval of type Float
(if the tag is inexact). This is illustrated in Figure 2.7(b). Note the similarity with
Figure 2.7(a).

Both the tag field and the variants of a disjoint union can be accessed
efficiently, since the compiler can determine their offsets relative to the start of
the disjoint union.

A C or C++ union is represented like a disjoint union, but with no tag field.

The representation of objects is complicated by the possible existence of
subclasses and superclasses. We defer discussion of that topic until Section 6.4.

2.7.5 Representation of recursive types

Consider the HASkELL recursive type definition of Example 2.18. An IntList
value is represented by a pointer to a tag field, which is followed by one of two
variants. If the tag is cons, the variant consists of an Int component and an
IntList component. If the tag is cons, the variant is empty. This is illustrated in

Figure 2.8.
(a) tag| Exact tag |Inexact
variant| 2 variant|3,1416

Figure 2.7 Representation of (a) HaskeLL values of
) acc| exact acc [inexact] the algebraic type Number (Example 2.12); (b) Apa
discriminated records of type Number

(Example 2.13).

ival| 2 rval|3.1416

52 Chapter 2 Values and types

| .—|—> Cons Cons Cons Cons Nil |
2 / 3 / 5 / 7
*— *— *— *— Key:
e pointer

Figure 2.8 Representation of HaskeLL lists of type IntList (Example 2.18).

The Java recursively defined class of Example 2.17 would be represented
similarly. Recursively defined list types defined using explicit pointers in C++ or
Apa would also be represented similarly. (See Exercise 2.7.2.)

Summary
In this chapter:

e We have studied values of primitive, composite, and recursive types supported
by programming languages. In particular, we found that nearly all the composite
types of programming languages can be understood in terms of Cartesian products,
mappings, and disjoint unions.

e We have studied the basic concepts of type systems, in particular the distinction
between static and dynamic typing, the issue of type equivalence, and the Type
Completeness Principle.

e We have surveyed the forms of expressions found in programming languages:
literals, constructions, function calls, conditional and iterative expressions, constant
and variable accesses.

e We have seen how values of primitive, composite, and recursive types can be
represented in computers.

Further reading

HoARE (1972, 1975) produced the first comprehensive and
systematic treatment of composite types in terms of Carte-
sian products, disjoint unions, powersets, mappings, and
recursive types. Hoare’s treatment built on earlier work by
MCCARTHY (1965).

Exercises

Exercises for Section 2.1

A detailed and technical treatment of types may be found
in TENNENT (1981). Tennent shows that a simple treat-
ment of types as sets of values needs to be refined when we
consider recursive definitions involving function

types.

*2.1.1 Some programming languages have no concept of type. (a) Name at least
one such language. (b) What are the advantages of types? (c) What are the

disadvantages of types?

Exercises for Section 2.2

2.2.1 Write down the set of values of each primitive type in your favorite program-

ming language.

222

223

Exercises for Section 2.3

231

232

233

234

235

Exercises 53

Consider an application that processes amounts of money up to $100000.00.
Which primitive type would you use to represent such amounts: (a) in C or C++;
(b) in Java; (c) in Apa?
Consider an application that processes certain economic data country by country.
Which primitive type would you use to represent countries: (a) in C or C++;
(b) in Java; (c) in ApA?

Using the notation of Cartesian products, mappings, and disjoint unions, write
down (a) the set of values of each of the following C++ types:

enum Suit {club, diamond, heart, spade};
struct Card {Suit s; byte r;};

typedef Card[] Hand;

struct Turn { bool pass; Card play; }I};

and (b) the set of values of each of the following Apa types:

type Suit is (club, diamond, heart, spade);
type Rank is range 2 .. 14;
type Card is
record
s: Suit;
r: Rank;
end record;
type Hand is array (1 .. 7) of Card;
type Turn (pass: Boolean) is
record
case pass is
when false => play: Card;
when true => null;
end case;
end record;

What is the cardinality of each type?

Explore the differences between C (or C++) arrays, Java arrays, and Apa arrays.
Supposing that al and a2 are arrays with bounds 0 and 9, what is the effect in
each language of (a) accessing al[i] when i is out of range; (b) assigning a2
to al?

Java arrays are classified as objects. How does this affect the use of arrays in
Java programs?

Explore the relationship between S — (T — U) and (S x T) — U. (Hint: Com-
pare the types “array (S) of array (7) of U” and “array (S, 7) of U” in
ADA.)

Explore the relationship between arrays and function procedures. In your
favorite programming language, implement each of the following using both
an array and a function: (a) the mapping {false — true, true — false}; (b) the
factorial function over the integers 0 through 10. In what ways are arrays and
functions fundamentally different? Answer this question in terms of the essential
properties of arrays and functions, neglecting any peculiarities that arrays or
functions might have in your favorite language.

54 Chapter 2 Values and types

2.3.6

Exercises for Section 2.4
2.4.1

242

243

Exercises for Section 2.5
*2.5.1

*2.5.2

253

*2.5.4

255

Using the notation of Cartesian products, mappings, disjoint unions, and
lists, analyze the following bulk data types: (a) sequential files; (b) direct files;
(c) relations (as in relational databases).

Write recursive types to represent integer lists of any length, (a) in C or C++,
and (b) in Apa. (See also Exercise 2.7.2.)

Choose (a) a programming language in which strings are primitive values (such
as ML); (b) a language in which strings are character arrays (such as C or Apa);
(c) a language in which strings are character lists (such as HaskeLL or ProLOG);
and (d) a language in which strings are objects (such as Java). Make a table
showing the string operations provided by each language. In language (b), which
string operations are in fact available for all arrays? In language (c), which string
operations are in fact available for all lists? In each language, are any of the
operations identified in Section 2.4.2 missing, and could the missing operations
be defined in the language itself?

Use the iterative method of Section 2.4.3 to determine the first four approxima-
tions to the least solution of the recursive set equation (2.22).

Systematically analyze the type system of your favorite programming language,
in the same way as various languages have been analyzed in this chapter.
(a) What composite types are supported, and how is the set of values of each
composite type defined in terms of its component types? (b) Can recursive
types be defined, and if so how? (c) Is your language statically or dynamically
typed? (d) How is type equivalence defined in your language?

Which types of values in your favorite programming language may be
(a) constants; (b) operands of operators; (c) results of operators; (d) arguments;
(e) function results; (f) array/record/list components? How well does your
language comply with the Type Completeness Principle?

(a) Find a program you have written in a statically typed language that would
have been simpler to write in a dynamically typed language. (b) Find a program
you have written in a dynamically typed language that could equally well have
been written in a statically typed language.

The experimental programming language AmBER (Cardelli 1986) is statically
typed, but it has a special feature that supports a controlled form of dynamic
typing. The type dynamic is equipped with the following operations: conver-
sion of a given value of any type to dynamic; testing of a given dynamic value
d to determine whether it was originally converted from type T’; conversion of
that dynamic value d back to type 7. Show that the type dynamic can be
understood in terms of disjoint unions.

Suppose that you are given a file of employee records (which has been
generated by someone else’s program). You are to write a program that reads
and processes these records. Show that run-time type checks are inevitable,
even if you choose to write your program in a statically typed language such as
C, C++, or Apa.

Exercises for Section 2.6
2.6.1

*2.6.2

*#2.6.3

*%2.6.4

Exercises for Section 2.7
2.7.1

272

Exercises 55

Systematically analyze the forms of expression in your favorite programming
language, comparing them with the forms of expression surveyed in Section 2.6.
Are any relevant forms of expression missing? Are any exotic forms provided,
and are they essential?

Choose a programming language (such as Apa) that does not support condi-
tional expressions. Design an extension to that language to allow conditional
expressions.

Choose a programming language (such as almost any imperative or object-
oriented language) that does not support iterative expressions. Design an
extension to that language to allow iterative expressions.

Choose a programming language (such as C, C++, or Java) that does not sup-
portunrestricted structure/record and array constructions. Design an extension
to that language to allow such constructions. Enable your constructions to have
arbitrary subexpressions (not just literals) of the appropriate types. Enable
your constructions to be used anywhere that expressions are allowed (not
just in variable declarations). Look out for possible interactions between your
extensions and other parts of the language.

Draw diagrams to show how the types of Exercise 2.3.1 would be represented
in a computer.

Consider the recursive types you defined in answer to Exercise 2.4.1. Draw
diagrams to show how these recursive types would be represented in a
computer. Compare your answers with Figure 2.8.

Chapter 3

Variables and storage

“Once a programmer has understood the use of variables, he has understood the essence
of programming.” This remark of Edsger Dijkstra was actually about imperative pro-
gramming, which is characterized by the use of variables and assignment. The remark
might seem to be an exaggeration now that other programming paradigms have become
popular, but imperative programming remains important in its own right and also underlies
object-oriented and concurrent programming.

In this chapter we shall study:

e asimple model of storage that allows us to understand variables;

e simple and composite variables, and total and selective updating of composite
variables;

e static, dynamic, and flexible arrays;

o the difference between copy semantics and reference semantics;

o lifetimes of global, local, heap, and persistent variables;

e pointers, which are references to variables;

e commands, which are program constructs that update variables;

e expressions with side effects on variables;

e how storage is allocated for global, local, and heap variables.

3.1 Variables and storage

In imperative (and object-oriented and concurrent) programming languages, a
variable is a container for a value, and may be inspected and updated as often as
desired. Variables are used to model real-world objects whose state changes over
time, such as today’s date, the current weather, the population of the world, or a
country’s economic performance.

The variables of imperative programs do not behave like mathematical
variables. (A mathematical variable stands for a fixed but unknown value; there is
no implication of change over time. The variables of functional and logic programs
do behave like mathematical variables.)

To understand how the variables of imperative programs really do behave, we
need some notion of storage. Now, real storage media (such as RAMs and disks)
have many properties that are irrelevant for our purposes: word size, capacity,
speed, and so on. Instead we shall use an abstract model of storage that is simple
but adequate:

57

58 Chapter 3 Variables and storage

primitive variable:

%
it iabl 42
composite variaole: 9
JJRRTES SRR Mndeﬁ}’led
true
unallocated cell: [] Figure 3.1 An abstract storage model.

e A store is a collection of storage cells, each of which has a unique address.

e Each storage cell has a current status, which is either allocated or unallocated.
Each allocated storage cell has a current content, which is either a storable
value or undefined.

We can picture each storage cell as a box, as shown in Figure 3.1.
In terms of this storage model, we can view a variable as a container consisting
of one or more storage cells. More precisely:

e A simple variable occupies a single allocated storage cell.
e A composite variable occupies a group of contiguous allocated storage cells.

A storable value is one that can be stored in a single storage cell. Each
programming language counts certain types of values as storable:

e C++’s storable values are primitive values and pointers. (Structures, arrays,
unions, and objects are not storable, since none of these can be stored in
a single storage cell. Functions also are not storable, since they cannot be
stored at all. However, pointers to all of these things are storable.)

e Java’sstorable values are primitive values and pointers to objects. (Objects
themselves are not storable, but every object is implicitly accessed through
a pointer.)

e ADA’s storable values are primitive values and pointers. (Records and
arrays are not storable, since none of these can be stored in a single storage
cell. Procedures also are not storable, since they cannot be stored at all.
However, pointers to all of these things are storable.)

As a rule of thumb, most programming languages count primitive values and
pointers as storable, but not composite values.

3.2 Simple variables

A simple variable is a variable that may contain a storable value. Each simple
variable occupies a single storage cell.

The use of simple variables is such an elementary aspect of programming that
we tend to take them for granted. However, it is worthwhile to reflect on exactly
what happens when we declare, inspect, and update a simple variable.

EXAMPLE 3.1

3.3 Composite variables 59

At entry to block:
After ‘Antn;’:
After ‘n=0":

After ‘n=n+1":

15500

At exit from block: Figure 3.2 Storage for a simple variable (Example 3.1).

C simple variable

Consider the simple variable declared in the following C block:

{ dint n;
n = 0;
n = n+l;
¥

3 bl

(1) The variable declaration “int n;” changes the status of some unallocated
storage cell to allocated, but leaves its content undefined. Throughout the block,
n denotes that cell.

(2) The assignment “n = 07 changes the content of that cell to zero.

(3) The expression “n+1" takes the content of that cell, and adds one. The assignment
“n = n+1” (or “n++"") adds one to the content of that cell.

(4) At the end of the block, the status of that cell reverts to unallocated.

Figure 3.2 shows the status and content of that cell at each step.

Strictly speaking, we should always say ‘‘the content of the storage cell denoted
by n”. We usually prefer to say more concisely “the value contained in n”, or
even ‘‘the value of n”.

3.3 Composite variables

EXAMPLE 3.2

A composite variable is a variable of a composite type. Each composite variable
occupies a group of contiguous storage cells.

A variable of a composite type has the same structure as a value of that type.
For instance, a record variable is a tuple of component variables; and an array
variable is a mapping from an index range to a group of component variables. The
component variables can be inspected and updated selectively.

C++ record and array variables
Consider the following C++ (or C) declarations:

struct Date {
int y, m, d;
}s

Date today;

60 Chapter 3

Va I"iGbleS Gnd storoge

v | 2004

dates[0]<{ m 5

d 5

vV | 2004

v [2004 dates[1] rcrll 223
(a) today< m 2 (b) dates v 5
dl 23 dates[2]<{ m ?
d ?

vV ?

dates[3]<{ m ?

d ?

Figure 3.3 Storage for (a) a record variable, and (b) an array variable (Example 3.2).

Each Date value is a triple consisting of three int values. Correspondingly, a Date
variable is a triple consisting of three int variables. Figure 3.3(a) shows the structure of
the variable today, and the effect of the following assignments:

today.m = 2; today.d = 23; today.y = 2004;
Now consider the array variable declared as follows:
Date dates[4];

A value of this array type is a mapping from the index range 0-3 to four Date values.
Correspondingly, a variable of this array type, such as dates, is a mapping from the index
range 0-3 to four Date variables. Figure 3.3(b) shows the structure of the variable dates,
and the effect of the following assignments:

dates[0].y = 2004; dates[0].m = 5; dates[0].d = 5;
dates[1l] = today;

The last assignment copies the entire value of today. In other words, it updates the three
storage cells of dates[1] with the contents of the three storage cells of today.

3.3.1 Total vs selective update

EXAMPLE 3.3

A composite variable may be updated either in a single step or in several steps,
one component at a time. Total update of a composite variable means updating
it with a new (composite) value in a single step. Selective update of a composite
variable means updating a single component.

C++ total and selective updates
Consider the following declarations:

struct Date {
int vy, m, d;
};

Date today, tomorrow;

3.3 Composite variables 61

The following assignment:
tomorrow = today;

copies the entire value of today into the variable tomorrow. In other words, it copies
the contents of the three storage cells of today into the three storage cells of tomorrow.
This is an example of total update.

The following assignment:

tomorrow.d = today.d + 1;

updates a single component of tomorrow, leaving the other components undisturbed.
This is an example of selective update.

3.3.2 Static vs dynamic vs flexible arrays

EXAMPLE 3.4

We can view an array variable as a mapping from an index range to a group
of component variables. Let us examine how and when a given array variable’s
index range is determined. There are several possibilities: the index range might
be fixed at compile-time, or it might be fixed at run-time when the array variable
is created, or it might not be fixed at all.

A static array is an array variable whose index range is fixed at compile-time.
In other words, the program code determines the index range.

C and C++ global and local arrays are static. An array’s lower bound is always
zero, but its length (and hence its upper bound) is fixed by the program code.

C++ static arrays
Consider the following C++ (or C) declarations:

float v1[] = {2.0, 3.0, 5.0, 7.0};
float v2[10];

The array variable v1 has index range 03, which is determined by the array construction
used to initialize it. The array variable v2 has index range 0-9, which is determined by its
declared length of 10. Both v1 and v2 have type float[].

Now consider the following C++ function:

void print_vector (float v[], int n) {
// Printthe array v[0],...,v[n-1] inthe form " [...]".
cout << '['" << v[O0];
for (dnt i = 1; i < n; i++)
cout << ' ' << v[i];
cout << ']1";

3

This function’s first parameter has type £loat[], so its first argument could be either v1
or v2:

print_vector(vl, 4); print_vector(v2, 10);

62 Chapter 3 Variables and storage

A deficiency of C++ is that an array does not “know” its own length, hence the need for
print_vector’s second parameter.

A dynamic array is an array variable whose index range is fixed at the time
when the array variable is created.

In Apa, the definition of an array type must fix the type of the index range,
but need not fix the lower and upper bounds. When an array variable is created,
however, its bounds must be fixed. Apa arrays are therefore dynamic.

EXAMPLE 3.5 Apa dynamic arrays
Consider the following Apa type declaration:
type Vector is array (Integer range <>) of Float;

This type definition states only that Vectoxr’s index range will be of type Integer; “<>"
signifies that the lower and upper bounds are left open.

A Vector variable’s bounds will be fixed only when the variable is created. Consider
the following variable declarations:

vl: Vector(l .. 4) := (2.0, 3.0, 5.0, 7.0);
v2: Vector(0 .. m) := (0 .. m => 0.0);

where m is a variable. The array variable v1 has bounds 1-4, while the array variable v2
has bounds 0-2 if m’s current value happens to be 2.

A Vector value can be assigned to any Vectoxr variable with the same length (not
necessarily the same bounds). For example, the assignment “v1l := v2;” would succeed
only if v2 happens to have exactly four components. An assignment to an Aba array
variable never changes the array variable’s index range.

Now consider the following Apa procedure:

procedure print_vector (v: in Vector) is
—— Print the array v in the form " [...]"

begin
put('['); put(v(v'first));
for i in v'first + 1 .. v'last loop
put(' '); put(v(i));
end loop;
put(']1");
end;

This procedure can be called with any Vectoxr argument, regardless of its index range:
print_vector(vl); print_vector(v2);

Within the body of print_vector, the lower and upper bounds of the parameter v
are taken from the corresponding argument array, and can be accessed using the notation
v'first and v'last (respectively).

3.4 Copy semantics vs reference semantics 63

A flexible array is an array variable whose index range is not fixed at all. A
flexible array’s index range may be changed when a new array value is assigned to it.

A Java array is actually a pointer to an object that contains the array’s length
as well as its components. When we assign an array object to a variable, the
variable is made to point to that array object, whose length might be different
from the previous array object. Thus Java arrays are flexible.

EXAMPLE 3.6 Java flexible arrays

Consider the following Java variable declarations:

float[] vl
float[] v2

{2.0, 3.0, 5.0, 7.0};
{0.0, 0.0, 0.0};

At this point the array variable v1 has index range 0—3, while v2 has index range 0-2.
However, after the following assignment:

vl = v2;

vl points to an array with index range 0-2. Thus v1’s index range may vary during
v1’s lifetime.
Now consider the following Java function:

static void printVector (float[] v) {
// Print the array v in the form "[...]".
System.out.print("[" + v[0]);
for (dnt i = 1; i < v.length; i++)
System.out.print(" " + v[il]);
System.out.print("]1");
}

This function can be called with any float[] argument, regardless of its index range:
printVector(v2); printVector(v2);

Within the body of printVector, the length of the parameter v is taken from the
corresponding argument array, and can be accessed using the notation v.length.

3.4 Copy semantics vs reference semantics

When a program assigns a composite value to a variable of the same type, what
happens depends on the language. There are in fact two distinct possibilities:

e Copy semantics. The assignment copies all components of the composite
value into the corresponding components of the composite variable.

o Reference semantics. The assignment makes the composite variable contain
a pointer (or reference) to the composite value.

Copy semantics is adopted by C, C++, and Apa. However, programmers can
also achieve the effect of reference semantics by using explicit pointers.

64 Chapter 3 Variables and storage

(a) Initially:
2003
dateA 12
25
?
dateB ?
?
(b) Initially:
dateP [e—{ 2003
12
25
dateQ| e—»
?
?

After ‘dateB =dateA’:

2003
dateA 12
25

2003
dateB 12
25

After ‘dateQ=dateP’:

dateP[e—{ 2003
;i Figure 3.4 Assignment in C++
(Example 3.7): (a) copy
dateQ[¢ | ? semantics; (b) simulating
? reference semantics
? using pointers.

EXAMPLE 3.7 C++ copy semantics
The following C++ code illustrates copy semantics:
struct Date {
int y, m, d;

}s

Date dateA = {2003, 12, 25};

Date dateB;

dateB = dateA;

Figure 3.4(a) shows the effect of this assignment: dateB now contains a complete copy of
dateA. Any subsequent update of dateA will have no effect on dateB, and vice versa.

This further C++ code achieves the effect of reference semantics:

Date* dateP = new Date;

Date* dateQ = new Date;

*dateP = dateA;

dateQ = dateP;

The variables dateP and dateQ contain pointers to Date variables. Figure 3.4(b) shows
the effect of the assignment “dateQ = dateP”: dateP and dateQ now point to the
same variable. Any subsequent selective update of *dateP will also selectively update
*dateQ, and vice versa.

Java adopts copy semantics for primitive values, and reference semantics for
objects. However, programmers can achieve the effect of copy semantics even for
objects by using the clone method.

EXAMPLE 3.8 Java reference semantics

Consider the following Java class declaration:

class Date {
int y, m, d;

3.4 Copy semantics vs reference semantics 65

public Date (int y, int m, int d) { ... }
¥

The following Java code illustrates reference semantics:

Date dateR new Date(2003, 12, 25);
Date dateS = new Date(2000, 1, 1);
dateS = dateR;

Figure 3.5(a) shows the effect of the assignment “dateS = dateR”:dateRand dateS
now point to the same variable. Any subsequent selective update of dateR will also
selectively update datesS, and vice versa.

This further Java code achieves the effect of copy semantics:

Date dateT = new Date(2004, 1, 1);
dateT = dateR.clone();

Figure 3.5(b) shows the effect of the assignment ‘“dateT = dateR.clone()”. The
method call “dateR.clone()” returns a pointer to a newly allocated object whose
components are copies of dateR’s components. The assignment makes dateT point to
the newly allocated object.

The semantics of the equality test operation in any programming language
should be consistent with the semantics of assignment. This enables the program-
mer to assume that, immediately after an assignment of V; to V5, V; is equal to
V5, regardless of whether copy or reference semantics is used. It follows that the
equality test operation should behave as follows:

e Copy semantics. The equality test operation should test whether corre-
sponding components of the two composite values are equal.

(a) Initially: After ‘dateS =dateR:
dateR[e—»{ 2003 dateR|[e—F»l 2003
12 12
25 25
dateS [e—] 2000 dates| & | [2000
1 1
1 1
(b) Initially: After ‘dateT =dateR.clone()":
dateR [e—}m{ 2003 dateR| e—»{ 2003
12 12
25 25
dateT | e—»{ 2004 dateT| e—f»{ 2003
1 12
1 25

Figure 3.5 Assignment in Java (Example 3.8): (a) reference semantics; (b) effect
of cloning. (Objects’ tag fields are omitted here.)

66 Chapter 3 Variables and storage

e Reference semantics. The equality test operation should test whether the
pointers to the two composite values are equal (i.e., whether they point to
the same variable).

3.5 Lifetime

Every variable is created (or allocated) at some definite time, and destroyed (or
deallocated) at some later time when it is no longer needed. The interval between
creation and destruction of a variable is called its lifetime.

The concept of lifetime is pragmatically important. A variable needs to occupy
storage cells only during its lifetime. When the variable is destroyed, the storage
cells that it occupied may be deallocated, and may be subsequently allocated for
some other purpose. Thus storage can be used economically.

We can classify variables according to their lifetimes:

e A global variable’s lifetime is the program’s run-time.
e A local variable’s lifetime is an activation of a block.

e A heap variable’s lifetime is arbitrary, but is bounded by the program’s
run-time.

A persistent variable’s lifetime is arbitrary, and may transcend the run-time
of any particular program.

3.5.1 Global and local variables

EXAMPLE 3.9

A global variable is one that is declared for use throughout the program. A global
variable’s lifetime is the program’s entire run-time: the variable is created when
the program starts, and is destroyed when the program stops.

A local variable is one that is declared within a block, for use only within
that block. A lifetime of a local variable is an activation of the block containing
that variable’s declaration: the variable is created on entry to the block, and is
destroyed on exit from the block.

As we shall see in Section 4.4, a block is a program construct that includes
local declarations. In all programming languages, the body of a procedure is a
block. Some languages also have block commands, such as “{ ... }”in C, C++,
or JAva, or “declare ... begin ... end;” in ADA. An activation of a block
is the time interval during which that block is being executed. In particular, an
activation of a procedure is the time interval between call and return. During a
single run of the program a block may be activated several times, and so a local
variable may have several lifetimes.

Lifetimes of C++ global and local variables
Consider the following C++ (or C) program outline:
int g;

void main () {

EXAMPLE 3.10

3.5 Llifetime 67

return return return
start call P call Q from Q from P call Q from Q stop

I— lifetime of g }
I lifetime of X1, x2
?—lifetime ofyl,y2 = lifetime of z —
: = lifetime of z

time —9
Figure 3.6 Lifetimes of local and global variables (Example 3.9).

int x1; float x2;

PO .. QO
}
void P () {
float yl; int y2;
.. Q0O
void Q () {
int z;
}

The blocks in this program are the bodies of procedures main, P, and Q. There is one
global variable, g. There are several local variables: x1 and x2 (in main), y1 and y2 (in
P), and z (in Q).

Notice that main calls P, which in turn calls Q; later main calls Q directly. Figure 3.6
shows the lifetimes of the global variable and local variables.

Lifetimes of C++ local variables of a recursive function
Consider the following C++ (or C) program outline:

void main () {

int x;

. RO;
¥
void R () {

int w;

. RO
¥

Notice that main calls R, which in turn calls itself recursively. Figure 3.7 shows the lifetimes
of the global variable g and the local variable w, on the assumption that R calls itself three
times before the recursion unwinds.

These examples illustrate the general fact that the lifetimes of local variables
are always nested, since the activations of blocks are themselves always nested. In

68 Chapter 3 Variables and storage

return return return
start callR call R callR from R from R from R stop

I lifetime of X :
- lifetime of W

: — lifetime of w

l— lifetime of w

time —P

Figure 3.7 Lifetimes of a local variable of a recursive procedure (Example 3.10).

Figure 3.6, once P has called Q, the activation of Q must end before the activation
of P can end.

A local variable will have several lifetimes if the block in which it is declared
is activated several times. In Figure 3.6, since Q is activated on two separate
occasions, the two lifetimes of z are disjoint.

In Figure 3.7, since R is called recursively, the lifetimes of w are nested. This
makes sense only if we understand that each lifetime of w is really a lifetime of
a distinct variable, which is created when R is called (more precisely, when the
declaration of w is elaborated), and destroyed when R returns.

It follows that a local variable cannot retain its content over successive
activations of the block in which it is declared. In some programming languages,
a variable may be initialized as part of its declaration. But if a variable is not
initialized, its content is undefined, not the value it might have contained in a
previous activation of the block.

Some programming languages (such as C) allow a variable to be declared
as a static variable, which defines its lifetime to be the program’s entire run-
time (even if the variable is declared inside a block). Thus static variables have
the same lifetime as global variables. Although this feature addresses a genuine
need, there are better ways to achieve the same effect, such as class variables in
object-oriented languages.

3.5.2 Heap variables

The pattern of nested lifetimes characteristic of local and global variables is
adequate for many purposes, but not all. We often need to create and destroy
variables at will.

A heap variable is one that can be created, and destroyed, at any time during
the program’s run-time. A heap variable is created by an expression or command.
It is anonymous, and is accessed through a pointer. (By contrast, a global or local
variable is created by a declaration, and has an identifier.)

Pointers are first-class values, and thus may be stored, used as components of
composite values, and so on. A program can build a complicated data structure
(an arbitrary directed graph, in fact) in which connections between nodes are
represented by pointers stored in the nodes. Such a structure can be selectively
updated — to add a node, to remove a node, or to change a connection between

EXAMPLE 3.11

3.5 Llifetime 69

nodes — by manipulation of pointers. This is more radical than selective update of
arecord or array variable, which affects the variable’s content but not its structure.

ADA heap variables
The Apa program outlined here creates and manipulates lists whose elements are integers:
procedure main is

type IntNode;
type Intlist is access IntNode;
type IntNode is
record
elem: Integer;
succ: Intlist;
end record;
odds, primes: IntList := null;

function cons (h: Integer; t: IntList)
return IntList is
—-- Return a pointer to the list formed by prefixing element h to list t.
begin
return new IntNode'(h, t);
end;

procedure P is

begin
odds := cons(3, cons(5, cons(7, null)));
primes := cons(2, odds);

end;

procedure Q is

begin
odds.succ := odds.succ.succ;
end;
begin
o Py Qs
end;

Each value of type IntList is either a pointer to an IntNode record or the null
pointer. We use a null pointer to represent the empty list or the end of a list.

Whenever the cons function is called, the expression “new IntNode'(h, t)”
creates a heap variable of type IntNode, initializes it to contain the integer h and the
pointer t, and yields a pointer to the newly created heap variable. The cons function
simply returns that pointer.

The code in procedure P makes the variable odds contain a pointer to a list containing
the integers 3, 5, and 7 (in that order), and makes the variable odds point to a list
containing the integer 2 followed by the above three integers. Figure 3.8(a) shows the heap
variables created by this code, together with the global variables odds and primes.

The code in procedure Q updates the pointer component of the first node of the odds
list to point to the third node, in effect removing the second node from that list. This also
removes the same node from the primes list. Figure 3.8(b) shows the new situation. The
node containing 5 is now unreachable, so its lifetime is ended.

70 Chapter 3 Variables and storage

(a) Before removing the 5-node:

primes| e——m > 3 By 5 By 7
*—] o—| o—| °
odds Key:
@-» pointer
(b) After removing the 5-node: ® qnull pointer
primes| e——m 3 5 7
o—] o—| o—| °
odds

Figure 3.8 Heap variables and pointers (Example 3.11).

return return
start call P from P callQ fromQ Stop

- lifetime of primes
- lifetime of odds
! I lifetime of 7-node

= lifetime of 5-node |

k= lifetime of 3-node

= lifetime of 2-node

Figure 3.9 Lifetimes of
global and heap variables
time — (Example 3.11).

Figure 3.9 shows the lifetimes of the global and heap variables in this program.

But suppose, instead, that the assignment in procedure Q were ‘“odds :=
odds . succ;”,in effect removing the first node from the odds list. That node would still
remain reachable in the primes list, so its lifetime would continue.

This example illustrates the general fact that the lifetimes of heap variables
follow no particular pattern.

An allocatoris an operation that creates a heap variable, yielding a pointer to
that heap variable. In Apa, C++, and Java, an expression of the form “new ...”
is an allocator.

A deallocator is an operation that destroys a given heap variable. ADA’s
deallocator is a library procedure. C++’s deallocator is a command of the form
“delete ...”.Java has no deallocator at all. Deallocators are unsafe, since any
remaining pointers to a destroyed heap variable become dangling pointers (see
Section 3.6.2).

A heap variable remains reachable as long as it can be accessed by following
pointers from a global or local variable. A heap variable’s lifetime extends from
its creation until it is destroyed or it becomes unreachable.

3.5 Llifetime 71

3.5.3 Persistent variables

EXAMPLE 3.12

Files may be seen as composite variables. In particular, a sequential file is a
sequence of components, and a direct file is (in effect) an array of components. A
sequential file is read or written one component at a time, in serial order. A direct
file is also read or written one component at a time, but in an arbitrary order,
using each component’s unique position number.

Usually files contain large bodies of long-lived data: they are persistent. A
persistent variable is one whose lifetime transcends an activation of any particular
program. By contrast, a transient variable is one whose lifetime is bounded by
the activation of the program that created it. Global, local, and heap variables
are transient.

Most programming languages including C, C++, Java, and ApA provide
library procedures to create and destroy files. This allows a file to be created by
a program at any time. It also allows the file to be destroyed at any later time,
either during the same program activation or during a future activation of the
same program or a different program.

There are certain analogies between persistent variables and transient vari-
ables. Persistent variables usually have arbitrary lifetimes, like heap variables; but
some systems also allow persistent variables to have nested lifetimes, like local
variables. Just as transient variables occupy primary storage, persistent variables
occupy secondary storage. (Secondary storage has the same abstract properties as
primary storage, see Section 3.1.)

Despite these analogies, most programming languages provide distinct types
for persistent variables and transient variables. For example, ApA provides one
family of types for sequential files, and another family of types for direct files,
which are distinct from ordinary composite types.

Why not allow a persistent variable to be of any type? For instance, a persistent
list variable would be a sequential file, and a persistent array variable would be a
direct file.

The Type Completeness Principle suggests that all the types of the program-
ming language should be available for both transient and persistent variables. A
language applying this principle would be simplified by having no special file types,
and no special commands or procedures for reading/writing data from/to files. The
programmer would be spared the unprofitable effort of converting data from a
persistent data type to a transient data type on input, and vice versa on output.

Persistent variable
Consider the following Apa type declarations:

type Country is (AT, BE, DE, DK, ES, FI, FR, GR,
IE, IT, LU, NL, PT, SE, UK);
type Statistics is
record
population: Integer;
area: Float;

72 Chapter 3 Variables and storage

end record;
type StatsTable is array (Country) of Statistics;

Let us suppose that a sequential file named stats.dat has components of type
Statistics, one component for each value of type Country
The following declaration instantiates the generic package Ada.Sequential TO:

package Stats_IO is new Ada.Sequential_TO(
Element_Type => Statistics);

The resulting package Stats_TIO provides a type File_Type, whose values are sequen-
tial files with Statistics components, together with procedures for opening, closing
reading, and writing such files.

The following application code calls these procedures. First it opens the file named
stats.dat, placing a pointer to that file in statsFile. Then it reads the file’s
components and stores them in the transient array stats. Finally it closes the file.

procedure loadStats (stats: out StatsTable) is
-- Read into stats the contents of the file named stats.dat.
statsFile: Stats_IO.File_Type;
begin
Stats_TIO.open(statsFile, in_file, "stats.dat");
for cy in Country loop
Stats_IO.read(statsFile, stats(cy));
end loop;
Stats_IO.close(statsFile);
end;

The following application code illustrates how the data stored in the transient array might
be used:

procedure analyzeStats (stats: in out StatsTable) is
—— Print the population density of each country using the datain stats.
begin
for cy in Country loop
put(Float(stats(cy) .population)/stats(cy).area);
end loop;
end;

procedure main is
stats: StatsTable;
begin
loadStats(stats);
analyzeStats(stats);
end;

Now suppose, hypothetically, that Apa were extended with a new generic pack-
age, Ada.Persistence, that supports persistent variables of any type. The following
declaration would instantiate this generic package:

package Persistent_Stats is new Persistence(
Data_Type => StatsTable);

The resulting package Persistent_Stats might provide a function procedure
connect that enables a named file to be viewed as a persistent variable of type
StatsTable

3.6 Pointers 73

The following hypothetical application code illustrates how the file named stats.dat
would be viewed as a persistent variable, and how the data stored in it might be used:

procedure analyzeStats (stats: in out StatsTable) is
—— Print the population density of each country using the data in stats.
begin
for cy in Country loop
put(Float(stats(cy) .population)/stats(cy).area);
end loop;
end;

procedure main is
begin
analyzeStats(
Persistent_Stats.connect("stats.dat"));
end;

The program would no longer need to read data from the file into a transient variable, and
consequently would be much more concise.

3.6 Pointers

A pointer is a reference to a particular variable. In fact, pointers are sometimes
called references. The variable to which a pointer refers is called the pointer’s
referent.

A null pointer is a special pointer value that has no referent.

In terms of our abstract storage model (Section 3.1), a pointer is essentially
the address of its referent in the store. However, each pointer also has a type, and
the type of a pointer allows us to infer the type of its referent.

EXAMPLE 3.13 C++ pointers

In C++, each value of type “T*” is either a pointer to a variable of type T or a null pointer.
Consider the following declarations:

struct IntNode {
int elem;
IntNode* succ;

}
IntNode* p;

Each value of type “IntNode*” is a pointer to a variable of type IntNode. If p is a
pointer (but not null), the variable access “*p” yields the structure variable to which p
points, and “(*p) .elem” (or more concisely “p->elem”) selects the component elem

of that structure variable.

EXAMPLE 3.14 Apa pointers

In Apa, each value of type “access T is either a pointer to a variable of type T or a
null pointer.

74

3.6.1

Chapter 3 Variables and storage

Consider the following declarations:

type IntPointer is access IntNode;
type IntNode is
record
elem: Integer;
succ: IntPointer;
end record;
p: IntPointer;

Each value of type ““access IntNode’ isa pointer to a variable of type IntNode. If pis
a pointer (but not null), the variable access “p.all” yields the record variable to which p
points, and “p.all.elem” (or more concisely “p.elem”) selects the component elem
of that record variable.

Pointers and recursive types

Pointers and heap variables can be used to represent recursive values such as lists
and trees, but the pointer itself is a low-level concept. Manipulation of pointers
is notoriously error-prone and obscure in its effects, unless performed with care
and discipline. For example, consider the C++ assignment “p->succ = q”, in
the context of the declarations of Example 3.13. Simple inspection of this pointer
assignment suggests that a list is being manipulated, but we cannot tell which list
is being manipulated. We cannot even tell whether the assignment deletes nodes
from the list (g points to a later node of the same list), or stitches together parts
of two different lists (g points to a node of a different list), or even introduces a
cycle which changes the entire data structure (g points to an earlier node of the
same list)!

Nevertheless, nearly all imperative languages provide pointers rather than
supporting recursive types directly. The reasons for this lie in the semantics and
implementation of assignment.

Given the C++ declarations:

IntNode* 1listA; IntNode* listB;

the assignment “1istA = 1istB” updates 1istA to contain the same pointer
value as 1istB. In other words, 1istA now points to the same list as 1istB; the
list is shared by the two pointer variables. Any selective update of the list pointed
to by 1istA also selectively updates the list pointed to by 1istB, and vice versa,
because they are one and the same list.

Suppose that C++ were extended to support list types directly, e.g.:

int list listA; int list 1istB;

Now how should we expect the assignment “1istA = 1istB” tobeinterpreted?
There are two possible interpretations:

e Copy semantics. Store in 1istA a complete copy of the list contained in
1istB. Any subsequent update of either 1istA or 1istB would have no
effect on the other. This would be consistent with assignment of structures

3.6 Pointers 75

in C++, and is arguably the most natural interpretation. However, copying
of lists is expensive.

e Reference semantics. Store in 1istA a pointer to the list referred to by
1istB. This interpretation would involve sharing, and would amount to
using pointers in disguise. It would be consistent with the assignment of
arrays in C++. Another advantage of this interpretation would be ease of
implementation.

A possible compromise would be to prohibit selective update of lists. Then
assignment could be implemented by sharing. In the absence of selective updates,
we cannot tell the difference between copy and reference semantics.

Similar points apply to other recursive types in imperative languages.

3.6.2 Dangling pointers

A dangling pointer is a pointer to a variable that has been destroyed. Dangling
pointers arise from the following situations:

e A pointer to a heap variable still exists after the heap variable is destroyed.
e A pointer to a local variable still exists (e.g., it is stored in a global variable)
at exit from the block in which the local variable was declared.

We have seen that some programming languages provide deallocators. Using
a deallocator immediately destroys a heap variable; all existing pointers to that
heap variable then become dangling pointers.

EXAMPLE 3.15 C++ dangling pointers to a heap variable
Consider the following C++ code:

struct Date {
int y, m, d;
};
Date* dateP = new Date;
dateP->y = 2000; dateP->m = 1; dateP->d = 1;
Date* dateQ = dateP;

Both dateP and dateQ contain pointers to the same heap variable.
Now the following deallocator:

delete dateQ;

destroys that heap variable. The two pointers still exist, but they point to unallocated
storage cells. Any attempt to inspect or update the dead heap variable:

cout << dateP->y;
dateP->y = 2003;

will then have unpredictable consequences.

76 Chapter 3 Variables and storage

EXAMPLE 3.16

Some programming languages, notably C and C++, allow us to obtain a pointer
to a local variable. Such a pointer could still be in existence at exit from the block
in which the local variable is declared.

C++ dangling pointer to a local variable

In C++ (or C), a pointer to a local variable can be obtained by using the “&” (address of)
operator. The following function f returns a pointer to the local variable fv:

* £ O A
int fv = 42;
return &fv;

int

}

The following code calls £, which returns a pointer, and then attempts to update the
pointer’s referent:

int* p = £();
*p = 03

But the pointer’s referent is £v, and £v’s lifetime ended on return from £! Once again,
this code will have unpredictable consequences.

Attempting to access a destroyed variable is a serious fault, and one that is
difficult to debug. Inspecting a destroyed variable has an unpredictable effect:
it might simply inspect unallocated storage cells, or it might inspect storage
cells that have since been reallocated to some new variable. (If that new vari-
able has a different type from the destroyed variable, a type error then arises,
even if the programming language is otherwise safe from run-time type errors.)
Similarly, updating a destroyed variable has an unpredictable, possibly disas-
trous, effect.

Programming languages like C and C++ accept the risk of such faults as an
occupational hazard, and the onus is on programmers to avoid them. Languages
like Apa and Java, which are intended for highly robust applications, must
eliminate or at least minimize the risk of such faults.

Java provides no deallocator, so the lifetime of a heap variable continues as
long as it is reachable. Moreover, JaAva provides no means to obtain the address
of a local variable. So dangling pointers cannot arise in JAVA.

Apa does provide a deallocator, which is a library procedure named
Ada.Unchecked Deallocation. Any compilation unit that uses the
deallocator must be prefixed by the clause:

with Ada.Unchecked_Deallocation;

so at least the unsafe code is prominently flagged. Apa also provides means
to obtain a pointer to a local variable, but such a pointer cannot be assigned
to a variable with a longer lifetime, so this feature never gives rise to a dan-
gling pointer.

3.7 Commands 77

3.7 Commands

3.7.1

Skips

Having considered variables and storage, let us now examine commands. A
command is a program construct that will be executed in order to update variables.

Commands are a characteristic feature of imperative, object-oriented, and
concurrent languages. Commands are often called statements, but we shall avoid
using that term in this book because it means something entirely different in logic
(and in English).

Commands may be formed in various ways. In this section we shall survey the
following fundamental forms of commands. Some commands are primitive:

e skips
e assignments
e proper procedure calls.

Others are composed from simpler commands:

sequential commands
e collateral commands
o conditional commands
e iterative commands.

We will also consider block commands in Section 4.4.1, and exception-handling
commands in Section 9.4.

Here we are primarily interested in the concepts underlying commands, not
in their syntactic details. A well-designed imperative, object-oriented, or concur-
rent language should provide all or most of the above forms of command; it is
impoverished if it omits (or arbitrarily restricts) any important forms. Conversely, a
language that provides additional forms of command is probably bloated; the addi-
tional ones are likely to be unnecessary accretions rather than genuine enhance-
ments to the language’s expressive power. For instance, special input/output
commands (found in CoBoL, FORTRAN, and PL/I) are unnecessary; input/output is
better provided by library procedures (as in C, C++, JAva, and ADA).

All the above commands exhibit single-entry single-exit control flow. This
pattern of control flow is adequate for most practical purposes. But sometimes it is
too restrictive, so modern imperative and object-oriented languages also provide
sequencers (such as exits and exceptions) that allow us to program single-entry
multi-exit control flows. We shall study sequencers in Chapter 9.

The simplest possible kind of command is the skip command, which has no effect

whatsoever. In C, C++, and JAva, the skip command is written simply ““; .
Skips are useful mainly within conditional commands (Section 3.7.6).

3.7.2 Assignments

We have already encountered the concept of assignment in Sections 3.1-3.4.
The assignment command typically has the form “V = E;” (or “V := E;” in

78 Chapter 3 Variables and storage

ApA). Here E is an expression which yields a value, and V is a variable access
(Section 2.6.6) which yields a reference to a variable (i.e., its storage address).
The variable is updated to contain the value. (If the variable is a component of a
composite variable, the effect is selective update of that composite variable.)

More general kinds of assignment are possible. A multiple assignment,
typically written in the form “V; =... =V, = E;”, causes the same value to
be assigned to several variables. For example, the following multiple assignment
assigns zero to two variables, m and n:

m=mn = 0;

Some programming languages (including C, C++, and Java) allow binary
operators such as ““+” to be combined with assignment. For example, the follow-
ing command:

n += 1;

(which is equivalent to “n = n+1;”’) increments the value of the variable n. This
kind of command can be traced back as far as CoBoL, in which it is written less
concisely as “ADD 1 TO n’.

Before we leave assignments, let us study variable accesses in a little more
detail. The following ApA commands contain four occurrences of the variable
access n:

get(n); n :=n + 1; put(n);

Two of these occurrences (underlined) yield the current content of the variable.
The other two occurrences yield a reference to the variable, not the value contained
in it.

What is the “meaning” of a variable access? We could think of a variable
access as yielding a reference to a variable in some contexts, and the current
content of that variable in other contexts. Alternatively, we could think of a
variable access as always yielding a reference to a variable, but in certain contexts
there is an implicit dereferencing operation that takes a reference to a variable and
yields the current content of that variable. In the above commands, underlining
shows where dereferencing takes place.

3.7.3 Proper procedure calls

A proper procedure call is a command that achieves its effect by applying a
proper procedure (or method) to some arguments. The call typically has the
form “P(E1, ..., E,);”’, where P determines the procedure to be applied, and the
expressions E, ..., E, are evaluated to determine the arguments. Each argument
may be a value or (if the corresponding expression is a variable access) a reference
to a variable.

The net effect of a proper procedure call, like any command, is to update
variables. The procedure can achieve this effect by updating variables passed as
arguments, and/or by updating global variables. (Updating the procedure’s local
variables will have no net effect, because the lifetime of these variables is just the
procedure’s activation.)

3.7 Commands 79

Proper procedures and parameters will be discussed in greater detail in
Sections 5.1.2 and 5.2, respectively.

3.7.4 Sequential commands

Since commands update variables, the order in which commands are executed
is important. Much of the programming effort in an imperative language is
concerned with control flow, i.e., ensuring that the commands will be executed
in a suitable order. This and the following three subsections are concerned with
ways of composing commands to achieve different control flows.

Sequential control flow is the most common. A sequential command specifies
that two (or more) commands are to be executed in sequence. A sequential
command might be written in the form:

Ci; G

meaning that command C; is executed before command C,. Sequential control
flow is available in every imperative language, and is so familiar that it needs no
further discussion here.

3.7.5 Collateral commands

Less common is collateral control flow. A collateral command specifies that two
(or more) commands may be executed in any order. A collateral command might
be written in the form:

C, G

where both C; and C; are to be executed, but in no particular order.
In the following collateral command:

m=7 , n=mn+ 1;

the variables m and n are updated independently, and the order of execution
is irrelevant.
An unwise collateral command would be:

n=7, n=n-+1;

The net effect of this collateral command depends on the order of execution. Let
us suppose that n initially contains 0.

e If “n = 77 is executed first, n will end up containing 8.

e If “n = 77 isexecuted last, n will end up containing 7.

e If “n = 7”is executed between evaluation of “n + 1 and assignment of
its value to n, n will end up containing 1.

Collateral commands are said to be nondeterministic. A computation is
deterministic if the sequence of steps it will perform is entirely predictable;
otherwise the computation is nondeterministic. If we perform a deterministic
computation over and over again, with the same input, it will always produce

80 Chapter 3 Variables and storage

the same output. (This is significant in software testing.) But if we perform a
nondeterministic computation over and over again, with the same input, it might
produce different output every time.

Although the sequence of steps performed by a nondeterministic computation
is unpredictable, its output might happen to be predictable. We call such a compu-
tation effectively deterministic. A collateral command is effectively deterministic
if no subcommand inspects a variable updated by another subcommand.

3.7.6 Conditional commands

A conditional command has two or more subcommands, of which exactly one is
chosen to be executed.

The most elementary form of conditional command is the if-command,
in which a choice between two subcommands is based on a boolean value.
The if-command is found in every imperative language, and typically looks
like this:

if (E) C
else

If the boolean expression E yields true, C; is chosen; if it yields false, C; is chosen.
The if-command is typically abbreviated when the second subcommand is
a skip:

if (E) C = if (E) C
else ;

The if-command can be generalized to allow choice among several subcom-
mands:

if (E)) G
else if (E) G

else if (E,) C,
else (

Here the boolean expressions Ej, E, ..., E, are evaluated sequentially, and the
first E; that yields frue causes the corresponding subcommand C; to be chosen. If
no E; yields true, Cy is chosen instead.

The above conditional commands are deterministic: in each case we can predict
which subcommand will be chosen. A nondeterministic conditional command is
also sometimes useful, and might be written in the following notation:

if (ED) G
or if (Ez) Cz

or if (E) G,

Here the boolean expressions Eq, Ey, ..., E, would be evaluated collaterally, and
any E; that yields true would cause the corresponding subcommand C; to be
chosen. If no E; yields true, the command would fail.

EXAMPLE 3.17

EXAMPLE 3.18

3.7 Commands 81

Nondeterministic if-command
Compare the following Java (or C or C++) if-command:

if (x >= y) max = x;
else max = y;

with the following hypothetical nondeterministic conditional command:

if (x >= y) max = x;
or if (x <= y) max = y;

The latter has the advantage of making explicit the condition under which “max = y;”
may be executed; it also emphasizes that it does not matter which subcommand is chosen
in the case that x and y have equal values. So this particular command is effectively
deterministic.

Nondeterministic conditional commands tend to be available only in concur-
rent languages, where nondeterminism is present anyway, but their advantages
are not restricted to such languages.

A more general form of conditional command is the case command, in
which a choice between several subcommands is typically based on an integer (or
other) value.

ADpA’s case command, in its simplest form, looks like this:

case E is
when v => C

when v, => C,
when others => (,
end case;

The expression E must yield a value of a discrete primitive type, such as a character,
enumerand, or integer. If that value equals one of the values v;, the corresponding
subcommand C; is chosen. If not, C is chosen. (If “when others” is omitted,
the compiler checks that {vy, ..., v,} are all the possible values of E.) The values
Vi, ..., v, must all be distinct, so the choice is deterministic.

ApA case command

In the following Apa case command, choice is based on a value of the enumeration type
Month (Example 3.2):

today: Date;
name: String(l .. 3);

case today.m is

when jan => name := "JAN";
when feb => name := "FEB";
when mar => name := "MAR";

82 Chapter 3 Variables and storage

when dec => name := "DEC";
end case;

The nearest equivalent to a case command in C, C++, and JAva is the switch
command. However, it has strange features, so we shall defer discussion until
Section 11.3.2.

Programming languages vary in the types of values that may be used to control
a case (or switch) command. C, C++, and Java allow integers only. Apa allows
characters, enumerands, integers, or indeed values of any discrete primitive type.
In principle, values of any type equipped with an equality test could be allowed.
HaskeLL does have this generality, allowing primitive values, strings, tuples, or
disjoint unions (in fact any values except functions) to be used in case expressions.

3.7.7 lterative commands

An iterative command (commonly known as a /loop) has a subcommand that
is executed repeatedly. The latter subcommand is called the loop body. Each
execution of the loop body is called an iteration.

We can classify iterative commands according to when the number of iterations
is fixed:

e Indefinite iteration: the number of iterations is not fixed in advance.
e Definite iteration: the number of iterations is fixed in advance.
Indefinite iteration is typically provided by the while-command, which consists

of a loop body C and a boolean expression E (the loop condition) that controls
whether iteration is to continue. The while-command typically looks like this:

while (E) C
The meaning of the while-command can be defined by the following equivalence:
while (E) C = if (E) {
C

while (E) C
¥

This definition makes clear that the loop condition in a while-command is tested
before each iteration of the loop body.

Note that this definition of the while-command is recursive. In fact, iteration
is just a special form of recursion.

C, C++, and Java also have a do-while-command, in which the loop condition
is tested after each iteration:

do C while (E); = C
while (E) C

A form of loop that allows us to test the loop condition in the middle of an
iteration has often been advocated. This might hypothetically be written:

EXAMPLE 3.19

3.7 Commands 83

do C1 while (E) C2 = C1
while (E) {
&)
G
¥

This form subsumes both the while-command (if C; is a skip) and the do-while-
command (if C, is a skip). The argument for including this form of loop in a
programming language is undermined by experience, which suggests that this
form is still not general enough! In practice, the while-command is perfectly
adequate in the great majority of cases, but occasionally we need to write loops
with several loop conditions in different parts of the loop body. That need is best
served by some kind of escape sequencer (see Section 9.3).

Indefinite iteration

The following C while-command reads and prints all the characters in a file £ (using a
hypothetical function eof(f) that tests whether any characters remain to be read from
file £):

char ch;

while (! eof(£f)) {
ch = getchar(£f);
putchar(ch);

¥

The following code does the same thing, except that it assumes that getchar (f)
returns NUL when no more characters remain to be read from f£:

char ch = getchar(f);
while (ch != NUL) {
putchar(ch);
ch = getchar(f);
¥

Note the duplication of the call “getchar(£)”.
Hypothetically, we could avoid this duplication by testing the loop condition in
the middle:

char ch;
do
ch = getchar(f);
while (ch != NUL)
putchar(ch);

Of course, every C programmer knows how to solve this problem concisely using an
ordinary while-command:

while ((ch = getchar(f)) != NUL)
putchar(ch);

However, this code uses a trick (incorporating the assignment into the loop condition) that
is not available for arbitrary commands.

84 Chapter 3 Variables and storage

EXAMPLE 3.20

Now let us consider definite iteration, which concerns loops where the number
of iterations is fixed in advance. Definite iteration is characterized by a control
sequence, a predetermined sequence of values that are successively assigned (or
bound) to a control variable.

The Apa for-command illustrates definite iteration. Its simplest form is:

for V in T loop
C
end loop;

The control variable is V, and the control sequence consists of all the values of
the type (or subtype) 7, in ascending order. In the more explicit form:

for V in T range E, .. E, loop
C
end loop;

the control sequence consists of consecutive values of type T from v; through vy,
where v; and v, are the values yielded by E; and E,, respectively. In either form,
T may be any discrete primitive type.

Some programming languages allow the control sequence to be an arbitrary
arithmetic progression. This possibility is illustrated by ALGOL6S:

for V := E, to E, bY E3 do C

Here the control sequence is the longest sequence vy, vi + v3, vi + 2v3, ... that
does not properly encompass v,, where vy, v,, and vs are the values yielded by
E,, E,, and FEj3, respectively.

The control sequence need not be restricted to an arithmetic progression, nor
need it consist of primitive values. For instance, the control sequence could be the
components of an array. This is now supported by JAVA.

Definite iteration over an array

Suppose that dates is an array of dates. The following Java for-command prints all these
dates in order:

for (Date date : dates)
System.out.println(date);

This is much more concise, more readable, and less error-prone than the old-style coding:

for (dnt i = 0; i < dates.length; i++)
System.out.println(dates[i]);

In fact, JAvA now supports iteration over an arbitrary collection, such as an
array, list, or set. This form of for-command is:

for (T V : E) C

3.8 Expressions with side effects 85

Here V is the control variable, T is its type, and E yields a collection (whose
components must be of type T'). The control sequence consists of all components of
the collection. Iteration over an array or list is deterministic, since the components
are visited in order. Iteration over a set is nondeterministic, since the components
are visited in no particular order.

The status of the control variable varies between programming languages. In
some older languages (such as FORTRAN and Pascal), it is an ordinary variable
that must be declared in the usual way. This interpretation of a for-command with
control variable V' and loop body C is as follows:

determine the control sequence <vi,..., V>,
V = w H C
V =v,; C

But this interpretation leads to such awkward questions as the following:

(a) Whatis V’s value after termination of the loop?

(b) What is V’s value after a jump or escape out of the loop?

(c) What happens if C itself attempts to assign to V?

In other languages (such as Apa), the for-command itself constitutes a
declaration of the control variable; moreover, its value is constant within the loop

body. This interpretation of a for-command with control variable V and loop body
C is as follows:

determine the control sequence <vi,. ..,V ;
{ constant V = v;; C }
{ constant V = v,; C }

This makes the for-command completely self-contained, and neatly answers all
the questions posed above:

(a) V has no value outside the loop: the scope of its declaration is the loop
body only.

(b) Ditto.

(c) C cannot assign to V, since V is in fact a constant!

Finally, note that the for-command of C and C++ (and the old-style for-

command of JavA) is nothing more than syntactic shorthand for a while-command,
and thus supports indefinite iteration:

for (Cl E], Ez) = C1
(&) while (E;) {
G
Er;
}

3.8 Expressions with side effects

The primary purpose of evaluating an expression is to yield a value. In some
imperative and object-oriented languages, however, it is possible that evaluating

86 Chapter 3 Variables and storage

an expression has the side effect of updating variables. Let us now consider
expressions that have side effects.

3.8.1 Command expressions

EXAMPLE 3.21

EXAMPLE 3.22

Suppose that we are required to write an expression to evaluate the polynomial:
X'+ .+ exX +ax+ e

given x, n, and an array of coefficients c;. Any solution must be either recursive
or iterative. A recursive solution would imply defining and calling a recursive
function, which we might prefer to avoid. An iterative solution meets the problem
that, while iterative commands are common, iterative expressions are not. So we
need some kind of expression that contains a command: a command expression.

Command expression

The following hypothetical command expression would evaluate our polynomial:

{
float p = c[n];
for (dnt i = n-1; n >= 0; n--) p = p*x + c[i];
p

¥

Here we are assuming C-like notation. After elaborating the declarations and executing the
commands after “{”’, the subexpression just before “}”” would be evaluated to determine
the value yielded by the command expression.

In Apa, the body of a function procedure is, in effect, a command expression.
This allows assignments and iteration to be used in computing function results, but
also makes it possible for a function call to have side effects (perhaps unintended).

In fact, any kind of command expression makes side effects possible. As
it happens, the command expression of Example 3.21 updated only the local
variables p and i, so it had no side effects. But now consider the following example.

Expressions with side effects

Consider the C function call “getchar (£)”, which reads a character from file £ and
returns that character. This function call has a side effect on the file variable £. Conse-
quently, the following code:

enum Gender {female, male};

Gender g;

if (getchar(f) == 'F') g = female;
else if (getchar(f) == 'M') g = male;
else ...

is misleading: two different characters are read and compared with ‘F’ and ‘M.

3.9 Implementation notes 87

Side effects may introduce nondeterminism into expression evaluation. Con-
sider any expression of the form “E; ® E,”, where ® is a binary operator, and
where E; has a side effect that affects the evaluation of E,, or vice versa; the result
of evaluating this expression depends on the order in which the subexpressions
E1 and E; are evaluated. Some programming languages allow subexpressions to
be evaluated in any order, giving rise to nondeterminism. Other languages avoid
such nondeterminism by insisting that subexpressions are evaluated from left
to right.

In summary, side effects in expressions tend to make programs hard to
understand. Undisciplined use of side effects is bad programming practice.

3.8.2 Expression-oriented languages

An expression-oriented language is an imperative or object-oriented language in
which no distinction is made between expressions and commands. Evaluating any
expression yields a value and may also have side effects. ALGorL68 and ML (and
C-like languages, to some extent) are examples of expression-oriented languages.

One benefit of this design is to avoid duplication between expressions and
commands. An expression-oriented language does not need both function proce-
dures and proper procedures. Nor does it need both conditional expressions and
conditional commands.

In an expression-oriented language the assignment “V = E” could be defined
to yield the value of E, together with the side effect of storing that value in the
variable yielded by V. Since the assignment is itself an expression, we can also write
“V1 = (V, = E)”;in other words, we get multiple assignment free. (However, some
expression-oriented languages define their assignments differently. For example,
an ML assignment expression actually yields the O-tuple ().)

There is no obvious result for a skip or loop. Typically an expression-oriented
language defines a skip or loop to yield a neutral value such as 0 or ().

Thus expression-oriented languages achieve a certain simplicity and unifor-
mity by eliminating the distinction between expressions and commands. So why
do conventional imperative languages still retain this distinction? The justification
is an issue of programming style. Although expressions may have side effects
in conventional languages, the use of side effects by programmers is informally
deprecated. (Indeed the designers of Apa initially attempted, unsuccessfully, to
prohibit side effects.) On the other hand, expression-oriented languages positively
encourage the use of side effects, leading to a cryptic programming style that is
well exemplified by the C-like languages:

while ((ch = getchar(f)) != NUL)
putchar(ch);

3.9 Implementation notes

In this section we briefly examine how compilers allocate storage for global, local,
and heap variables.

88 Chapter 3 Variables and storage

Each variable occupies storage space throughout its lifetime. That storage
space must be allocated at the start of the variable’s lifetime. The storage space
may be deallocated at the end of the variable’s lifetime, or at any time thereafter.

The amount of storage space occupied by each variable depends on its type
(see Section 2.7). For this reason the compiler must know the type of each
variable, because the compiler cannot predict the actual values it will contain. In
most programming languages, each variable’s type must be declared explicitly, or
the compiler must be able to infer its type.

3.9.1 Storage for global and local variables

A global variable’s lifetime is the program’s entire run-time. A fixed storage space
can therefore be allocated to each global variable.

A local variable’s lifetime is an activation of the block in which the variable
is declared. The lifetimes of local variables are nested, so storage space can be
allocated to them in a stack, as we shall see shortly.

Recall the program outlined in Example 3.9. The variables x1 and x2 are
local to main, so their lifetime is the program’s entire run-time; in other words,
x1 and x2 occupy storage throughout the program’s run-time. The variables y1
and y2 are local to procedure P, so their lifetime is an activation of P; thus storage
must be allocated for y1 and y2 when P is called, and deallocated when P returns.
Similarly, storage must be allocated for the local variable z when procedure Q is
called, and deallocated when Q returns. The net effect of all this is that storage
space allocated to local variables expands and contracts stack-fashion. This is
illustrated in Figure 3.10.

In general, storage for local variables is allocated on a stack of activation
frames. Each activation frame contains enough space for the local variables of
a particular procedure. An activation frame is pushed on to the stack when a
procedure is called, and popped off the stack when the procedure returns.

call P call Q return from Q return from P call Q
x1 ? x1 ? x1 ? x1 ? x1 ? x1 ?
x2 ? x2 ? x2 ? x2 ? x2 ? x2 ?
vyl ? vyl ? vl ? z ?

y2 ? y2 ? y2 ?

house-
Key: | V777 :
. o Y ~keeping
activation data

frame T,
--local
“variables

Figure 3.10 Storage for local variables (Example 3.9).

3.9 Implementation notes 89

call R call R call R return from R return from R
X ? X ? X ? X ? X ? X ?
w ? w ? w ? w ? w ?
w ? w 9 w 9
w ?

Figure 3.11 Storage for local variables of a recursive procedure (Example 3.10).

Storage allocation on a stack is economical: at any time, storage is allocated
only to variables local to currently-active procedures. Moreover, storage can be
allocated to local variables of recursive procedures in exactly the same way; this is
illustrated in Figure 3.11 for the program outlined in Example 3.10.

3.9.2 Storage for heap variables

A heap variable’s lifetime starts when the heap variable is created and ends when
it is destroyed or becomes unreachable. Since heap variables can be created and
destroyed at arbitrary times, there is no pattern in their lifetimes analogous to the
nested lifetimes of local variables.

Heap variables occupy a storage region called the heap. At any given time, the
heap contains all currently-live heap variables (in no particular order) interspersed
with unallocated storage space. When a new heap variable is to be created, some
unallocated storage space is allocated to it. When a heap variable is to be destroyed,
the storage space occupied by that heap variable reverts to being unallocated; in
other words, that storage space is recycled. To keep track of the allocated and
unallocated storage space we need a heap manager, part of the run-time system.

If the programming language has no deallocator, the heap manager must
additionally be capable of finding and recycling unreachable heap variables.
(Otherwise heap storage would eventually be exhausted.) This process is called
garbage collection.

The effect of garbage collection is illustrated in Figure 3.12 for the program of
Example 3.11. After the node containing 5 is removed from the odds and primes
lists, the garbage collection algorithm will eventually discover that that node is
unreachable, and will then recycle it as unallocated space.

The garbage collector must visit all heap variables in order to find all those
that have become unreachable. In real applications there might be thousands or
even millions of heap variables. Garbage collection is therefore time-consuming.
However, garbage collection is far more reliable in practice than placing the onus
on programmers to destroy their own unreachable heap variables. Programmers
often forget to do so, resulting in uneconomical use of heap storage. Worse

90 Chapter 3 Variables and storage

call and return call and return do garbage
from P from Q collection
odds o odds [odds [odds [
primes| o primes| eo—] primes|[o—] primes| o—]
2 2 2
*— *—| *—|
3 3 3
*— ° *—
5 7 5]
*— *—
7 7 7 7
[] [] [
Key: | [e

unallocated space

heap variables

Figure 3.12 Storage for heap variables (Example 3.11).

still, programmers sometimes inadvertently destroy heap variables that are still
reachable, a logical error that gives rise to dangling pointers.

3.9.3 Representation of dynamic and flexible arrays

An array indexing operation will have unpredictable consequences if the value
used to index the array is out-of-range. To avoid this, in general, we need a
run-time range check on the indexing value.

A static array’s index range is known at compile-time, so the compiler can
easily generate object code to perform the necessary range check.

However, a dynamic or flexible array’s index range is known only at run-
time. The array’s index range must therefore be stored as part of the array’s
representation.

This is illustrated in Figure 3.13(a) for the Apa Vector type of Example 3.5.
Each Vector array’s representation includes its lower and upper bounds as well
as its components.

If the programming language fixes all arrays’ lower bounds at zero, it is
sufficient for each array’s representation to include its length as well as its
components. This is illustrated in Figure 3.13(b) for the Java float[] type of
Example 3.6.

(a)

() le

Summary

Further reading 91

low 1 low| 0
high| 4 high| 2
1| 20 0| 0.0
2| 3.0 1] 0.0
31 5.0 2| 0.0
41 7.0
ngth| 4 length 3
0] 2.0 0| 0.0
1| 3.0 1] 0.0
21 50 2| 00 Figure 3.13 Representation of (a) Apa arrays of type
3] 70 Vector (Example 3.5); (b) Java arrays of type
float[] (Example 3.6) (with tag fields omitted).

In this chapter:

Further reading

We have introduced a simple storage model that allows us to understand the
behavior of variables.

We have explored the behavior of simple and composite variables, in particular
the difference between total and selective update of a composite variable, and the
distinction between copy semantics and reference semantics.

We have compared and contrasted the lifetimes of global, local, heap, and persis-
tent variables.

We have studied pointers, their use in representing recursive types, and the danger
of dangling pointers.

We have surveyed the forms of command found in programming languages, focusing
on conceptual issues rather than syntactic differences.

We have seen sources and consequences of side effects in expressions, and looked
at expression-oriented languages that make no distinction between expressions
and commands.

We have seen how storage is allocated for global, local, and heap variables, and how
dynamic and flexible arrays are represented.

The notion that distinctions between persistent and tran-
sient data types should be avoided received much attention
in the 1980s. For a survey of research on this topic, see
ATKINSON and BUNEMAN (1987).

The nondeterministic conditional command discussed in
Section 3.7.6, and a corresponding nondeterministic

iterative command, were designed by DUKSTRA (1976)
to support the particular programming discipline that he
advocated.

The design of loops with multiple exits attracted much
attention in the 1970s. See, for example, ZAHN (1974).

92 Chapter 3 Variables and storage

Exercises
Exercises for Section 3.1

3.1.1 Which types of values are storable values in your favorite programming lan-
guage?

Exercises for Section 3.2

3.2.1 Which types of variables are simple variables in your favorite program-
ming language?

Exercises for Section 3.3

3.3.1 Systematically analyze the composite variables of your favorite programming
language. Which types of variables are composite variables? How are they
selectively updated? Can they also be totally updated? Are static, dynamic,
and/or flexible arrays supported?

*3.3.2 In some programming languages (such as C, C++, and Apa), strings are treated
as arrays of characters. Compare the consequences of this decision when a
string variable is: (a) a static array; (b) a dynamic array; (c) a flexible array.
In each case, can string operations such as comparison and concatenation be
defined in the language itself?

Exercises for Section 3.4

3.4.1 Does your favorite programming language adopt copy semantics or reference
semantics? If it adopts copy semantics, does it allow you to achieve the effect
of reference semantics? If it adopts reference semantics, does it allow you to
achieve the effect of copy semantics?

Exercises for Section 3.5

3.5.1 Systematically analyze the lifetimes of variables of your favorite programming
language. Are global,local, and/or heap variables supported? What determines
the lifetime of each variable?

3.5.2 Consider the following C program:

void main () {
int f;
f = fac(3);
¥

int factorial (dint n) {
int p, i;
p = 1;
for (i = 2; i <= n; i++)
p *= 1i;
return p;

(a) Make a diagram, similar to Figure 3.6, showing the lifetimes of the local
variables in this program. (Note that the formal parameter n is, in effect,
a local variable of the factorial function.)

Exercises 93

(b) Repeat with the above version of the factorial function replaced by
the following recursive version:

int factorial (dnt n) {

if (n > 1) return n * factorial(n-1);
else return 1;

3.5.3 Complete the following Apa program (or rewrite it in your own favorite
programming language):

procedure main is

type IntNode;
type IntlList is access IntNode;
type IntNode is
record
elem: Integer;
succ: IntlList;
end record;

IntList ints := null;

procedure add (i: Integer) is
—— Insert a node containing i into ints, keeping it sorted.
begin

end;

procedure remove (i: Integer) is
—-—- Remove the first node containing i from ints, or do nothing
-~ if there is no such node.

begin
end;
begin
add(6); add(2); add(9); add(5);
remove(9); remove(6);
end;

Make a diagram showing the lifetimes of the heap variables and of ints.

3.5.4 Summarize your favorite programming language’s transient data types and
persistent data types. Is there any overlap between them?

**3.5.5 Redesign your favorite programming language to eliminate all specific input/
output features. Instead, allow the programmer to create persistent variables
(of any type) in much the same way as heap variables. What types would
be suitable replacements for your language’s existing persistent data types?
Choose an existing program that contains a lot of (binary) input/output code,
and rewrite it in your redesigned language.

Exercises for Section 3.6

3.6.1 Does your favorite programming language support pointers, either explicitly
or implicitly? Can dangling pointers arise, and (if so) how?

94 Chapter 3 Variables a

*%*3.6.2

Exercises for Section 3.7
371

*%3.7.2

*3.7.3

3.7.4

*3.7.5

Exercises for Section 3.8
*3.8.1

*3.8.2

Exercises for Section 3.9

nd storage

Choose an imperative language (such as C, C++, or Apa) that provides pointer
types. Redesign that language to abolish pointer types, instead allowing
programmers to define recursive types directly. Consider carefully the issue of
copy semantics vs reference semantics.

Systematically analyze the forms of commands of your favorite programming
language. Compare these with the forms discussed in Section 3.7. Are any
relevant forms missing in your language? Are any exotic forms provided, and
are they essential?

Design an extension to your favorite programming language that would add
list types (allowing declarations such as “odds: list of Integer;”).
Lists are not to be selectively updatable. Provide suitable list constructions,
including one for generating arithmetic progressions. Replace the existing
for-command by one where the control sequence is specified by a list.

We can gain insight into the nature of commands by stating equivalences
between different commands. For example, if “C; ; C,” is a sequential
command and “Cy , C,” is a collateral command, we can state:

C
CZ ’ Cl

C ; skip
Cl ’ C2

State as many other equivalences as you can discover. (Of course, “C; ; C;”
is not equivalent to “C, ; Cy”.)

Recursively define the C command “do C while (FE)”, similarly to the way
in which the while-command is recursively defined in Section 3.7.7.

Consider the questions (a), (b), and (c), posed at the end of Section 3.7.7,
concerning the interpretation of a for-command with control variable V
and loop body C. How does your favorite programming language answer
these questions?

Some programmers assert that side effects in expressions are a useful feature of a
programming language. Develop arguments both for and against this assertion.

Non-void functions in C and C++, and Apa function procedures, not only return
results but also may have side effects. Formulate restrictions on such functions
that would eliminate side effects. Bear in mind that any such restrictions should,
ideally, be enforceable by the compiler. Do your restrictions significantly reduce
the language’s expressive power?

3.9.1 Using diagrams similar to Figures 3.10 and 3.11, show the allocation of storage
to the local variables of the programs in Exercise 3.5.2(a) and (b).

3.9.2 Using diagrams similar to Figures 3.10-3.12, show the allocation of storage to
the local and heap variables of the program in Exercise 3.5.3.

Chapter 4

Bindings and scope

Every programming language enables programmers to write declarations that bind identi-
fiers to entities such as values (constants), variables, and procedures. This concept is both
fundamental and pragmatically important. Well-chosen identifiers help to make a program
easy to understand. More importantly, binding an identifier to an entity in one place, and
using that identifier to denote the entity in many other places, helps to make the program
easy to modify: if the entity is to be changed, only its declaration must be modified, not the
many parts of the code where the entity is used.
In this chapter we shall study:

e bindings and environments, which capture the associations between identifiers and
the entities they denote;

e scope, block structure, and visibility, which are concerned with which parts of the
program are affected by each declaration;

e declarations, which are program constructs that bind identifiers to entities;
e blocks, which are program constructs that delimit the scopes of declarations.

4.1 Bindings and environments

EXAMPLE 4.1

13

The expression “n+1”" uses the identifier n; the expression “f(n)” uses the
identifiers £ and n. If identifiers occur in an expression, the expression cannot
be understood in isolation; its meaning depends on the declarations of these
identifiers elsewhere in the program. Similarly, the meaning of a command such
as“m = n + 1;”or “print(m/2);” depends on the declarations of identifiers
that occur in that command.

Many programming languages allow the same identifier to be declared in
several parts of the program. The interpretation of an expression or command
using that identifier then depends on where the expression or command appears
in the program.

Effects of declarations
Consider the Apa expression “‘n+1”’, which uses the identifier n.
o If nis declared as follows:

n: constant Integer := 7;

95

96 Chapter 4 Bindings and scope

then n denotes the integer seven, so the expression “n+1” is evaluated by adding
one to seven.

o If nis declared as follows:
n: Integer;

then n denotes an integer variable, so the expression “n+1” is evaluated by adding
one to the current value of that variable.

We can understand the effects of declarations by invoking the concepts of
bindings, environments (explained in this section), and scope (explained in the
next section).

A binding is a fixed association between an identifier and an entity such as
a value, variable, or procedure. A declaration produces one or more bindings.
The constant declaration in Example 4.1 binds n to the value 7. The variable
declaration in Example 4.1 binds n to a newly created variable.

An environment (or name space) is a set of bindings. Each expression or
command is interpreted in a particular environment, and all identifiers used in the
expression or command must have bindings in that environment. It is possible that
expressions and commands in different parts of the program will be interpreted in
different environments.

Usually at most one binding per identifier is allowed in any environment. An
environment is then a partial mapping from identifiers to entities.

EXAMPLE 4.2 Environments
Consider the following Apa program skeleton:

procedure p is

z: constant Integer := 0;
c: Character;
procedure g is
c: constant Float := 3.0e6;

b: Boolean;
begin
2) ..
end qg;
begin
(1) ..
end p;
The environment at point (1) is:

{ ¢ — acharacter variable,
P — a proper procedure,
g — another proper procedure,
z — the integer 0 }

4.2

4.2.1

Scope

4.2 Scope 97

The environment at point (2) is:

{ b — aboolean variable,
¢ — the real number 3.0x10°,
p — a proper procedure,
q — another proper procedure,
Z — the integer 0 }

A bindable entity is one that may be bound to an identifier. Programming
languages vary in the kinds of entity that are bindable:

e C’s bindable entities are types, variables, and function procedures.

e JAVA’s bindable entities are values, local variables, instance and class
variables, methods, classes, and packages.

e ADA’s bindable entities include types, values, variables, procedures, excep-
tions, packages, and tasks.

The scope of a declaration is the portion of the program text over which the
declaration is effective. Similarly, the scope of a binding is the portion of the
program text over which the binding applies.

In some early programming languages, the scope of each declaration was the
whole program. In modern languages, the scope of each declaration is influenced
by the program’s syntactic structure, in particular the arrangement of blocks.

Block structure

A block is a program construct that delimits the scope of any declarations within
it. Each programming language has its own forms of blocks:

e The blocks of a C program are block commands ({ ... }), function bodies,
compilation units (source files), and the program as a whole.

e The blocks of a Java program are block commands ({ ... }), method
bodies, class declarations, packages, and the program as a whole.

e The blocks of an ApA program are block commands (declare ... begin
. end;), procedure bodies, packages, tasks, protected objects, and the
program as a whole.

In Section 4.4 we shall look at the syntactic aspects of blocks. In this section we
are concerned only with the language’s block structure, which is the arrangement
of blocks in the program text. In particular, we are interested in whether blocks
can be nested within one another.

Figures 4.1,4.2, and 4.3 contrast three kinds of block structure. Each box
represents a block. The scopes of some declarations are indicated by shading.

In a language with monolithic block structure (Figure 4.1), the only block is
the whole program, so the scope of every declaration is the whole program. In
other words, all declarations are global. This is exemplified by older versions of
CosoL.

98 Chapter 4 Bindings and scope

declaration of X

declaration of ¥ scope of declarations of X, V, Z

declaration of z

Figure 4.1 Monolithic
block structure.

declaration of X ——————— scope of declaration of X
(including all inner blocks)

declaration of y
I scope of declaration of y

declaration of z

scope of declaration of z

Figure 4.2 Flat
block structure.

declaration of X scope of declaration of X

declaration of ¥ (including all inner blocks)

\ scope of declaration of ¥

(including the inner block)

declaration of z scope of declaration of Z

Figure 4.3 Nested
block structure.

Monolithic block structure is the simplest possible block structure, but it is far
too crude, particularly for writing large programs. Programmers must take care
to ensure that all declarations have distinct identifiers. This is very awkward for
large programs being developed by a team of programmers.

In a language with flat block structure (Figure 4.2), the program is partitioned
into several non-overlapping blocks. This is exemplified by FORTRAN, in which
procedure bodies may not overlap, but each procedure body acts as a block.
A variable can be declared inside a particular procedure body, and its scope is
that procedure body. The scope of each global variable (and the scope of each
procedure itself) is the whole program.

4.2 Scope 99

Although flat block structure is an improvement on monolithic block structure,
it still has disadvantages. One is that every procedure and every global variable
must have a distinct identifier. Another is that any variable that cannot be local to
a particular procedure is forced to be global, and thus have the whole program as
its scope, even if it is accessed by only a couple of procedures.

In a language with nested block structure (Figure 4.3), blocks may be nested
within other blocks. This is exemplified by the many ALGor-like languages. C has
a restrictive nested block structure, in which function bodies may not overlap,
but block commands may be nested freely within function bodies. Java has a less
restrictive nested block structure, in which method bodies and inner classes may
be nested within a class. ApA has an unrestricted nested block structure, in which
block commands, procedure bodies, packages, and so on may be freely nested one
within another.

The advantage of nested block structure is that a block can be located
anywhere an identifier has to be declared.

4.2.2 Scope and visibility

Consider all the occurrences of identifiers in a program. We must distinguish two
different kinds of identifier occurrences:

e A binding occurrence of identifier / is an occurrence where / is bound to
some entity X.

e An applied occurrence of I is an occurrence where use is made of the entity
X to which [has been bound. At each such applied occurrence we say that
I denotes X.

In a well-formed program, each applied occurrence of I corresponds to exactly
one binding occurrence of /.

For example, the occurrence of the identifier n in the Apa declaration “n:
constant Integer := 7;” is a binding occurrence, where n is bound to 7;
thereafter, the two occurrences of n in the expression “n*(n-1)" are applied
occurrences, at which n denotes 7.

When a program contains more than one block, it is possible for the same
identifier I to be declared in different blocks. In general, / will denote a different
entity in each block. This allows programmers to choose freely which identi-
fiers to declare and use within a given block, without worrying about whether
(by coincidence) the same identifiers might have been declared and used in
other blocks.

But what happens if the same identifier is declared in two nested blocks?
This possibility, which is illustrated in Figure 4.4, is a consequence of nested
block structure.

Consider two nested blocks, such that the inner block lies within the scope of
a declaration of identifier / in the outer block:

o If the inner block does not contain a declaration of I, then applied occur-
rences of I both inside and outside the inner block correspond to the same

100 Chapter 4 Bindings and scope

declaration of X

scope of outer declaration of X
(excluding the inner block)

declaration of X

scope of inner declaration of X

Figure 4.4 Hiding.

declaration of /. The declaration of 7 is then said to be visible throughout
the outer and inner blocks.

e If the inner block does contain a declaration of [(as in Figure 4.4), then
all applied occurrences of [inside the inner block correspond to the inner,
not the outer, declaration of I. The outer declaration of I is then said to be
hidden by the inner declaration of /.

Recall Example 4.2. The constant declaration of c inside procedure g hides
the variable declaration of c inside procedure p. All the other declarations in the
main program, however, are visible inside the procedure.

In this subsection we have made certain simplifying assumptions, which we
shall later examine in detail:

e that the programming language is statically scoped (see Section 4.2.3);

e that the scope of each declaration is the entire enclosing block (see
Section 4.3.8);

e that there is no overloading (see Section 8.3).

4.2.3 Static vs dynamic scoping

So far we have assumed that the programming language is statically scoped. In this
subsection we explain what that means, and what is the alternative.

EXAMPLE 4.3 Static vs dynamic scoping
Consider the following outline of a program in a C-like language:
const int s = 2;

int £ (int x) {
@) return s * Xx;

}

void p (int y) {
) print(£(y));
¥

4.2 Scope 101

void q (int z) {
const int s = 3;
3) print(f(z));
}

The result of the function call “£(...)”” depends on how the language interprets the applied
occurrence of s at point (1) in the body of function f:

e The body of function f could be executed in the environment of the function
definition. In that environment s would denote 2, so “f(...)”” would multiply the
value of its argument by 2, regardless of where the function is called.

e The body of function f could be executed in the environment of the function call.
Then the function call “£(y)” at point (2) would multiply the value of y by 2, since
at that point s denotes 2. On the other hand, the function call “f(z)” at point
(3) would multiply the value of z by 3, since at that point s denotes 3.

A language is statically scoped if the body of a procedure is executed in
the environment of the procedure’s definition. Thus we can decide at compile-
time which binding occurrence of an identifier corresponds to a given applied
occurrence.

A language is dynamically scoped if the body of a procedure is executed
in the environment of the procedure call. That environment varies from one
procedure call to another, so we cannot decide until run-time which binding
occurrence of an identifier corresponds to a given applied occurrence.

With static scoping, we can determine the binding occurrence that corresponds
to a given applied occurrence of identifier /, just by examining the program text.
We find the smallest block containing the applied occurrence of I that also
contains a binding occurrence of I; the latter is the binding occurrence we seek.
The association between applied occurrences and binding occurrences is fixed. In
Example 4.3, therefore, we could safely replace the applied occurrence of s in the
body of function £ by the literal 2.

With dynamic scoping, on the other hand, the binding occurrence that cor-
responds to a given applied occurrence of identifier I depends on the program’s
dynamic flow of control. Whenever the entity denoted by [/ is needed, we find the
most recently elaborated declaration of [that is inside a currently active block.

There is a conflict between dynamic scoping and static typing. In Example 4. 3
suppose that the global declaration of s Were replaced by “char[] s = "...";”
With static scoping, the type error in “return s*x;’’ would be detected by
compile-time type checks. With dynamic scoping, the function call “f£(z)” at
point (3) would be unaffected, but the function call “f(y)” at point (2) would
result in a type error. The compiler could predict that type error only if the
program’s flow of control were predictable — which is not the case, in general.

For this reason, dynamically scoped languages (such as SMALLTALK and early
versions of Lisp) are also dynamically typed. The conflict between dynamic scoping
and static typing illustrates a more general problem with dynamic scoping, namely
the fact that it tends to make code harder to understand. If a procedure P accesses
a nonlocal constant or variable, or calls a nonlocal procedure, the effect will

102 Chapter 4 Bindings and scope

depend on where P was called. Indeed, P might be used in ways never anticipated
by its programmer.

Nearly all programming languages (including C, C++, Java, and ADpA) are
statically scoped. In this book we shall generally assume static scoping, except in
a few places where dynamic scoping is explicitly mentioned.

Let X be a program construct such as a command or expression. An applied
occurrence of an identifier / is said to be free in X if there is no corresponding
binding occurrence of / in X. In Example 4.3, the applied occurrences of s and
x are free in “return s*x;’’; but only the applied occurrence of s is free in
the function definition as a whole, since the function definition contains a binding
occurrence of x (as a formal parameter).

4.3 Declarations

Having considered bindings, environments, and scope, let us now examine the
program constructs that produce bindings. A declaration is a construct that will
be elaborated to produce bindings.

All declarations produce bindings; some have side effects such as creating
variables. We shall use the term definition for a declaration whose only effect is
to produce bindings.

Each programming language has several forms of simple declarations, covering
all kinds of entities that are bindable in the language. Nearly all languages support
the following:

e type declarations

e constant declarations

e variable declarations

e procedure definitions.
Some languages additionally support exception declarations, package declarations,
class declarations, and so on.

Declarations may also be composed from simpler declarations:

e collateral declarations

e sequential declarations

e recursive declarations.

4.3.1 Type declarations

A type declaration binds an identifier to a type. We can distinguish two kinds
of type declaration. A type definition binds an identifier to an existing type. A
new-type declaration binds an identifier to a new type that is not equivalent to
any existing type.

Type definitions fit with structural equivalence of types, while new-type
declarations fit with name equivalence of types. (See Section 2.5.2.)

EXAMPLE 4.4

EXAMPLE 4.5

4.3 Declarations 103

Some languages, such as C, C++, and HASKELL, support both type definitions
and new-type declarations. These languages also adopt a mixture of structural and
name equivalence.

C++ type declarations

In C++ (and C), typedef introduces a type definition that binds an identifier to an existing
type. The following type definition:

typedef char* Alpha;

binds Alpha to the existing type whose values are pointers to characters. Thereafter

Alpha is structurally equivalent to “char*”, so the types of the following variables
are equivalent:

Alpha s1;
char* s2;

Thus we may assign s1 to s2, or vice versa.
On the other hand, the keywords enum, struct, and union all introduce type
declarations that bind identifiers to new types. The following type declarations:

struct Book {Alpha title, int edn};
struct Author {Alpha name, int age};

bind Book and Author to two types that are not equivalent to each other (although their
values happen to be structurally similar). Thus we may not assign a Book value to an
Author variable, or vice versa.

Abpa consistently adopts name equivalence, and every type declaration creates
a new type.

A type declarations
The following Apa type declaration:

type Alpha is array (1 .. 32) of Character;
binds Alpha to a new array type. The following type declarations:

type Book is
record
title: Alpha;
edn: Integer;
end record;

type Author is
record
name: Alpha;
age: Integer;
end record;

bind Book and Author to two non-equivalent record types. Thus we may not assign a
Book value to an Author variable, or vice versa.

104 Chapter 4 Bindings and scope

4.3.2 Constant declarations

EXAMPLE 4.6

A constant declaration binds an identifier to a constant value.

A constant declaration typically has the form “const [= E;”, and binds
the identifier / to the value of the expression E; the constant’s type is determined
by the type of E. An alternative form is “const T [= E;”, which states
explicitly that the constant’s type is 7.

Insome programming languages £ must be an expression that can be evaluated
at compile-time. £ may be expressed in terms of literals, other constants, operators,
and so on.

In the more modern languages (including C++, Java, and Apa), E is an
arbitrary expression. In particular, E may access variables or parameters, in which
case it must be evaluated at run-time.

Apa constant declarations

Consider the following Apa constant declarations:

pi: constant Float := 3.1416;
twice_pi: constant Float := 2.0 * pi;

The value bound to pi is given by a literal. The value bound to twice_pi is given by an
expression that is evaluated at compile-time.
But now consider the constant declaration in the following function body:

function area (x, y, z: Float) return Float is

s: constant Float (= (x + v + z)/2.0;
begin

return sqrt(s*(s-x)*(s-y)*(s-z));
end;

The value bound to s is given by an expression that can be evaluated only at run-time,
since the values of the parameters x, y, and z are known only when the procedure is called.

4.3.3 Variable declarations

EXAMPLE 4.7

A variable declaration, in its simplest form, creates a single variable and binds
an identifier to that variable. Most programming languages also allow a variable
declaration to create several variables and bind them to different identifiers.

A variable renaming definition binds an identifier to an existing variable. In
other words, it creates an alias. ADA supports variable renaming definitions, but
few other languages do so.

Aba variable declarations
The following Apa variable declaration:

count: Integer;

4.3 Declarations 105
creates an integer variable, and binds the identifier count to that variable. The following
variable declaration:

count: Integer := 0;

does likewise, but also initializes the variable to zero.
The following Apa variable renaming definition:

pop: Integer renames population(state);

binds the identifier pop to an existing integer variable, namely a component of the array
variable population. In other words, pop is now an alias for the component variable
population(state). Subsequently, whenever desired, pop can be used to access this
component variable concisely and efficiently:

pop := pop + 1;

4.3.4 Procedure definitions

EXAMPLE 4.8

A procedure definition binds an identifier to a procedure. In most program-
ming languages, we can bind an identifier to either a function procedure or a
proper procedure.

C++ procedure definitions
The following C++ procedure definition:

bool even (int n) {
return (n % 2 == 0);

}

binds the identifier even to a function procedure that tests whether its integer argument
is even.
The following C++ procedure definition:

void double (int& n) {
n *= 2;

}

binds the identifier double to a proper procedure that doubles its argument, an inte-
ger variable.

4.3.5 Collateral declarations

We now consider how declarations may be composed. The choice is between
collateral composition, sequential composition, and recursive composition. Each
of these has a different impact on the scope of bindings. We shall look at these
forms of composition in this and the following two subsections.

A collateral declaration composes subdeclarations that are to be elaborated
independently of each other. These subdeclarations may not use bindings produced

106 Chapter 4 Bindings and scope

by each other. The collateral declaration merges the bindings produced by its
subdeclarations. Collateral declarations are uncommon in imperative and object-
oriented languages, but they are common in functional and logic languages.

EXAMPLE 4.9 ML collateral declarations

The following ML collateral value definition:

2.7183
3.1416

val e
and pi

combines independent subdeclarations of the identifiers e and pi. This collateral declara-
tion produces the following bindings:

{ e — thereal number 2.7183,
pi — the real number 3.1416 }

The scope of these bindings starts at the end of the collateral declaration. Thus we
could not extend the collateral declaration as follows:

val e = 2.7183
and pi = 3.1416
and twicepi = 2 * pi (* illegall *)

Instead we would employ a sequential declaration:

val e 2.7183
and pi 3.1416;
val twicepi = 2 * pi

4.3.6 Sequential declarations

A sequential declaration composes subdeclarations that are to be elaborated
one after another. Each subdeclaration can use bindings produced by any pre-
vious subdeclarations, but not those produced by any following subdeclarations.
The sequential declaration merges the bindings produced by its subdeclara-
tions. Sequential declarations are supported by most imperative and object-
oriented languages.

EXAMPLE 4.10 Apa sequential declarations
In the following Apa sequential declaration:
count: Integer := 0;

procedure bump is
begin

count := count + 1;
end;

4.3 Declarations 107

the identifier count is declared in the first subdeclaration and used in the second. The
sequential declaration produces the following bindings:

{ count — acharacter variable,
bump — a proper procedure }

ML has sequential declarations too. The problem noted in Example 4.9 was
easily solved by a sequential declaration in which the collateral declaration of e
and pi is followed by a declaration of twicepi.

4.3.7 Recursive declarations

EXAMPLE 4.11

A recursive declaration is one that uses the bindings that it produces itself.
Such a construct is important because it enables us to define recursive types
and procedures.

Some older languages (such as ForTrRAN and CoBoL) did not support recursion
at all, seriously reducing their expressiveness. It was once commonly argued that
recursion is inherently inefficient. This argument is no longer valid, since modern
computer architectures support recursion easily. All modern programming lan-
guages do support recursion, although they usually restrict it to type and procedure
definitions.

C, C++, and Apa are broadly similar in this respect. A single procedure
definition may be recursive. A sequence of procedure definitions can be made
mutually recursive, but this requires special means since a sequential declaration
forces every identifier to be declared before it is used. Likewise, a single type
declaration may be recursive, and a sequence of type declarations can be made
mutually recursive.

ApAa recursive type declarations

Consider the following Apa sequence of type declarations:

(1) type Int_Node;
(2) type Int_List is access Int_Node;
(3) type Int_Node is
record
elem: Integer;
succ: Int_List;
end record;

Declaration (1) is an incomplete type declaration: it binds Int_Node to an unknown type.
Declaration (2) binds Int_List to a type whose values will be pointers to Int_Node
variables. Declaration (3) completes the binding of Int_Node, here to a record type with
an Int_List component. Thus the two types are mutually recursive.

An incompletely-declared type identifier such as Int_Node may be used only to
declare a pointer type as in (2). This guarantees that every recursive type in Apa is defined
in terms of pointers.

108 Chapter 4 Bindings and scope

EXAMPLE 4.12 C recursive function definitions
The following C (or C++) function definition is recursive:

void print_decimal (int n) {
if (n < 0) {
print('-"');
print_decimal(-n);

} else if (n >= 10) {
print_decimal(n/10);
print(n % 10 + '0');

} else
print(n + '0');

¥

Now consider the following C (or C++) function definitions:
(1) void parse_expression ();

(2) void parse_primary () {
if (acceptable('(')) {
parse_expression();
accept(')');
} else
parse_variable();

}

(3) void parse_expression () {
parse_primary();
while (acceptable('+'))
parse_primary();

}

Declaration (1) binds parse_expression to an unknown function. Declaration
(2) binds parse_primary to a function that calls parse_expression. Declara-
tion (3) completes the binding of parse_expression, here to a function that calls
parse_primary. Thus the two functions are mutually recursive.

4.3.8 Scopes of declarations
Collateral, sequential, and recursive declarations differ in their influence on scope:
e In a collateral declaration, the scope of each subdeclaration extends from
the end of the collateral declaration to the end of the enclosing block.

e In a sequential declaration, the scope of each subdeclaration extends from
the end of that subdeclaration to the end of the enclosing block.

e In a recursive declaration, the scope of every subdeclaration extends from
the start of the recursive declaration to the end of the enclosing block.

These rules are illustrated most clearly by ML value declarations, which come
in all these forms: see Figure 4.5.

4.4 Blocks

In Section 4.2.1 we defined a block to be a program construct that delimits the
scope of any declarations within it. Let us now examine blocks in more detail.

4.4.1

EXAMPLE 4.13

4.4 Blocks 109
Collateral
declaration: val vl = ...
and v2 = .. scope of declaration of V1
vl oo v2 L. I I scope of declaration of V2
Sequential
declaration: val vl =
val v2 = .. vl.. scope of declaration of V1
vl . v2 I scope of declaration of v2
Recursive
declaration: val rec f =
fn x => scope of declaration of £
D £CD
- £

Figure 4.5 Scopes of ML collateral, sequential, and recursive declarations.

If we allow a command to contain a local declaration, we have a block
command. If we allow an expression to contain a local declaration, we have a
block expression. As we shall see, blocks can appear in other forms too.

Block commands

A block command is a form of command that contains a local declaration (or
group of declarations) D and a subcommand C. The bindings produced by D are
used only for executing C.

In C, C++, and JAva, a block command has the form “{ D C }”.In Aba,a
block command has the form ‘“declare D begin C end”. In each case, the
subcommand C is executed in an environment in which the bindings produced by
D override the outside environment.

Java block command

Suppose that x and y are integer variables, and their contents are to be sorted such that
x contains the smaller integer. We can easily implement this using an auxiliary variable,
declared locally to a block command. In Java:

if (x > y) {
int z = x;
X = Y;
y = z;
}
The scope of z is just the block command, and the lifetime of the variable denoted by z is
the activation of the block command.

110 Chapter 4 Bindings and scope

4.4.2 Block expressions

A block expression is a form of expression that contains a local declaration (or
group of declarations) D and a subexpression C. The bindings produced by D are
used only for evaluating E.

In C, C++, and Apa, the body of a function procedure is, in effect, a block
expression. The net effects of executing the function body are to yield a value (the
function result), and possibly to cause side effects. This is just like evaluating an
ordinary expression.

HaskeLL has a block expression, of the form “let D in E”, that may be
placed wherever any other expression may be placed. The subexpression E is
evaluated in an environment in which the bindings produced by D override the
outside environment.

EXAMPLE 4.14 Haskew and C++ block expressions

Suppose that variables a, b, and c contain the lengths of a triangle’s three sides. The
following HaskEeLL block expression yields the area of that triangle:

let
s =(a+ b+ c)/2.0
in
sqrt(s*(s-a)*(s-b)*(s-c))
To achieve the same effect in C++ (or Apa), we must first declare a function somewhere
in the program:

float area (float x, y, z) {
float s = (x +y + 2)/2.0;
return sqrt(s*(s-x)*(s-y)*(s-z));

}

and then call that function:

. area(a, b, c) ...

4.4.3 The Quadlification Principle
We may summarize the preceding subsections as follows:

e A block command is a command containing a local declaration D and a
subcommand C, the bindings produced by D being used only for executing C.

e A block expression is an expression containing a local declaration D and a
subexpression E, the bindings produced by D being used only for evaluat-
ing E.

Note the analogy between block expressions and block commands. In
principle, we can take this analogy further, by adding blocks to syntactic cat-
egories other than expressions and commands. The Qualification Principle
states:

Summary 111

1t is possible to include a block in any syntactic category, provided that the constructs in
that syntactic category specify some kind of computation.

One very useful example of the Qualification Principle is this:

e A block declaration is a declaration containing a local declaration D and
a subdeclaration D', the bindings produced by D being used only for
elaborating D'.

Block declarations as such are unusual in programming languages. However, they
do appear, in a disguised form, as packages and classes (Chapter 6). The essence
of a block declaration is that it distinguishes between private (local) and public
subdeclarations.

EXAMPLE 4.15 Java classes and Apa packages viewed as block declarations

Consider a large module that declares numerous entities (say A, B, C, X, Y, Z), but only
a few of them (say A, B, C) are to be public, i.e., made visible outside the module, the
remaining entities being auxiliary. Use of a block declaration allows the module’s interface
to be kept narrow by limiting the number of bindings visible outside the module.

This module could be implemented as a Java class:

class ... {
... // public declarations of A, B, C
... // private declarations of X, Y, Z
¥

or as an Apa package:

package ... is
. —— public declarations of A, B, C
end;

package body ... is
... —— private declarations of X, Y, Z
end;

In each case, the bindings produced by the private declarations are used only for
elaborating the public declarations. Only the bindings produced by the latter are available
outside the class or package.

Summary
In this chapter:

e We have studied the concepts of bindings and environments.

e We have studied block structure, scope and visibility of bindings, and the difference
between static and dynamic binding.

e We have surveyed various forms of declarations found in programming languages,
and the scope of the bindings that they produce.

112 Chapter 4 Bindings and scope

e We have surveyed various forms of blocks found in programming languages, in
particular block expressions and block commands, and we have formulated the
Qualification Principle.

Further reading

The Qualification Principle is stated and explained in

TENNENT (1981).

Exercises

Exercises for Section 4.1

4.1.1 What is the environment at each numbered point in the following C (or
C++) program?

int n;

(1) void

2
3

3) void

4)
}

(5) void

(©)
3

zero
0;

O A

n =

inc (int d) {
n += d;

main (int argc, char** argv) {

4.1.2 Whatis the environment at each numbered point in the following Apa program?

procedure main is

max: constant Integer := 999;
1) type Nat is range 0O max;
2) m, n: Nat;
3) function func (n: Nat) return Nat is
begin
4) ...
end func;
(5) procedure proc (m: Nat) is
(6) n: constant Integer := 6;
begin
7 .
end proc;
begin
®)

end main;

(€]
(@)

3
“

(6))
©)
()
®)

Exercises 113

declaration of a
declaration of b
.a..b..c..

declaration of b
declaration of C

.a..b..c..

..a..b..c..

..a...b...c..

declaration of C
declaration of d

declaration of a
declaration of e

..a..b..c..

Exercises for Section 4.2

4.2.1 Consider

Figure 4.6 Program outline (Exercise 4.2.1).

the program outline of Figure 4.6, which shows binding occurrences

(“declaration of I”’) and applied occurrences (‘... I ...”) of some identifiers.
What is the exact scope of each declaration? For each applied occurrence,
state whether it is legal, and if so identify its associated binding occurrence.
Assume that the programming language is: (a) Apa; (b) C (or C++); (c) your
favorite language.

4.2.2 Consider

M

@

the following outline of a program in a C-like language:

int add (int i) {
return i + d;

¥
void p OO {
const int d = 1;
print(add(20));
void q () {
const int d = 2;
print(add(20));
¥

(a) If the language is dynamically scoped, what would be printed at points
(1) and (2)?
(b) If the language is statically scoped, what would happen?

Exercises for Section 4.3

43.1 Insomel

anguages all variables must be initialized in their declarations, perhaps

using a default initial value for each type (such as false for booleans, 0 for integers,

114

Chapter 4 Bindings and scope

432

433

null for pointers). What are the advantages and disadvantages of compulsory
initialization of variables?

List all the forms of type definition in C. Redesign this part of C’s syntax so that
there is only one form of type definition, say “type 1 = T;”.

In HaskeLL not only can we define a new function, such as:
cosine x = ...

we can also define a synonym for an existing function:
cos = cosine

How can we define a synonym for an existing function (a) in C (or C++); (b) in
Apa? If necessary, suggest an extension to each language to make such synonyms
easier to define.

Exercises for Section 4.4

*4.4.1 Systematically analyze the declarations and blocks of your favorite program-

ming language. (a) What is the language’s block structure? (b) Which entities
are bindable? (c) What forms of declaration does the language provide? Com-
pare these with the forms discussed in Section 4.3: are any relevant kinds
missing? are any exotic kinds provided, and are they essential? (d) What
are the language’s scope and visibility rules? (e) What forms of blocks does
it provide?

Chapter 5

Procedural abstraction

Abstraction is a mode of thought by which we concentrate on general ideas rather than
on specific manifestations of these ideas. Abstraction is the whole basis of philosophy and
mathematics, and is also fruitful in many other disciplines, including computer science.

In systems analysis, abstraction is the discipline by which we concentrate on essential
aspects of the problem at hand, and ignore all inessential aspects. For example, in designing
an air traffic control system we concentrate on details that are relevant to the working of
the system (such as the aircraft’s type and call sign), and ignore the numerous irrelevant
details (such as the aircraft’s color and external markings, the crew’s names, and the
passengers’ names).

In programming, abstraction alludes to the distinction we make between what a
program unit does and how that program unit works. This enables a separation of concerns
between the programmers who use the program unit and the programmer who implements
it. Furthermore, we can use low-level program units to implement higher-level program
units, and in turn use these to implement still higher-level program units. In fact, we can
introduce as many levels of abstraction as desired. Separation of concerns and multiple
levels of abstraction are essential tools in building large software systems.

Procedural abstraction is concerned with the simplest program units, namely proce-
dures. In this chapter we shall study:

e proper procedures and function procedures;
e parameters and arguments;

e how procedure calls and parameters are implemented.

In Chapter 6 we shall study methods, which are the counterparts of procedures in object-
oriented languages.

5.1 Function procedures and proper procedures

A procedure is an entity that embodies a computation. In particular, a function
procedure embodies an expression to be evaluated, and a proper procedure
embodies a command to be executed. The embodied computation is to be
performed whenever the procedure is called.

A procedure is often defined by one programmer (the implementer) and
called by other programmers (the application programmers). These programmers
have different viewpoints. The application programmers are concerned only with
the procedure’s observable behavior, in other words the outcome of calling the
procedure. The implementer is concerned with how that outcome is to be achieved,
in other words the choice of algorithm.

115

116 Chapter 5

Procedural abstraction

The effectiveness of procedural abstraction is enhanced by parameterization.
We shall study parameter passing in detail in Section 5.2.

Note that the methods of object-oriented languages are essentially procedures
by another name. The only difference is that every method is associated with
a class or with a particular object. We shall consider methods in detail in
Chapter 6.

5.1.1 Function procedures

EXAMPLE 5.1

A function procedure (or simply function) embodies an expression to be evaluated.
When called, the function procedure will yield a value known as its result. The
application programmer observes only this result, not the steps by which it
was computed.

A C or C++ function definition has the form:

TI1(FPD,,...,FPD,) B

where [is the function’s identifier, the FPD; are formal parameter declarations, T
is the result type, and B is a block command called the function’s body. B must
contain at least one return of the form “return E;”, where E is an expression
of type T. The function procedure will be called by an expression of the form
“I(APy,...,AP,)”, where the AP; are actual parameters. This function call causes
B to be executed, and the first return to be executed within B determines the
result.

C++ function definition
The following C++ function definition:

float power (float x, int n) {
float p = 1.0;
for (dnt i = 1; i <= nj; i++)
P *= Xx;
return p;

3

binds power to a function procedure with two formal parameters (x and n) and result
type £loat. This computes the nth power of x, assuming that n is nonnegative. Note the
use of local variables and iteration to compute the function’s result.

The following C++ function definition uses recursion instead:

float power (float x, int n) {

if (n == 0)
return 1.0;
else

*

return x power(x, n-1);

EXAMPLE 5.2

5.1 Function procedures and proper procedures 117

An Apa function definition has a slightly different form:

function I (FPD,; ...; FPD,) return T is
D

begin
C

end;

The function’s body consists of the local declaration(s) D and the sequential
command C. In effect, the function’s body is a block command.

C, C++, and Apa function definitions are clumsy. The function’s body is a
block command, so programmers are almost encouraged to define functions with
side effects. The function’s result is determined by executing a return, but the end
of the function’s body could be reached without executing any return, in which
case the function would fail. The fundamental problem is that the function’s body
must yield a value, like an expression, but syntactically it is a command.

A more natural design is for the function’s body to be syntactically an
expression. This is the case in functional languages such as ML and HASKELL.

HasketL function definition
The following HaskeLL function definition:

power (x: Float, n: Int) =
ifn =20
then 1.0
else x * power(x, n-1)

binds power to a function procedure.
This HaskeLL function returns the same result as the C++ functions of Example 5.1.
However, its body is an expression.

Function definitions are easier to understand when the function’s body is an
expression. However, this benefit might be gained at the expense of efficiency or
expressiveness. The first C++ function of Example 5.1 uses local variables and an
iterative command; the second function instead uses recursion, but it might be less
efficient in terms of storage space. For the HAsKELL function of Example 5.2 there
is no alternative to using recursion. (See Exercise 5.1.2.)

In general, a function call can be understood from two different points of view:

e The application programmer’s view of the function call is that it will map
the arguments to a result of the appropriate type. Only this mapping is of
concern to the application programmer.

e The implementer’s view of the function call is that it will evaluate or execute
the function’s body, using the function’s formal parameters to access the
corresponding arguments, and thus compute the function’s result. Only the
algorithm encoded in the function’s body is the implementer’s concern.

118 Chapter 5 Procedural abstraction

For example, consider the two C++ functions of Example 5.1. The application
programmer’s view of the first function is that it will map each pair (x, n) to the
result x”; the implementer’s view is that it will compute its result by iteration. The
application programmer’s view of the second function is that it will map each pair
(x, n) to the result x"; the implementer’s view is that it will compute its result by
recursion. The application programmer’s views of the two functions are the same;
the implementer’s views are different.

Function procedures are most commonly constructed in function definitions;
indeed in most programming languages this is the only way to construct them.
However, the functional languages such as ML and HASKELL separate the distinct
concepts of function construction and binding. For instance, in HASKELL:

\(I: T) -> E

is an expression that yields a function procedure. Its formal parameter is / (of type
T), and its body is E.

EXAMPLE 5.3 HaskeLL function construction
The following HASKELL expression:
\(x: Float) -> xA3
yields a function that implements the cube function. The conventional function definition:
cube (x: Float) = xA3
is just an abbreviation for the value definition:

cube =
\(x: Float) -> xA3

in which the value bound to cube happens to be a function.
Consider the following integration function, whose formal parameter f is the function
to be integrated:

integral (a: Float, b: Float, f: Float->Float) = ...

This is supposed to compute the direct integral of £ (x) over the interval [a..b]. When we
call integral, the actual parameter corresponding to £ can be any expression of type
Float->Float, as in the following:

. integral(0.0, 1.0, cube) ...
. integral (0.0, 1.0, \(x:Float)->x*x) ...

5.1.2 Proper procedures

A proper procedure embodies a command to be executed, and when called will
update variables. The application programmer observes only these updates, not
the steps by which they were effected.

EXAMPLE 5.4

119

5.1 Function procedures and proper procedures

A C or C++ proper procedure definition has the form:

void [(FPD,, ..., FPD,) B

where [is the function’s identifier, the FPD; are the formal parameter declarations,
and B is a block command called the procedure’s body. The procedure will be
called by a command of the form “I(APy, ..., AP,);”’, where the AP; are actual
parameters. This procedure call causes B to be executed.

Note that a C or C++ proper procedure definition is just a special case of a
function definition, distinguished only by the fact that the result type is void.

C++ proper procedure definition

Consider the following C++ procedure definition:

void sort (dint a[], int 1, int r) {
int minpos; int min;
for (dnt i = 1; 1 < r; i++) {
minpos = i; min = a[minpos];
for (dint j = i+l; j <= r; Jj++) {
if (aljl < alil) {
minpos = Jj; min = a[minpos];
}
if (minpos != i) {
a[minpos] = a[i]; al[i] = min;

}
}
}

This binds the identifier sort to a proper procedure. The application programmer’s view
is that the outcome of a procedure call like “sort(nums, 0, n-1);” will be to sort
the values in nums[01], ..., nums [n-1] into ascending order. The implementer’s view is
that the procedure’s body employs the selection-sort algorithm.

The implementer might later substitute a more efficient algorithm, such as Quicksort:

void sort (dint a[], int 1, int r) {
int p;

if (r > 1) {

partition(a, 1, T, p);
sort(a, 1, p-1);
sort(a, p+l, r);

}
}

However, the application programmer’s view would be unchanged.

An Apa proper procedure definition has the form:

procedure [(FPD.; ...; FPD,) is
D

begin
C

end;

120 Chapter 5 Procedural abstraction

The procedure’s body consists of the local declaration(s) D and the sequential
command C. In effect, the procedure’s body is a block command.

EXAMPLE 5.5 Apa proper procedure definition
Consider the following Apa procedure definition:

procedure sort (a: in out Int_Array;
l, r: in Integer) is
p: Integer;
begin
if r > 1 then
partitionCa, 1, r, p);
sort(a, 1, p-1);
sort(a, p+1l, 1);
end if;
end;

In general, a procedure call can be understood from two different points
of view:

e The application programmer’s view of the procedure call is its final outcome,
which is that certain variables are updated. Only this outcome is of concern
to the application programmer.

e The implementer’s view of the procedure call is that it will execute the
procedure’s body, using the procedure’s formal parameters to access the
corresponding arguments. Only the algorithm encoded in the procedure’s
body is the implementer’s concern.

5.1.3 The Abstraction Principle
We may summarize the preceding subsections as follows:

e A function procedure abstracts over an expression. That is to say, a function
procedure has a body that is an expression (at least in effect), and a function
call is an expression that will yield a result by evaluating the function
procedure’s body.

e A proper procedure abstracts over a command. That is to say, a proper
procedure has a body that is a command, and a procedure call is a command
that will update variables by executing the proper procedure’s body.

Thus there is a clear analogy between function and proper procedures. We
can extend this analogy to construct other types of procedures. The Abstraction
Principle states:

1t is possible to design procedures that abstract over any syntactic category, provided
only that the constructs in that syntactic category specify some kind of computation.

5.1 Function procedures and proper procedures 121

For instance, a variable access refers to a variable. We could imagine designing
a new type of procedure that abstracts over variable accesses. Such a procedure,
when called, would yield a variable. In fact, such procedures do exist, and are
called selector procedures:

e A selector procedure abstracts over a variable access. That is to say, a
selector procedure has a body that is a variable access (in effect), and a
selector call is a variable access that will yield a variable by evaluating the
selector procedure’s body.

Selector procedures are uncommon in programming languages, but they are
supported by C++.

EXAMPLE 5.6 C++ selector procedure
Consider the following C++ function procedure:
typedef ... Queue; // queues of integers

int first (Queue q);
// Return the first element of g.

Using this function procedure, we can fetch the first element of a given queue, but we
cannot update the first element:

int i = first(qA); // fetches the first element of gA
first(qA) = 0; // illegal!

Instead, we could make first a selector procedure:

int& first (Queue q);
// Return a reference to the first element of g.

Now we could call this selector procedure as follows:

int i = first(qA); // fetches the first element of gA
first(qA) = 0; // updates the first element of gA

Because a selector call’s result is a variable (as opposed to the variable’s current value),
the result variable can be either inspected or updated, as illustrated above.
Suppose that the implementer chooses to represent each queue by an array:

struct Queue {
int elems[10];
int front, rear, length;

};
Then the selector procedure would be implemented as follows:

int& first (Queue q) {
return q.elems[q.front];

}

Here the variable access “‘q.elems[q.front]” determines the result variable. The
selector call “first(gA)” therefore yields the variable gA.elems[qgA. front].

13

122 Chapter 5

Procedural abstraction

Suppose instead that the implementer chooses to represent queues by linked lists:

struct QNode {
int elem;
struct QNode * succ;
}s
struct Queue {
struct QNode * front;
int length;
}s

the selector procedure would be implemented as follows:

int& first (Queue q) {
return q.front->elem;

}

Here the variable access ‘“‘q. front->elem’” determines the result variable. The selector
call “first(gA)” therefore yields the variable gA. front->elem.

All programming languages provide not only a repertoire of built-in operators
(such as “+” and “*”), but also a means (function definitions) to extend that
repertoire. On the other hand, most programming languages provide only a fixed
repertoire of built-in selectors (such as “V. I’ for records and “V[E]” for arrays),
with no means to extend that repertoire. This is an anomaly. The Abstraction
Principle helps us to design programming languages that are both more regular
and more expressive.

Another direction in which we might push the Abstraction Principle is to
consider whether we can abstract over declarations. This is a much more radical
idea, but it has been adopted in some modern languages such as C++, Java, and
Apa. We get a construct called a generic unit:

e A generic unit abstracts over a declaration. That is to say, a generic unit has
a body that is a declaration, and a generic instantiation is a declaration that
will produce bindings by elaborating the generic unit’s body.

This is a very powerful concept, which we shall study in Chapter 7.

5.2 Parameters and arguments

EXAMPLE 5.7

If we simply make an expression into a function procedure, or make a command
into a proper procedure, we generally end up with a procedure that will always
perform the same computation whenever called. (But see Exercise 5.2.1.)

To realize the full power of the procedure concept, we need to parameterize
procedures with respect to entities on which they operate.

Parameterizing a C++ function procedure

Throughout this example, assume the following type definition:

typedef float Vector[];
// AVector value represents a vector in n-dimensional space.

5.2 Parameters and arguments 123

Consider the following parameterless C++ function:

const int n = 3;
Vector v = {3.0, 4.0, 0.0};

float length () {
float s = 0.0;
for (dnt i = 0; i < n; i++)
s += v[il]*v[i];
return sqrt(s);

3

The function call “length()” always performs the same computation, computing the
length of the particular vector v in three-dimensional space. Thus the function is almost
useless at it stands.

We can make the function far more useful by parameterizing it with respect to v:

const int n = 3;

float length (Vector v) {
float s = 0.0;
for (dnt i = 0; i < n; i++)
s += v[i]*v[i];
return sqrt(s);

}

Now we can write function calls, such as “length(v1l)” and “length(v2)”,to compute
the lengths of different vectors.
We can make the function still more useful by parameterizing it with respect to n:

float length (Vector v, int n) {
float s = 0.0;
for (dnt i = 0; i < n; i++)
s += v[i]*v[i];
return sqrt(s);

}

Now we can write function calls, such as “length(v1l, 2)” and “length(v2, 3)7,
to compute the distances of different points from the origin in two-dimensional space,
three-dimensional space, or indeed any-dimensional space.

An argument is a value or other entity that is passed to a procedure. An actual
parameteris an expression (or other construct) that yields an argument. A formal
parameter is an identifier through which a procedure can access an argument.

In all programming languages, first-class values may be passed as arguments.
In most languages, either variables or pointers to variables may be passed as
arguments. In some languages, either procedures or pointers to procedures may
be passed as arguments. (In C, C++, and ADA, pointers to variables and pointers
to procedures are themselves first-class values.)

When a procedure is called, each formal parameter will become associated,
in some sense, with the corresponding argument. The nature of this association is
called a parameter mechanism.

Different programming languages provide a bewildering variety of parameter
mechanisms, e.g., value parameters, result parameters, value-result parameters,

124 Chapter 5 Procedural abstraction

constant parameters, variable parameters, procedural parameters, and functional
parameters. Fortunately, all these parameter mechanisms can be understood in
terms of two basic concepts:

e A copy parameter mechanism binds the formal parameter to a local variable
that contains a copy of the argument.

e A reference parameter mechanism binds the formal parameter directly to
the argument itself.

In the following subsections we examine these two concepts.

5.2.1 Copy parameter mechanisms

A copy parameter mechanism allows for a value to be copied into and/or out of
a procedure. The formal parameter FP denotes a local variable of the procedure.
A value is copied into FP on calling the procedure, and/or is copied out of FP
(to an argument variable) on return. The local variable is created on calling the
procedure, and destroyed on return.

There are three possible copy parameter mechanisms:

e A copy-in parameter (also known as a value parameter) works as follows.
When the procedure is called, a local variable is created and initialized
with the argument value. Inside the procedure, that local variable may be
inspected and even updated. (However, any updating of the local variable
has no effect outside the procedure.)

e A copy-out parameter (also known as a result parameter) is a mirror-image
of a copy-in parameter. In this case the argument must be a variable. When
the procedure is called, a local variable is created but not initialized. When
the procedure returns, that local variable’s final value is assigned to the
argument variable.

e A copy-in-copy-out parameter (also known as a value-result parameter)
combines copy-in and copy-out parameters. In this case also, the argument
must be a variable. When the procedure is called, a local variable is
created and initialized with the argument variable’s current value. When
the procedure returns, that local variable’s final value is assigned back to
the argument variable.

C, C++, and Java support only copy-in parameters; Apa supports all three
copy parameter mechanisms.

EXAMPLE 5.8 Apa copy parameter mechanisms
Consider the following Apa procedures:
type Vector is array (1 .. n) of Float;

procedure add (v, w: in Vector;
sum: out Vector) is

5.2 Parameters and arguments 125

(1) begin
for i in 1 .. n loop
sum(i) := v(i) + w(i);
end loop;
(2) end;
procedure normalize (u: in out Vector) is
3) s: Float := 0.0;
begin
for i in 1 .. n loop
s = s + u(i)**2;
end loop;
s := sqrt(s);
for i in 1 .. n loop
u(i) := u(i)/s;
end loop;
(4) end;

Also assume that the keyword in signifies a copy-in parameter, that out signifies a
copy-out parameter, and that in out signifies a copy-in-copy-out parameter.

If a, b, and c are Vector variables, the procedure call “add(a, b, c);” works as
follows. At point (1), local variables named v and w are created, and the values of a and
b are assigned to v and w, respectively. Also at point (1), a local variable named sum is
created but not initialized. The procedure’s body then updates sum. At point (2), the final
value of sum is assigned to c.

The procedure call “normalize(c) ;” works as follows. At point (3), local variable
u is created, and the value of c is assigned to u. The body of normalize then updates u.
At point (4), the final value of u is assigned to c.

The copy parameter mechanisms display a pleasing symmetry, as shown in
Table 5.1. Since they are based on the concept of assignment, however, the copy
parameter mechanisms are unsuitable for types that lack assignment (such as
limited types in Apa). Another disadvantage is that copying of large composite
values is expensive.

5.2.2 Reference parameter mechanisms

A reference parameter mechanism allows for the formal parameter FP to be
bound directly to the argument itself. This gives rise to a simple uniform semantics
of parameter passing, suitable for all types of values in the programming language

Table 5.1 Summary of copy parameter mechanisms (FP stands for the formal parameter).

Parameter mechanism Argument Effect at procedure call Effect at return
Copy-in parameter value FP :=argument value; -
Copy-out parameter variable - argument variable : = FP;

Copy-in-copy-out parameter variable FP := argument value; argument variable : = FP;

126 Chapter 5 Procedural abstraction

(notjust first-class values). Reference parameter mechanisms appear under several
guises in programming languages:

e In the case of a constant parameter, the argument must be a value. FP is
bound to the argument value during the procedure’s activation. Thus any
inspection of FP is actually an indirect inspection of the argument value.

e In the case of a variable parameter, the argument must be a variable. FP
is bound to the argument variable during the procedure’s activation. Thus
any inspection (or updating) of FP is actually an indirect inspection (or
updating) of the argument variable.

e In the case of a procedural parameter, the argument must be a procedure.
FP is bound to the argument procedure during the called procedure’s
activation. Thus any call to FP is actually an indirect call to the argument
procedure.

These three parameter mechanisms are summarized in Table 5.2. Note how
closely they resemble one another.

C does not support reference parameter mechanisms directly, but we can
achieve the effect of variable parameters using pointers. If a C function has a
parameter of type T* (pointer to T), the corresponding argument must be a
pointer to a variable of type T. The caller can obtain a pointer to any variable V
by an expression of the form “&V”’. Using such a pointer, the called function can
inspect or update the variable V.

C++ does support variable parameters directly. If the type of a formal
parameter is T& (reference to T'), the corresponding argument must be a variable
of type T.

Abpa supports both constant and variable parameters.

EXAMPLE 5.9 Apa reference parameter mechanisms

Consider once more the Apa procedures of Example 5.8. But this time assume that
the keyword in signifies a constant parameter, and that out or in out signifies a
variable parameter.

Suppose that a, b, and ¢ are Vector variables. The procedure call “add(a, b,
c);” works as follows. At point (1), v and w are bound to the values of a and b,
respectively; and sum is bound to the variable c. The body of add thus indirectly inspects
a and b, and indirectly updates c.

Table 5.2 Summary of reference parameter mechanisms (FP stands for the formal parameter).

Parameter mechanism Argument Effect at procedure call Effect at return
Constant parameter value bind FP to argument value -
Variable parameter variable bind FP to argument variable -

Procedural parameter procedure bind FP to argument procedure -

EXAMPLE 5.10

5.2 Paramefers and arguments 127

The procedure call “normalize(c) ;” works as follows. At point (3), u is bound to
the variable c. The body of normalize thus indirectly inspects and updates c.

Notice that nothing happens at points (2) and (4). Notice also that no copying takes
place. The formal parameters v and w are treated as constants, so they cannot be updated;
therefore the corresponding arguments a and b cannot be indirectly updated.

Examples 5.8 and 5.9 illustrate the fact that constant and variable parameters
together provide similar expressive power to the copy parameter mechanisms,
i.e., the ability to pass values into and out of a procedure. The choice between
reference and copy parameter mechanisms is an important decision for the
language designer.

Reference parameters have simpler semantics, and are suitable for all types
of value (including procedures, which in most programming languages cannot be
copied). Reference parameters rely on indirect access to argument data, so copy
parameters are more efficient for primitive types, while reference parameters are
usually more efficient for composite types. (In a distributed system, however, the
procedure might be running on a processor remote from the argument data, in
which case it may be more efficient to copy the data and then access it locally.)

Apa mandates copy parameter mechanisms for primitive types, but allows
the compiler to choose between copy and reference parameter mechanisms for
composite types. Since the type Vector of Examples 5.8 and 5.9 is composite,
parameters of that type may be implemented either by copying or by reference.
Either way, a procedure call such as “add(a, b, c);” will have the same effect,
except possibly for a difference in efficiency.

A disadvantage of variable parameters is that aliasing becomes a hazard.
Aliasing occurs when two or more identifiers are simultaneously bound to the
same variable (or one identifier is bound to a composite variable and a second
identifier to one of its components). Aliasing tends to make programs harder to
understand and harder to reason about.

C++ dliasing
Consider the following C++ procedure with three variable parameters:

void pour (float& vl, float& v2, float& v) {

// Given two pots containing v1 and v2 liters of water, respectively,

// determine the effect of pouring v liters from the first pot into the second.
vl -= v;
v2 += Vv;

}

Suppose that variables x, y, and z currently have values 4.0, 6.0, and 1.0, respectively.
Then the call “pour(x, y, z);” would update x to 3.0 and y to 7.0, as we would
expect. But now the call “pour(x, y, x);” would update x to 0.0 but leave y at 7.0,
unexpectedly. To understand the behavior of the latter call, note that both v1 and v are
aliases of x, and hence of each other.

128 Chapter 5 Procedural abstraction

Why is this behavior unexpected? When we read the procedure’s body, we tend to
assume that v1 and v denote distinct variables, so the assignment “v1l -= v;” updates
only v1. Nearly always, the assumption that distinct identifiers denote distinct variables is
justified. But very occasionally (in the presence of aliasing), this assumption is not justified,
and then we are taken by surprise.

Aliasing most commonly arises from variable parameters, but can also arise
from variable renaming definitions (Section 4.3.3). If a programming language has
either of these constructs, the onus is on programmers to avoid harmful aliasing.
(Note that the compiler cannot always detect aliasing. The aliasing in “pour(x,
y, x);” is rather obvious. But in “pour(ali], al[j], alkl);”, the com-
piler cannot know whether aliasing exists unless it can predict the values of i, j,
and k.)

5.2.3 The Correspondence Principle

You might have noticed a correspondence between certain parameter mechanisms
and certain forms of declaration. For example:

e A constant parameter corresponds to a constant definition. In each case, an
identifier is bound to a first-class value.

e A variable parameter corresponds to a variable renaming definition. In
each case, an identifier is bound to an existing variable.

e A copy-in parameter corresponds to an (initialized) variable declaration.
In each case, a new variable is created and initialized, and an identifier is
bound to that variable.

In the interests of simplicity and regularity, a language designer might wish to
eliminate all inessential differences between declarations and parameter mecha-
nisms. The Correspondence Principle states:

For each form of declaration there exists a corresponding parameter mechanism.

Note that the converse is not always true. For example, no programming
language could reasonably have declarations that correspond to the copy-out and
copy-in-copy-out parameter mechanisms.

If a programming language complies with the Correspondence Principle,
programmers benefit for the following reason. Suppose that a program contains
a procedure P, and a (nonlocal) declaration of an entity X on which P depends.
Then we can parameterize P with respect to X, provided that the programming
language supports the parameter mechanism that corresponds to the declaration
of X. Since different calls to P can supply different arguments for X, the procedure
is more flexible than it was originally.

HaskeLL complies well with the Correspondence Principle, if we restrict
our attention to first-class values. Its constant parameter mechanism corresponds
directly to its value definition. (Recall that HASKELL functions are first-class values,
and so need no special declarations or parameter mechanisms.)

C++ complies with the Correspondence Principle to a very limited extent.
C++’s initialized variable declaration is shown beside the corresponding copy-in

5.3 Implementation notes 129

Table 5.3 C++ declarations and parameter mechanisms (formal
parameter declarations and actual parameters are underlined).

Declaration Parameter mechanism
Initialized variable declaration: Copy-in parameter:
TI=E; void P (T1) {
}
Call:
P(E);
(No equivalent) Variable parameter:

void P (T &) {

}
Call:

PV);

parameter mechanism in Table 5.3. In each case, the identifier / is bound to a
newly-created variable initialized with the value of the expression E. In one case,
E is provided by the variable declaration. In the other case, E is provided by
the procedure call. A weakness of C++ is that it supports only two parameter
mechanisms, copy-in and variable parameters.

Recall Example 5.7, where we started with an initialized variable declaration
of v, a constant declaration of n, and a parameterless C++ function procedure.
The copy-in parameter v corresponded exactly to the original initialized variable
declaration. But the copy-in parameter n corresponded only approximately to the
original constant declaration: n now denotes a variable that could be updated
(which would have been a logical error in that application).

Apa complies with the Correspondence Principle to a greater extent. ADA’s
declarations are shown beside the corresponding parameter mechanisms in
Table 5.4. A weakness of ApAa is that it allows programmers little control over the
choice between copy and reference parameter mechanisms.

If we wish to parameterize with respect to a procedure, both C++ and Apa
depart from the Correspondence Principle. Neither language has a parameter
mechanism that corresponds directly to a procedure definition. However, if we
wish to pass a procedure P as an argument to another procedure, we can achieve
essentially the same effect in C++ or ApA by passing a pointer to P.

5.3 Implementation notes

We have already seen, in Section 3.9.1, that a stack of activation frames is used
to allocate storage to local variables of procedures. In fact, the stack is used to
implement all aspects of procedure calls, including parameter passing.

130 Chapter 5 Procedural abstraction

Table 5.4 Apa declarations and parameter mechanisms (formal parameter declarations
and actual parameters are underlined).

Declaration Parameter mechanism

Initialized variable declaration: Copy-in parameter:

I: T := E; procedure P (I: in 7) is
begin

end;
Call:
P(E);

Constant definition: Constant parameter:

I: constant T := E; procedure P (I: in 7) is
begin

end;
Call:
P(E);

Variable renaming declaration: Variable parameter:

I: T renames V; procedure P (I: in out 7) is
begin

end;
Call:
P(V);

5.3.1 Implementation of procedure calls

When a procedure P is called, an activation frame is pushed on to the stack. That
activation frame contains enough space for all of P’s local variables, together with
space for the return address and other housekeeping data. When P returns, that
activation frame is popped off the stack.

At any given time, the stack contains activation frames for all currently-active
procedures, in the order in which they were called (which is the reverse of the
order in which they will return). (See Figure 3.10.)

Recursive procedures require no special treatment. During a recursive acti-
vation of a recursive procedure P, the stack contains several activation frames for
P. (See Figure 3.11.)

5.3.2 Implementation of parameter mechanisms

To pass arguments between the calling procedure and the called procedure, we
simply deposit them either in registers or in an activation frame. The various
parameter mechanisms differ in the details.

Exercises 131

Recall that the copy parameter mechanisms work in terms of a local variable
denoted by the formal parameter. A copy-in parameter is implemented by passing
in the argument value and using it to initialize the local variable. A copy-out
parameter is implemented by passing out the local variable’s final value, and
using it to update the argument variable, on return from the called procedure.
A copy-in-copy-out parameter is implemented by both passing in the argument
variable’s value and passing out the updated value.

A reference parameter is implemented by passing the address of the argu-
ment; the called procedure then uses this address to access the argument
whenever required.

Summary
In this chapter:

e We have studied function procedures and proper procedures. We saw that a function
procedure abstracts over an expression, and that a proper procedure abstracts over
a command. We saw that the Abstraction Principle invites language designers to
consider extending abstraction to other programming language constructs, such as
a selector procedure which abstracts over a variable access.

e We have studied parameters and arguments. We saw that a programming lan-
guage can choose between copy parameter mechanisms and reference parameter
mechanisms. We saw that the Correspondence Principle exposes a duality between
declarations and parameter mechanisms.

e We have briefly examined how procedures and parameters are implemented.

Further reading

The Abstraction and Correspondence Principles were on earlier work by LANDIN (1966) and STRACHEY
formulated by TENNENT (1977, 1981). They were based (1967).

Exercises

Exercises for Section 5.1

5.1.1 Redesign the syntax of C or C++ function definitions and function calls to make
a clear distinction between proper procedures and function procedures.

*5.1.2 Redesign the syntax of C, C++, or Apa function definitions so that a function’s
body is an expression (rather than a block command). Show that this change,
in isolation, would reduce the expressive power of your language’s functions.
What other changes to your language would be needed to compensate? (Hint:
Compare your language’s expressions with the forms described in Sections 2.6,
3.8.1,and 4.4.2.)

*5.1.3 Redesign the syntax of C, C++, or Apa function definitions and function calls
to allow a function to have multiple results.

5.1.4 Would it make sense to apply the Abstraction Principle to: (a) literals; (b) types?

132 Chapter 5 Procedural abstraction

Exercises for Section 5.2
521

*5.2.2

523

52.4

525

Exercises for Section 5.3

Find at least one example of a parameterless procedure that does not perform
exactly the same computation every time it is called. Under what circumstances,
in general, will a parameterless procedure behave like this?

Make a list of all entities that can be passed as arguments in your favorite
programming language. Also make a list of any entities that cannot be passed
as arguments. Why are the latter excluded?

Consider the following Apa procedure:

procedure multiply (m, n: in out Integer) is

begin
m :=m * n;
put(m); put(n);
end;

(a) Note that the copy-in-copy-out parameter mechanism is used here (since
Integerisa primitive type). Suppose that i contains 2 and that j contains
3. Show what is written by the following procedure calls:

multiply(di, j); multiply(di, i);

(b) Now suppose that the variable parameter mechanism were used instead.
Show what would be written by each of the above procedure calls. Explain
any difference.

Consider the procedure call “add(a, b, c);” of Examples5.8 and 5.9.
Show that the procedure call has the expected outcome, whether copy or
reference parameter mechanisms are used. Repeat for the procedure call
“add(a, b, b);”.Show that (harmless) aliasing can arise in this case.

In C, C++, or Apa, would it make sense to apply the Correspondence Principle
to: (a) types; (b) record or structure fields?

5.3.1 Consider the implementation of a procedure P with a formal parameter FP of
type T.

(a) Assume that the copy-in-copy-out parameter mechanism is used. What exactly

is passed to P, a value or an address? What happens when P is called? What
happens inside P when it inspects FP? What happens inside P when it updates
FP? What if anything happens when P returns?

(b) Repeat, this time assuming that the variable parameter mechanism is used

instead.

PART Il

ADVANCED CONCEPTS

Part III explains the more advanced programming language concepts, which are
supported by the more modern programming languages:

e data abstraction (packages, abstract types, and classes);

e generic abstraction (generic units and type parameters);

type systems (inclusion polymorphism, parametric polymorphism, over-
loading, and type conversions);

control flow (jumps, escapes, and exceptions).

133

Chapter 6

Data abstraction

Software engineering depends on the decomposition of large programs into program units.
The simplest program units are procedures, which we studied in Chapter 5. But the program
units that make the best building blocks for large programs are packages, abstract types,
and classes.

In this chapter we shall study:

e packages, which are program units that group together declarations of several
(usually related) components;

e encapsulation, whereby components of a package may be either public or private;

e abstract types, which are types whose representations are private, but which are
equipped with public operations;

e classes, which are program units that define the structure of families of objects, each
object being a group of private variables equipped with public operations;

e subclasses and inheritance, which form the basis of object-oriented programming;

e how objects are represented, and how method calls are implemented.

We start with packages because they are simple and general, and because they clearly
expose the concept of encapsulation. Abstract types are somewhat more specialized.
Classes resemble abstract types in some respects, but are enriched by the concepts of
subclasses and inheritance.

6.1 Program units, packages, and encapsulation

A program unit is any named part of a program that can be designed and
implemented more-or-less independently. A well-designed program unit has a
single purpose, and has a simple application program interface. If well designed, a
program unit is likely to be modifiable (capable of being changed without forcing
major changes to other program units), and is potentially reusable (capable of
being used in many programs).

The application program interface (or API) of a program unit is the minimum
information that application programmers need to know in order to use the
program unit successfully.

For instance, a procedure’s API consists of its identifier, formal parameters,
and result type if any (in order that application programmers can write well-formed
procedure calls), together with a specification of its observable behavior (in order
that application programmers can predict the outcome of these procedure calls).
The procedure’s API does not include the algorithm used in its definition.

135

136 Chapter 6 Data abstraction

A programming language whose only program units are procedures (such as
PascaL or C) is suitable only for small-scale program construction. For large-scale
program construction, the language should support large-scale program units such
as packages, abstract types, and classes.

6.1.1 Packages

A package is a group of several components declared for a common purpose.
These components may be types, constants, variables, procedures, or indeed any
entities that may be declared in the programming language.

Here we shall consider a simple package whose components are all public,
i.e., visible to the application code that uses the package.

EXAMPLE 6.1 Apa simple package

The following Apa package groups declarations of types, constants, and variables:

package Earth is

type Continent is (
Africa, Antarctica, Asia, Australia,
Europe, NAmerica, SAmerica);

radius: constant Float := 6.4e3; -- km

area: constant array (Continent) of Float := (
30.3e6, 13.0e6, 43.3e6, 7.7e6,
10.4e6, 24.9e6, 17.8e6); -- km?

population: array (Continent) of Integer;

end Earth;

The Earth package produces the following set of bindings:

{ Continent — the type Continent,
radius — the real number 6.4x10%,
area — the array value {Africa— 30.3x10°,...},
population — an array variable of type (Continent — Integer) }

where:
Continent = {Africa, Antarctica, Asia, Australia, Europe, NAmerica, SAmerica}

The following application code uses some components of the Earth package:

for cont in Earth.Continent loop
put(Float(Earth.population(cont)
/ Earth.area(cont));
end loop;

Here Earth.Continent denotes a type component of the Earth package,
Earth.population denotes a variable component, and Earth.area denotes a
value component.

6.1 Program units, packages, and encapsulation 137

6.1.2 Encapsulation

EXAMPLE 6.2

In order to keep its API simple, a package typically makes only some of its com-
ponents visible to the application code that uses the package; these components
are said to be public. Other components are visible only inside the package; these
components are said to be private, and serve only to support the implementation
of the public components. A package with private components hides information
that is irrelevant to the application code. This technique for making a simple API
is called encapsulation.

The concept of encapsulation is important, not only for packages, but also
for other large-scale program units such as abstract types (Section 6.2) and classes
(Section 6.3).

Consider the set of bindings produced by a package’s component declarations.
All these bindings are visible inside the package, but only the bindings of the
public components are visible outside the package. Therefore we shall take the
meaning of a package to be the set of bindings of its public components.

An Apa package with both public and private components is declared in two
parts. The package specification declares only the public components, while the
package body declares any private components. Moreover, if a public component
is a procedure, the package specification only declares the procedure (providing
its name, formal parameters, and result type if any), while the package body
defines the procedure (providing its implementation). In other words, the package
specification gives the package’s interface, while the package body provides the
implementation details.

Apa package with encapsulation

Consider a small trigonometric package, whose public components are to be the sine and
cosine functions.

The following Apa package specification declares the package’s public components,
which are function procedures named sin and cos:

package Trig is
function sin (x: Float) return Float;
function cos (x: Float) return Float;
end Trig;

The corresponding package body defines both the public function procedures and the
package’s private components:

package body Trig is
twice_pi: constant Float := 6.2832;

function norm (x: Float) return Float is
begin

. —-— code to compute X modulo twice_pi

end;

138 Chapter 6 Data abstraction

function sin (x: Float) return Float is
begin

—-— code to compute the sine of norm(x)
end;

function cos (x: Float) return Float is
begin

—-— code to compute the cosine of norm(x)
end;

end Trig;

The package body declares a constant twice_pi and a function procedure norm, which
are used to support the definitions of the sin and cos function procedures. Since
twice_pi and norm are not declared in the package specification, they are taken to be
private components.

The effect of elaborating the above package specification and body together is that the
Trig package produces the following set of bindings:

{ sin — function procedure that approximates the sine function,
cos — function procedure that approximates the cosine function }

The private components are excluded here, since they are not available to the application
code. Thus the package has a simple API, which is desirable.
Application code can use the package’s public components in the usual way, e.g.:

. Trig.cos(theta/2.0)

But the compiler would reject any attempt by the application code to access the private
components directly:

. Trig.twicepi ... -— illegal!
. Trig.norm(theta/2.0) ... —-- illegal!

Note that the package specification contains enough information for the application
programmer to write legal calls to Trig.sin and Trig.cos, and for the compiler to
type-check these calls.

A particularly important use of encapsulation is a package whose components
include a private variable, together with one or more public procedures that
access the private variable. The private variable cannot be accessed directly by
the application code, but can be accessed by the public procedures.

The advantage of this encapsulation is that the private variable’s representa-
tion can be changed (e.g., to make the procedures more efficient) without forcing
any changes to the application code. Furthermore, the package could control the
order of accesses to the private variable, e.g., to prevent inspection of the variable
before it has been initialized.

EXAMPLE 6.3

6.1 Program units, packages, and encapsulation 139

Apa encapsulated variable

Consider a package whose components are a dictionary (set of words) together with
procedures add and contains to operate on the dictionary. The dictionary itself is to be
a private variable, but the procedures add and contains are to be public. Assume that
each word is a value of type Word, declared elsewhere.

The following Apa package specification declares the public procedures:

package The_Dictionary is

procedure add (wd: in Word);
-- Add word wd to the dictionary if it is not already there.

function contains (wd: Word) return Boolean;
-- Return true if and only if word wd is in the dictionary.

end The_Dictionary;

The following package body provides all the implementation details, including decla-
rations of private variables representing the dictionary. For the time being, suppose that
we choose a naive representation for the dictionary:

package body The_Dictionary is

maxsize: constant := 1000;
size: Integer := 0;
words: array (1 .. maxsize) of Word;

—— The dictionary is represented as follows: size contains the number of
-— words, and words (1. .size) contains the words themselves, in no
-~ particular order.

procedure add (wd: in Word) is
begin
if not contains(wd) then
size := size + 1;
words(size) := wd;
end if;
end;

function contains (wd: Word) return Boolean is
begin
for i in 1 .. size loop
if wd = words(i) then
return true;
end if;
end loop;
return false;
end;

end The_Dictionary;

As well as declaring and initializing the private variables size and words, the package
body defines the public procedures add and contains, which access the private variables.

140 Chapter 6 Data abstraction

The effect of elaborating the above package specification and body together is that the
The_Dictionary package produces the following set of bindings:

{ add — proper procedure that adds a word to the dictionary,
contains — function procedure that searches for a word in the dictionary }

Application code can call the public procedures:

if not The_Dictionary.contains(current_word) then

The_Dictionary.add(current_word) ;
end if;

But the compiler would reject any attempt by the application code to access the private
variables directly:

The Dictionary.size := 0; -- illegal!

Now suppose that we want to change to a more efficient representation for the
dictionary (such as a search tree or hash table). We change the declarations of the private
variables, and we change the definitions of the public procedures. All the necessary changes
are localized in the package body. Since the dictionary representation is private, we can be
sure that no changes are needed to the application code. Thus the package is inherently
modifiable. This demonstrates clearly the benefits of encapsulation.

The variable components of a package have the same lifetimes as ordi-
nary variables declared immediately outside that package. If the package of
Example 6.3 was globally declared, the lifetime of its variable components (size
and words) would be the program’s entire run-time; if the package was declared
inside a block, the lifetime of its variable components would be an activation of
that block.

6.2 Abstract types

EXAMPLE 6.4

In Chapter 2 we viewed a type as a set of values equipped with suitable operations.
When we wish to introduce a new type, it is good practice to define the new type
and its operations in a single program unit. In defining the new type, we must
choose a representation for the values of that type, and define the operations in
terms of that representation. But sometimes even a well-chosen representation
has unwanted properties, which the following example illustrates.

Apa public type

In Example 6.3 we saw an Apa package that grouped a private dictionary variable together
with public procedures to operate on it.

Suppose now that we have an application that needs several dictionaries. An example
of such an application would be a spellchecker that provides both a main dictionary and a
user dictionary.

6.2 Abstract types 141

The following Apa package is a first attempt to solve this problem. Its components
include a public Dictionary type, together with public procedures clear, add, and
contains to operate on values and variables of that type. Each of these procedures has
a parameter of type Dictionary. If we stick to our naive dictionary representation, the
package specification looks like this:

package Dictionaries is
maxsize: constant := 1000;

type Dictionary is
record
size: Integer;
words: array (1 .. maxsize) of Word;
end record;

procedure clear (dict: in out Dictionary);
-- Make dictionary dict empty.

procedure add (dict: in out Dictionary;
wd: in Word);
-- Add word wd to dictionary dict if it is not already there.

function contains (dict: Dictionary; wd: Word)
return Boolean;
-- Return true if and only if word wd is in dictionary dict.

end Dictionaries;

The type Dictionary is public, as is the constant maxsize. Note also that the public

procedures add and contains now have parameters of type Dictionary, allowing

these procedures to operate on any Dictionary variable created by the application code.
The corresponding package body implements the public procedures:

package body Dictionaries is

procedure clear (dict: in out Dictionary) is
begin
dict.size := 0;
end;
procedure add (dict: in out Dictionary;
wd: in Word) is
begin
if not contains(dict, wd) then
dict.size := dict.size + 1;
dict.words(dict.size) := wd;
end if;
end;

function contains (dict: Dictionary; wd: Word)
return Boolean is

begin
for i din 1 .. dict.size loop
if wd = dict.words(i) then
return true;
end if;
end loop;
return false;
end;

end Dictionaries;

142 Chapter 6 Data abstraction

Using this package, the application code can declare as many variables of type
Dictionary as it needs:

use Dictionaries;
main_dict, user_dict: Dictionary;

(The clause ‘“‘use Dictionaries;” allows us to abbreviate Dictionaries.
Dictionary to Dictionary, to abbreviate Dictionaries.add to add, and so on.)
The application code can operate on these variables by calling the public procedures:

if not contains(main_dict, current_word)
and not contains(user_dict, current_word) then

éad(user_dict, current_word) ;
end if;

Unfortunately, making the type Dictionary public causes a number of difficulties.
There is nothing to prevent application code from manipulating a Dictionary variable
directly. For example, the code:

user_dict.size := 0;

is an attempted shortcut for “clear(user_dict);”. But such code can be understood
only by someone familiar with the chosen representation. Worse, such code must be located
and modified whenever the representation is changed.

Another difficulty is that there is nothing to prevent application code from getting a
Dictionary variable into an improper state. For example, the code:

user_dict.size := user_dict.size - 1;

is a crude attempt to remove the word most recently added to user_dict. But this code
could make user_dict.size negative, which would be improper.

Yet another difficulty arises from the fact that the representation is non-unique: it
allows the same set of words to be represented by different values of type Dictionary.
This will happen if we add the same words in a different order:

dictA, dictB: Dictionary;

clear(dictA); add(dictA, "bat"); add(dictA, "cat");
clear(dictB); add(dictB, "cat"); add(dictB, "bat");
if dictA = dictB then ...

At this point the value of dictA is (2, {1 — “bat”,2 — “cat”,...}), whereas the value
of dictBis (2, {1 — “cat”,2 — “bat”,...}. Both values represent the same set of words
{“bat”, “cat’’}. Nevertheless, the above equality test yields the wrong result.

Here is a summary of the difficulties that can arise in practice when a package
has a public type component:

e Application code can access the public type’s representation directly. If
we wish to change the representation (e.g., to make it more efficient), we
have to modify not only the package but also any application code that
accesses the representation directly. (Such code could be anywhere in the

EXAMPLE 6.5

6.2 Abstract types 143

application program. Even if there turns out to be no such code, we have to
read the whole program to be sure.)

e The public type’s representation might have improper values that do not
correspond to any values of the desired type. Even if the package’s pro-
cedures are programmed correctly not to generate improper values, faulty
application code might generate improper values.

e The public type’s representation might be non-unique. A simple equality
test might then yield the wrong result.

To avoid these problems we need an alternative way to define a new type.
An abstract type is a type whose identifier is public but whose representation is
private. An abstract type must be equipped with a group of operations to access its
representation. The operations are typically procedures and constants. The values
of the abstract type are defined to be just those values that can be generated by
repeated use of the operations.

A few programming languages (such as ML) have a customized program unit
that allows us to define an abstract type directly. In Apa, however, we define an
abstract type by writing a package with a private or limited private type. A private
type is equipped not only with the operations defined in the package but also
with the built-in assignment and equality test operations. A limited private type is
equipped only with the operations defined in the package.

A limited private type

The following Apa package is similar to that of Example 6.4, except that the Dictionary
type’s representation is limited private. Since the type’s identifier is public, the application
can still declare variables of the Dictionary type. If we stick to our naive dictionary
representation, the package specification looks like this:

package Dictionaries is

type Dictionary is limited private;
-- ADictionary value represents a set of words.

procedure clear (dict: in out Dictionary);
—-- Make dictionary dict empty.

procedure add (dict: in out Dictionary;
wd: in Word);
-- Add word wd to dictionary dict if it is not already there.

function contains (dict: Dictionary; wd: Word)
return Boolean;
-- Return true if and only if word wd is in dictionary dict.

private
maxsize: constant Integer := 1000;
type Dictionary is

record
size: Integer;

144 Chapter 6 Data abstraction

words: array (1 .. maxsize) of Word;
end record;

end Dictionaries;

Here “type Dictionary is limited private;” declares the type, making its
identifier public but hiding its representation. The representation is defined only in the
private part of the package specification.

The corresponding package body is exactly the same as in Example 6.4.

Using this package, application code can declare as many variables of type
Dictionary as it needs:

use Dictionaries;
main_dict, user_dict: Dictionary;

and can operate on these variables by calling the public procedures:

if not contains(main_dict, current_word)
and not contains(user_dict, current_word) then

add(user_dict, current_word);
end if;

However, application code cannot manipulate a Dictionary variable directly:
user_dict.size := 0; -- illegal!

since the representation of type Dictionary is private. Thus we can be confident that a
Dictionary variable will never have an improper value, since the package’s procedures
have been written carefully to generate only proper values, and there is no way for even
faulty application code to generate improper values.

Since Dictionary is declared as a limited private type, variables of this type can be
operated on only by the package’s public procedures. Even the built-in assignment and
equality test are forbidden. The reason for this decision is that an equality test such as:

dictA, dictB: Dictionary;

if dictA = dictB then ...

might still yield the wrong result, because dictA and dictB could contain the same set
of words but differently represented.

In the unlikely event that we actually need an equality test for Dictionary values
the package must provide its own operation for this purpose. In the package specification
we would declare this operation:

function "=" (dictl, dict2: Dictionary)
return Boolean;
-- Return true if and only if dict1 and dict2 contain the same set of words.

And in the package body we would define this operation carefully to yield the correct result:

function "=" (dictl, dict2: Dictionary)
return Boolean is
begin
if dictl.size /= dict2.size then
return false;
end if;

6.3 Objects and classes 145

for i in 1 .. dict2.size loop
if not contains(dictl, dict2.words(i)) then
return false;
end if;
end loop;
return true;
end;

It does not matter whether an abstract type’s representation is non-unique,
because the representation is private. The key point is that only desired prop-
erties of the abstract type can actually be observed by application code using
the operations with which the abstract type is equipped. In Example 6.5, the
different representations of the same set of words are not observable, because the
contains operation treats them all in the same way (and so too does the “="
operation, if provided).

We can easily change an abstract type’s representation: we need change only
the package body and the private part of the package specification. We can be
sure that we need not change the application code, since the latter cannot access
the representation directly.

(Note thatit is anomalous that ADA requires the abstract type’s representation
to be defined in the private part of the package specification, rather than in the
package body along with the other implementation details. The reason for this
design anomaly will become clear in Section 11.4.5.)

Defining an abstract type does involve extra work: because its representation
is private, we must equip it with sufficient operations to generate and process all
desired values. We can classify operations on an abstract type T as follows. A
constructor is an operation that computes a new value of type 7', possibly using
values of other types but not using an existing value of type 7. A transformer is
an operation that computes a new value of type T, using an existing value of type
T. An accessor is an operation that computes a value of some other type, using
an existing value of type 7. In general, we must equip each abstract type with at
least one constructor, at least one transformer, and at least one accessor. Between
them, the constructors and transformers must be capable of generating all desired
values of the abstract type.

In Example 6.5, clear is a constructor, add is a transformer, and contains
is an accessor. Any set of words can be generated by first calling clear, and
then calling add for each word in the set. Due to an implementation restriction,
however, at most 1000 words can be added. Thus the set of values of this abstract
type is:

Dictionary = {s | s is a set of words, #s < 1000}

6.3 Objects and classes

An object is a group of variable components, equipped with a group of operations
that access these variables.

146 Chapter 6 Data abstraction

6.3.1 Classes

EXAMPLE 6.6

We can implement a single object by a package whose components are private
variables and public operations, as in Example 6.3. In many applications, however,
we need to create many similar objects. This leads naturally to the concept of a
class.

A class is a set of similar objects. All the objects of a given class have the same
variable components, and are equipped with the same operations.

Classes are, as we would expect, supported by all the object-oriented languages
including C++ and Java (and somewhat indirectly by Apa95). In object-oriented
terminology, an object’s variable components are variously called instance vari-
ables or member variables, and its operations are usually called constructors and
methods.

A constructor is an operation that creates (and typically initializes) a new
object of the class. In both C++ and Java, a constructor is always named after the
class to which it belongs.

A method is an operation that inspects and/or updates an existing object of
the class.

JAVA class

For comparison with Examples 6.3 and 6.5, let us see how to implement dictionaries
as objects.

Here is a possible Java class declaration (sticking to our naive dictionary representa-
tion):

class Dictionary {
// ADictionary object represents a set of words.

private int size;

private String[] words;

// This dictionary is represented as follows: size contains the number
// of words, and words[0],...,words[size-1] contain the words
// themselves, in no particular order.

public Dictionary (int maxsize) {

// Construct an empty dictionary, with space for maxsize words.
this.size = 0;
this.words = new String[maxsize];

}

public void add (String wd) {
// Add word wd to this dictionary if it is not already there.
if (! contains(wd)) {
this.words[this.size++] = wd;

}

6.3 Objects and classes 147

public boolean contains (String wd) {
// Return true if and only if word wd is in this dictionary.
for (dnt i = 0; i < this.size; i++) {
if (wd.equals(this.words[i])) return true;

}

return false;

3

Each object of class Dictionary will have private variable components named size
and words, and will be equipped with public methods named add and contains.
To create individual objects of the Dictionary class, we must call the constructor:

Dictionary mainDict new Dictionary(10000);
Dictionary userDict = new Dictionary(1000);

The expression ‘“new Dictionary(...)” creates and initializes a new object of
class Dictionary, yielding a pointer to that object. So the above code creates two
Dictionary objects, and makes the variables mainDict and userDict point to these
objects. These two objects are similar but distinct.

We can operate on these objects by method calls:

if (! mainDict.contains(currentWord)
&& ! userDict.contains(currentWord)) {

userDict.add(currentWord) ;

3

The method call “userDict.add(currentWord)” works as follows. First it takes the
object to which userDict points, which is called the target object. Then it selects the
method named add with which the target object is equipped. Then it calls that method
with the value of currentWord as an argument.

Within the method body, this denotes the target object. Thus “this.size++”
actually increments userDict.size, and ‘‘this.words” actually refers to
userDict.words. (Actually, this.size and this.words may be abbreviated to
size and words, respectively.)

Application code may not access the variable components size and words directly,
since they are private:

userDict.size = 0; // illegal!

Nor can application code make Dictionary objects contain improper values. Conse-
quently, we can change the representation of Dictionary objects by modifying the
Dictionary class alone; no modifications to the application code are needed.

Java adopts reference semantics for assignment and equality testing of objects. Thus
the following equality test:

Dictionary dictA = ..., dictB = ...;
if (dictA == dictB)

would actually compare references to two distinct Dictionary objects, wrongly yielding
false even if the two dictionaries happen to contain the same words. If we want to support
proper equality testing of Dictionary objects, the class must provide a method for
this purpose:

148 Chapter 6 Data abstraction

EXAMPLE 6.7

class Dictionary {

public boolean equals (Dictionary that) {
// Return true if and only if this dictionary and that contain the same set
// of words.
if (this.size != that.size) return false;
for (dnt i = 0; i < that.size; i++) {
if (! contains(that.words[i])) return false;
¥

return true;

}
Application code would call that method as follows:

Dictionary dictA = ..., dictB = ...
if (dictA.equals(dictB))

A method call both names a method and identifies a target object, which is the
object on which the method will operate. In a Java method call “O.M (Ey, ...,
E,)”, M is the method name, O identifies the target object, and the E; are
evaluated to yield the arguments. The target object must be equipped with a
method named M, otherwise there is a type error. Inside the method’s body, this
denotes the target object.

C++ class

The following shows how we could declare a Dictionary class, analogous to that of
Example 6.6, in C++:

class Dictionary {
// ADictionary object represents a set of words.
private:

int size;

String words[];

// This dictionary is represented as follows: size contains the number of
// words,and words[0],...,words[size-1] contain the words
// themselves, in no particular order.

public:

Dictionary (int maxsize);
// Construct an empty dictionary, with space for maxsize words.

void add (String wd);
// Add word wd to this dictionary if it is not already there.

6.3 Objects and classes 149

boolean contains (String wd) const;
// Return true if and only if word wd is in this dictionary.

}

In this class declaration, the variable components size and words are declared to be pri-
vate, while the constructor and the methods add and contains are declared to be public.

This class declaration only declares the constructor and methods (providing their
names, parameter types, and result types). We must therefore define these operations
separately. For this purpose we use qualified names such as Dictionary: : add, which
denotes the add method of the Dictionary class:

Dictionary: :Dictionary (int maxsize) {
this->size = 0;
this->words = new String[maxsize];

}

void Dictionary::add (String wd) {
if (! contains(wd)) {
this->words[this->size] = wd;
this->size++;

¥
¥
boolean Dictionary::contains (String wd) const {
for (dnt i = 0; 1 < this->size; i++) {
if (strcmp(wd, this->words[i])) return true;
¥
return false;
¥

To create individual objects of the Dictionary class, we must call the constructor:

Dictionary* main_dict = new Dictionary(10000);
Dictionary* user_dict = new Dictionary(1000);

The expression “new Dictionary(...)” creates and initializes a new object of
class Dictionary, yielding a pointer to that object. So the above code creates two
Dictionary objects, and makes the variables main_dict and user_dict point to
these objects. These objects are similar but distinct.

We can now access these objects by method calls:

if (! main_dict->contains(current_word)
&& ! user_dict->contains(current_word)) {

user_dict->add(current_word);

}

The method call “user_dict->add(...)” 1is actually an abbreviation of
“(*user_dict).add(...)”. Thus the target object is *user_dict, i.e., the object
to which user_dict points. Within the method body, this denotes a pointer to the
target object. Thus this->size actually refers to user_dict->size, and so on.
(Actually, we can abbreviate this->size to size.)

The following equality test:

Dictionary* dictA = ..., dictB = .. ;
if (dictA == dictB)

150 Chapter 6 Data abstraction

would compare pointers to the two Dictionary objects, wrongly yielding false even if the
two dictionaries happen to contain the same words. No better is the following equality test:

Dictionary* dictA = ..., dictB = ...;
if (*dictA == *dictB)

which would actually compare the representations of the two Dictionary objects, wrongly
yielding false if the same words have been added to the two dictionaries in different orders.
If we need a correct equality test for Dictionary objects, the class must provide an
operation for this purpose (overloading the ““=="" operator):

class Dictionary {

public:

friend bool operator== (Dictionary* dictl,
Dictionary* dict2);

// Return true if and only if dictionaries dictl1 and dict2 contain the

// same set of words.

}
Here is a possible implementation:

bool Dictionary: :operator== (Dictionary* dictl,
Dictionary* dict2) {
if (dictl->size != dict2->size) return false;
for (dnt i = 0; i1 < dict2->size; i++) {
if (! dictl->contains(dict2->words[i]))
return false;
¥

return true;

InbothJava and C++, the programmer is allowed to choose which components
of an object are private and which are public. Constant components are often
public, allowing them to be directly inspected (but not of course updated) by
application code. Variable components should always be private, otherwise the
benefits of encapsulation would be lost. Constructors and methods are usually
public, unless they are auxiliary operations to be used only inside the class
declaration.

The concepts of an abstract type (Section 6.2) and a class (this section) have
much in common. Each allows application code to create several variables of a
type whose representation is private, and to manipulate these variables only by
operations provided for the purpose. However, there are differences between
abstract types and classes.

We can clearly see a syntactic difference if we compare the application code
in Examples 6.5 and 6.6:

6.3.2

6.3 Objects and classes 151

e Refer to the Apa Dictionary abstract type of Example 6.5. To operate
on a variable adict of this type, we write a call to the add procedure
as follows:

add(adict, aword);

Here the variable adict is passed as an ordinary argument to the procedure,
and is denoted by the formal parameter dict inside the procedure body.

e Refer to the JAva Dictionary class of Example 6.5. To operate on an
object adict of this class, we write a call to the add method as follows:

adict.add(aword);

Here adict is the method call’s target object, and is denoted by the
keyword this inside the method body.

A more important difference between the two concepts is that the class
concept leads naturally to the concepts of subclasses and inheritance, which are
fundamental to object-oriented programming.

Subclasses and inheritance

We have seen that a class C is a set of similar objects. Every object of class C has
the same variable components, and is equipped with the same operations.

A subclass of Cis a set of objects that are similar to one another but richer than
the objects of class C. An object of the subclass has all the variable components of
an object of class C, but may have extra variable components. Likewise, an object
of the subclass is equipped with all the methods of class C, but may be equipped
with extra methods.

If S is a subclass of C, we also say that C is a superclass of S.

A subclass is said to inherit its superclass’s variable components and methods.
In certain circumstances, however, a subclass may override some of its superclass’s
methods, by providing more specialized versions of these methods.

EXAMPLE 6.8 Java class and subclasses

Consider the following Java class declaration:
class Point {
// A Point object represents a point in the xy plane.

protected double x, y;
// This point is represented by its Cartesian coordinates (X ,Vy).

public Point () {

// Construct a point at (0, 0).
x =0.0; y=0.0;

}

152 Chapter 6

Data abstraction

)

@

®)

public double distance () {

// Return the distance of this point from (0, 0).
return Math.sqrt(x*x + y*y);

¥

public final void move (double dx, double dy) {

// Move this point by dx in the x direction and by dy in the y direction.
X += dx; vy += dy;

}

public void draw () {
// Draw this point on the screen.

}

Each Point object consists of variable components x and y, and is equipped with methods
named distance, move, and draw.
Now consider the following class declaration:

4)

®)

The clause
hence that Point is the superclass of Circle). Each Circle object consists of variable
components X, y, and r, and is equipped with methods named distance, move, draw,
and getDiam. Note that the extra variable component r is declared here, but not the
variable components x and y that are inherited from the superclass. Likewise, the extra
method getDiam is defined here, but not the methods distance and move that are
inherited from the superclass. Also defined here is a new version of the draw method,
which overrides the superclass’s draw method.

class Circle extends Point {

// A Circle object represents a circle in the xy plane.

private double r;
// This circle is represented by the Cartesian coordinates of its center
// (x,Vy) together with its radius (r).

public Circle (double radius) {
// Construct a circle of radius T centered at (0, 0).

x = 0.0; y =0.0; 1 = radius;
¥

public void draw () {
// Draw this circle on the screen.

}

public double getDiam () {
// Return the diameter of this circle.
return 2.0 * r;

}

3

‘extends Point” states that class Circle is a subclass of Point (and

Consider the following application code:

Point p = new Point(); // pisat(0,0)
Circle ¢ = new Circle(10.0); // ciscenteredat (0,0)

6.3 Objects and classes 153

p-move(1l2.0, 5.0); // mnowpisat(12,5)
c.move(3.0, 4.0); // now c is centered at (3, 4)

. p.distance() ... // vyields 13

. c.distance() ... // vyields 5
p.draw(); // draws a point at (12, 5)
c.draw(); // draws a circle centered at (3, 4)
. c.getDiam() ... // vyields 10

Note that it is perfectly safe to apply the inherited distance and move methods
to Circle objects, since these methods access only the inherited x and y variable
components, which are common to Point and Circle objects. The extra getDiam
method accesses the extra variable component r, which is also safe because this method
can be applied only to a Circle object (never to a Point object).

The Circle class’s extra getDiam method and overriding draw method are per-
mitted to access the extra variable component r, which is private but declared in the same
class. They are also permitted to access the inherited variable components x and y, which
are protected and declared in the superclass. (If x and y were private, on the other hand, we
would be unable to implement the Circle class’s draw method, unless we extended the
Point class with getX and getY methods returning the values of x and y, respectively.)

Now consider the following variable:

Point p;

This variable can refer to any object whose class is either Point or Circle (or indeed
any other subclass of Point). Consequently, the method call “p . draw ()’ will call either
the Point class’s draw method or the Circle class’s draw method, depending on the
class of object to which p currently refers. This is called dynamic dispatch.

Finally consider the following class declaration:

class Rectangle extends Point {
// A Rectangle object represents a rectangle in the xy plane.

private double w, h;
// This rectangle is represented by the Cartesian coordinates of its
// center (x,Vy) together with its width and height (w,h).

public Rectangle (double width, double height) {
// Construct a rectangle of width and height, centered at (0, 0).

x =0.0; y =0.0; w= width; h = height;
¥

(6) public void draw () {
// Draw this rectangle on the screen.

}

7) public double getWidth () {
// Return the width of this rectangle.
return w;

3

8) public double getHeight () {
// Return the height of this rectangle.
return h;

3

154 Chapter 6 Data abstraction

EXAMPLE 6.9

The clause “extends Point” states that class Rectangle is a subclass of Point (and
hence that Point is the superclass of Rectangle). Each Rectangle object consists
of variable components x, y, w, and h, and is equipped with methods named distance,
move, draw, getWidth, and getHeight. Note that the extra variable components w
and h are declared here, but not the variable components x and y that are inherited from
the superclass. Likewise, the extra methods getWidth and getHeight are defined here,
but not the methods distance and move that are inherited from the superclass. Also
defined here is a new version of the draw method, which overrides the superclass’s draw
method.

A private component is visible only in its own class, while a public component
is visible everywhere. A protected component is visible not only in its own class but
also in any subclasses. Protected status is therefore intermediate between private
status and public status.

A subclass may itself have subclasses. This gives rise to a hierarchy of classes.

Inheritance is important because it enables programmers to be more produc-
tive. Once a method has been implemented for a particular class C, that method
is automatically applicable not only to objects of class C but also to objects of any
subclasses that inherit the method from C (and their subclasses, and so on). In
practice, this gain in programmer productivity is substantial.

Each method of a superclass may be either inherited or overridden by a
subclass. A Java method is inherited by default; in that case objects of the
superclass and the subclass share the same method. A JaAva method is overridden
if the subclass provides a method with the same identifier, parameter types,
and result type; in that case objects of the superclass are equipped with one
version of the method, while objects of the subclass are equipped with another
version.

A method is overridable if a subclass is allowed to override it. A JaAva method
is overridable only if it is not declared as final. (For example, the methods
distance and draw of the Point class in Example 6.8 are overridable, but
not the method move.) A C++ method is overridable only if it is declared as
virtual.

C++ class and subclasses

The C++ class and subclasses in this example correspond to the Java class and subclasses
of Example 6.8.
Consider the following C++ class declaration:

class Point {
// A Point object represents a point in the xy plane.
protected:

double x, y;
// This point is represented by its Cartesian coordinates (x,y).

6.3 Objects and classes 155

public:

Point ();
// Construct a point at (0, 0).

virtual double distance ();
// Return the distance of this point from (0, 0).

void move (double dx, double dy);
// Move this point by dx in the x direction and by dy in the y direction.

virtual void draw ();
// Draw this point on the screen.

};

Each Point object consists of variable components x and y, and is equipped with methods
named distance,move, and draw (of which only distance and draw are overridable).
We have chosen not to define the methods and constructor in this class declaration, so we
must define them elsewhere in the program.

Now consider the following class declaration:

class Circle : public Point {
// A Circle object represents a circle in the xy plane.
private:

double r;
// This circle is represented by the Cartesian coordinates of its center (xX,y)
// together with its radius ().

public:

Circle (double radius);
// Construct a circle of radius centered at (0, 0).

void draw ();
// Draw this circle on the screen.

double getDiam ();
// Return the diameter of this circle.

3

The clause “: public Point” states that class Circle is a subclass of Point (and that

Point is the superclass of Circle). Each Circle object consists of variable components

X,y,and r, and is equipped with methods named distance,move, draw, and getDiam.
The following is possible application code:

Point* p = new Point(); // pisat(0,0)
Circle* ¢ = new Circle(10.0); // ciscentered at (0,0)
p->move(12.0, 5.0); // mnowpisat (12,5)
c->move(3.0, 4.0); // mnow c is centered at (3, 4)

. p->distance() ... // vyields 13

. c¢->distance() ... // vyields 5
p->draw(); // draws a point at (12, 5)
c->draw(); // draws a circle centered at (3, 4)

. c¢c->getDiam() ... // vyields 10.0

156 Chapter 6

Data abstraction

Finally consider the following class declaration:
class Rectangle : public Point {

// A Rectangle object represents a rectangle in the xy plane.
private:

double w, h;
// This rectangle is represented by the Cartesian coordinates of its center
// (x,Vy) together with its width and height (w, h).

public:

Rectangle (double width, double height);
// Construct a rectangle of width and height, centered at (0, 0).

void draw ();
// Draw this rectangle on the screen.

double getWidth ();
// Return the width of this rectangle.

double getHeight ();
// Return the height of this rectangle.

3

The clause ““: public Point” states that class Rectangle is a subclass of Point. Each
Rectangle object consists of variable components x, y, w, and h, and is equipped with
methods named distance, move, draw, getWidth, and getHeight

Dynamic dispatch occurs in a method call where it is impossible to determine
at compile-time which version of the method is to be called. Dynamic dispatch
entails a run-time determination of the target object’s class followed by selecting
the appropriate method for that class.

Dynamic dispatch is necessary only where the named method is overridable
and the exact class of the target object is unknown at compile-time. (If the named
method is not overridable, there can be only one version of it. If the exact class of
the target object is known, the correct version of the method can be selected at
compile-time.)

For instance, consider the JAvA method call “O.M(E{,...,E,)” or the
C++ method call “O->M (E4,...,E,)”, where M is an overridable method. The
compiler will infer that the class of O is C (say), but the actual class of the target
object could turn out to be either C or some subclass of C. The compiler will
ensure that class C is equipped with a method named M, which guarantees that
the target object (whatever its class) is indeed equipped with a method named M.
But it might be the case that some subclasses inherit method M from class C, while
other subclasses override method M, so the version to be called must be selected
at run-time.

6.3 Objects and classes 157

6.3.3 Abstract classes

EXAMPLE 6.10

An abstract class is a class in which no objects can be constructed. An abstract
class may have variable components and methods, but it differs from ordinary
classes in two respects:

e An abstract class has no constructor.
e Some of its methods may be undefined. (These are called abstract methods.)

The only purpose of an abstract class A is to serve as a superclass. Any
subclasses of A inherit its variable components and methods in the usual way. If
A has an abstract method, that method must be defined by all of A’s subclasses
that are not themselves abstract.

JAvA abstract class and subclasses

Recall the Point class and the Circle and Rectangle subclasses of Example 6.8. There
we treated circles and rectangles as special cases of points, which was rather artificial.

It is more natural to think of points, circles, and rectangles as special cases of shapes.
While it makes sense to construct point, circle, and rectangle objects, however, it makes no
sense to construct a shape object. The following Java abstract class captures the notion of
a shape:

abstract class Shape {
// Shape objects represent different kinds of shapes in the xy plane.

protected double x, y;
// This shape’s center is represented by its Cartesian coordinates (X, V).

public double distance () {

// Return the distance of this shape’s center from (0, 0).
return Math.sqrt(x*x + y*y);

¥

public final void move (double dx, double dy) {

// Move this shape by dx in the x direction and by dy in the y direction.
X += dx; y += dy;

}

public abstract void draw ();
// Draw this shape on the screen.

3

Every Shape object will have variable components x and y, and will be equipped
with methods named distance, move, and draw. The distance and move meth-
ods are defined here in the usual way, the former being overridable. However, the
draw method cannot sensibly be defined here (what would it do?), so it is an abstract
method.

158 Chapter 6 Data abstraction

Since Shape is an abstract class, it has no constructor, so we cannot construct any
object of class Shape. So when we speak loosely of a “Shape object”, we really mean an
object of a subclass of Shape.

Now consider the following subclasses of Shape:

class Point extends Shape {
// A Point object represents a point in the xy plane.

public Point () {

// Construct a point at (0, 0).
x =0.0; y =0.0;

¥

public void draw () {
// Draw this point on the screen.

}
}

Each Point object consists of variable components x and y, and is equipped with
methods named distance, move, and draw. All of these methods are inherited from the
superclass Shape, except for the superclass’s abstract draw method which is defined here.

class Circle extends Shape {
// A Circle object represents a circle in the xy plane.

private double r;
// This circle is represented by the Cartesian coordinates of its center (xX,y)
// together with its radius ().

public Circle (double radius) {
// Construct a circle of radius centered at (0, 0).
x = 0.0; y =0.0; 1 = radius;

}

public void draw () {
// Draw this circle on the screen.

}

public double getDiam () {
// Return the diameter of this circle.
return 2.0 * 1;

¥
}

Each Circle object consists of variable components x, y, and r, and is equipped with
methods named distance, move, draw, and getDiam. Again the superclass’s abstract
draw method is defined here.

class Rectangle extends Shape {

// A Rectangle object represents a rectangle in the xy plane.

}

6.3 Objects and classes

private double w, h;
// This rectangle is represented by the Cartesian coordinates of its center
// (x,Vy) together with its width and height (w, h).

public Rectangle (double width, double height) {
// Construct a rectangle of width and height, centered at (0, 0).

x = 0.0; y =0.0; w = width; h = height;
¥

public void draw () {
// Draw this rectangle on the screen.

}

public double getWidth () {
// Return the width of this rectangle.
return w;

}

public double getHeight () {
// Return the height of this rectangle.
return h;

}

159

Each Rectangle object consists of variable components x, y, w, and h, and is equipped
with methods named distance, move, draw, getWidth, and getHeight. Again the
superclass’s abstract draw method is defined here.

Figure 6.1 summarizes the relationships among these classes.

Object «abstract» Notation:
clone C
equals v, cla§s named C, with
variable components
named V|, ..., V,, and
Vv . .
Lr n with operations named
0, 0y, ...,0,
Shape «abstract»
X Om
y
distance G
move

draw «abstract»

= Cyisa
lll L|3 Lﬁ subclass
C, of C;
Point Circle Box s
r w
draw draw h
getDiam draw
getWidth
getHeight

Figure 6.1 Relationships between Java classes under single inheritance (Example 6.10).

160 Chapter 6 Data abstraction

6.3.4 Single vs multiple inheritance

EXAMPLE 6.11

An object-oriented language supports single inheritance if it restricts each class
to at most one superclass. Each subclass inherits the variable components and
methods of its single superclass.

An object-oriented language supports multiple inheritance if it allows each
class to have any number of superclasses. Each subclass inherits the variable
components and methods of all its superclasses.

Single inheritance is supported by most object-oriented languages, including
Java and Apa95. In Java each class’s unique superclass is named in the class
declaration’s extends clause. If there is no such clause, the default superclass is
Object. The Object class alone has no superclass. Thus all Java classes form a
hierarchy with the Object class at the top, as illustrated in Figure 6.1.

Multiple inheritance is less usual, but it is supported by C++. A C++ class
may be declared to have any number of superclasses (perhaps none). This gives
rise to class relationships such as those illustrated in the following example and
Figure 6.2.

C++ multiple inheritance
Consider the following C++ classes (in which methods are omitted for simplicity):

class Animal {
private:
float weight;
float speed;

public:
}
Animal«abstract»
weight
speed
Mammal «abstract» Flier «abstract» Bird «abstract»
gestation-time wing-span egg-size
Cat Bat Eagle Penguin
sonar-range

Figure 6.2 Relationships between C++ classes under multiple inheritance (Example 6.11).

6.3 Objects and classes 161

class Mammal : public Animal {
private:

float gestation_time;
public:
}

class Bird : public Animal {
private:

float egg_size;
public:

}

class Flyer : public Animal {
private:
float wing_span;
public:
}
class Cat : public Mammal {
public:
}

class Bat : public Mammal, public Flyer {
private:

float sonar_range;
public:

}

In the declaration of the Mammal class, the clause ““: public Animal” states that
Mammal has one superclass, Animal. Thus a Mammal object has variable components
weight and speed (inherited from Animal) and gestation_time. Similarly, the
Bird and Flyer classes each have one superclass, Animal.

In the declaration of the Cat class, the clause “: public Mammal” states that
Cat has one superclass, Mammal. Thus a Cat object has variable components weight
and speed (inherited indirectly from Animal) and gestation_time (inherited from
Mammal).

In the declaration of the Bat class, the clause ““: public Mammal, public Flier”
states that Bat has two superclasses, Mammal and Flyer. Thus a Bat object has variable
components weight and speed (inherited indirectly from Animal), gestation_time
(inherited from Mammal), wing span (inherited from Flier), and sonar_range. A
Bat object also inherits methods from both Mammal and Flyer as well as from Animal

Figure 6.2 summarizes the relationships among these classes (and a few other possi-
ble classes).

Multiple inheritance is useful in some real applications (not just tongue-in-
cheek applications like Example 6.11). However, multiple inheritance also gives
rise to a conceptual difficulty (and to implementation difficulties, which will be
explained in Section 6.4).

162 Chapter 6 Data abstraction

The conceptual difficulty is as follows. Suppose that the Animal class in
Example 6.11 defines a method named M, which is overridden by both the
Mammal and Flier subclasses. Then which version of method M is inherited by
the Bat class? In other words, which version is called by the method call “O->M
(...)”, where O identifies a Bat object? There are several possible answers to
this question:

e Call the Mammal version of the method, on the grounds that Mammal is the
first-named superclass of Bat.

e Force the programmer to state explicitly, in the Bat class declaration,
whether the Mammal or the F1ier version of the method is to be preferred.

e Force the programmer to state explicitly, in the method call, whether the
Mammal or the Flier version of the method is to be preferred.

e Prohibit such a method call, on the grounds that it is ambiguous. This is
C++’s answer.

None of these answers is entirely satisfactory. Consider an innocent application
programmer who is expected to use a large class library. The programmer is
broadly aware of the repertoire of classes but has only a partial understanding of
their relationships, in particular the extent to which the library exploits multiple
inheritance. Sooner or later the programmer will receive an unpleasant surprise,
either because the compiler prohibits a desired method call, or because the
compiler selects an unexpected version of the method.

6.3.5 Interfaces

EXAMPLE 6.12

In software engineering, the term inferface is often used as a synonym for
application program interface. In some programming languages, however, the
term has a more specific meaning: an interface is a program unit that declares (but
does not define) the operations that certain other program unit(s) must define.

An Apa package specification is a kind of interface: it declares all the
operations that the corresponding package body must define. As we saw in
Section 6.1, however, an ApA package specification has other roles such as
defining the representation of a private type, so it is an impure kind of interface.

In JAva, an interface serves mainly to declare abstract methods that certain
other classes must define. We may declare any class as implementing a particular
interface, in which case the class must define all the abstract methods declared in
the interface. (A Java interface may define constants as well as declare abstract
methods, but it may not do anything else.)

JAVA interfaces
Consider the following Java interface:
interface Comparable {

// A Comparable object can be compared with another object to

6.3 Objects and classes 163
// determine whether it is equal to, less than, or greater than that other
// object.
public abstract int compareTo (Object other);

}

This interface declares one abstract method, compareTo. Any class that implements
the Comparable interface must define a method named compareTo with the same
parameter and result types.

Note that, when we speak loosely of a Comparable object, we really mean an object
of a class that implements the Comparable interface.

Consider also the following interface:

interface Printable {
// A Printable object can be rendered as a string.
public abstract String toString ();

3

This interface also declares one abstract method, toString. (More generally, a Java
interface may declare several abstract methods.)
Now consider the following Java class:

class Date implements Comparable, Printable {
private int y, m, d;

public Date (int year, int month, int day) {
y = year; m = month; d = day;
¥

public advance () {

}

public int compareTo (Object other) {
Date that = (Date)other;

return (this.y < that.y ? -1
this.y > that.y 7 +1
this.m < that.m ? -1
this.m > that.m ? +1
this.d - that.d);
¥
public String toString () {
return (y + "-" + m + "-" + d);
¥

}

The Date class implements both the Comparable and Printable interfaces. As
required, it defines a method named compareTo and a method named toString, as
well as defining constructors and methods of its own.

Interfaces achieve some of the benefits of multiple inheritance, while avoiding
the conceptual difficulty explained at the end of Section 6.3.4. In general, a Java

164 Chapter 6 Data abstraction

class has exactly one superclass, but may implement any number of interfaces.
The class can inherit method definitions from its superclass (and indirectly from
its superclass’s superclass, and so on), but it cannot inherit method definitions
from the interfaces (since interfaces do not define anything). So there is never any
confusion about which method is selected by a particular method call.

In Example 6.12, the Date class has one superclass (Object), and it imple-
ments two interfaces. The latter serve only to declare some methods with which
the Date class must be equipped. In fact, the Date class defines both these
methods itself. Alternatively, it would have been perfectly legal for the Date
class to inherit its toString method from the Object class. (That would not
have been sensible, however, since the specialized toString method defined in
the Date class was more appropriate than the unspecialized toString method
defined in the Object class.)

6.4 Implementation notes

Here we outline the implementation of objects and method calls in a language that
supports only single inheritance. We also draw attention to the implementation
difficulties of multiple inheritance.

6.4.1 Representation of objects

In general, each object of a given class is represented by a tag field (which indicates
the class of the object) followed by the object’s variable components.

Consider objects of the JAva Point class and its subclasses in Example 6.8.
Each Point object is represented by a tag field followed by two variable com-
ponents (x and y) of type double. Each Circle object is represented by a tag
field followed by three variable components (x, y, and r) of type double, and
each Rectangle object is represented by a tag field followed by four variable
components (x, y, w, and h) of type double. Objects of all three classes are
illustrated in Figure 6.3.

Note that all JAva objects are accessed through pointers, as shown in
Figure 6.3. C++ and ADA95 objects, on the other hand, are accessed through
pointers if and only if the programmer chooses to introduce pointers.

An object’s tag field indicates its class. Tag fields are needed whenever objects
of different classes can be used interchangeably. In particular, they are needed to
implement dynamic dispatch (Section 6.4.2). In other circumstances (for example,
when a class has no superclass or subclass), tag fields can be omitted.

The variable components of an object can be accessed efficiently, since the
compiler can determine their offsets relative to the start of the object. This is true
even when objects of a subclass can be used in place of objects of their superclass,
assuming single inheritance, since inherited variable components are placed at
the same offset in objects of the superclass and subclass. For example, the Java
declaration “Point p;” allows p to refer to an object of class Point, Circle,
or Rectangle,butp.xor p.y can be accessed efficiently without even bothering
to test the object’s class.

6.4 Implementation notes 165

Y A y
tag — tag — tag *—
X | 20 X | 00 X | 0.0
v | 50 0.0 v | 00
r| 25 w | 3.0
h| 40
\ \ Y
Point Circle Rectangle
class object class object class object
distance | method (1) | distance | method (1) distance | method (1)
move | method (2) move | method (2) move | method (2)
draw | method (3) draw | method (4) draw | method (6)
getDiam | method (5) getWidth | method (7)

getHeight | method (8)

Figure 6.3 Representation of Java objects of classes Point, Circle, and Rectangle
(Example 6.8).

In the presence of multiple inheritance, it is much more difficult to represent
objects in such a way that variable components can be accessed efficiently.
In Example 6.11, all objects have weight and speed components; so far so
good. But a Cat object has a gestation_time component, a Bat object
has gestation_time and wing_span components, an Eagle object has
wing spanandegg sizecomponents,andaPenguinobjecthasanegg size
component. There is no simple way to represent objects of all these classes in such
a way that a given component always has the same offset relative to the start of
the object.

6.4.2 Implementation of method calls

In amethod call, the target object’s address is passed to the called method, whether
it is an explicit parameter or not. For instance, in a JaAva method call of the form
“O.M(...)”, the address of the target object (determined by O) is passed to
the method named M, enabling that method to inspect and/or update the target
object. In effect, the target object is an implicit argument, and is denoted by this
inside the method body.

If a particular method is never overridden, a call to that method can be
implemented like an ordinary procedure call (see Section 5.3).

However, complications arise when a subclass overrides a method of its
superclass. In Example 6.8, both the Circle and Rectangle subclasses override
the Point class’s draw method. When the method named draw is called with
a target object whose class is not known at compile-time, dynamic dispatch
is necessary to determine the correct method at run-time. Objects must be
represented in such a way that dynamic dispatch is possible.

166 Chapter 6 Data abstraction

Summary

For each class C a class object is created, which contains a table of addresses
of the methods with which class C is equipped. Figure 6.3 illustrates the Point,
Circle, and Rectangle class objects. Note that they all share the same dis-
tance and move methods, but their draw methods are different. Moreover, the
Circle class object alone contains the address of the method named getDiam,
while the Rectangle class object alone contains the addresses of the methods
named getWidth and getHeight.

An ordinary object’s tag field contains a pointer to the appropriate class
object. A method call “O.M(...)” is therefore implemented as follows:

(1) Determine the target object from O.

(2) Follow the pointer from the target object’s tag field to the corresponding
class object.

(3) Select the method named M in the class object.
(4) Call that method, passing the address of the target object.

The method named M can be accessed efficiently in step (3), since the compiler
can determine its offset relative to the start of the class object, assuming single
inheritance.

In the presence of multiple inheritance, it is much more difficult to implement
dynamic dispatch efficiently. There is no simple way to represent class objects
in such a way that a given method always has the same offset. This problem
is analogous to the problem of representing the ordinary objects themselves
(Section 6.4.1).

In this chapter:

e We have studied the concepts of packages, abstract types, and classes, which are
program units well suited to be the building blocks of large programs.

e We have seen that a package consists of several (usually related) components, which
may be any entities such as types, constants, variables, and procedures.

e We have seen that each component of a program unit may be either public or
private, which is encapsulation. Encapsulation enables a program unit to have a
simple application program interface.

e Wehave seen that an abstract type has a private representation and public operations
(procedures). This encapsulation enables the abstract type’s representation to be
changed without affecting application code.

e We have seen that the objects of a class typically have private variable components
and public operations. This encapsulation enables the objects’ representation to be
changed without affecting application code.

e We have seen that a class may have subclasses, which inherit some or all of the
operations from their superclass.

e We have seen how objects are represented in a computer, and how method calls are
implemented.

Further reading

The importance of encapsulation in the design of large pro-
grams was first clearly recognized by PARNAS (1972). He
advocated a discipline whereby access to each global vari-
able is restricted to procedures provided for the purpose, on
the grounds that this discipline enables the variable’s rep-
resentation to be changed without forcing major changes
to the rest of the program. A variable encapsulated in this
way is just what we now call an object.

A discussion of encapsulation in general, and a rationale
for the design of ADA packages in particular, may be found
in Chapter 8 of ICHBIAH (1979).

The concept of abstract types was introduced by Liskov
and ZILLES (1974). This concept has proved to be extremely
valuable for structuring large programs. Abstract types
are amenable to formal specification, and much research
has focused on the properties of such specifications, and
in particular on exploring exactly what set of values are
defined by such a specification.

The concept of a class, and the idea that a class can
inherit operations from another class, can be traced back to

Exercises

Exercises for Section 6.1

167

Exercises

SiMULA67, described in BIRTWHISTLE et al. (1979). How-
ever, SIMULA67 did not support encapsulation, so the
variable components of an object could be accessed by
application code. Furthermore, SIMULA67 confused the con-
cept of object with the independent concepts of reference
and coroutine.

The classification of operations into constructors, accessors,
and transformers was first suggested by MEYER (1989).
Meyer has been a major influence in the modern develop-
ment of object-oriented programming, and he has designed
his own object-oriented language EIFFEL, described in
MEYER (1988).

In this chapter we have touched on software engineering.
Programming is just one aspect of software engineering,
and the programming language is just one of the tools in
the software engineer’s kit. A thorough exploration of the
relationship between programming languages and the wider
aspects of software engineering may be found in GHEZzI
and JAZAYERI (1997).

6.1.1

*6.1.2

Exercises for Section 6.2
6.2.1

6.2.2

6.2.3

Choose a programming language (such as C or PascaL) that does not support
packages, abstract types, or classes. (a) How would the trigonometric package of
Example 6.2 be programmed in your language? (b) What are the disadvantages
of programming in this way?

Choose a programming language (such as FORTRAN or Pascar) that has built-in
features for text input/output. Design (but do not implement) a package that
provides equivalent functionality. The user of your package should be able to
achieve all of your language’s text input/output capabilities without using any
of the language’s built-in features.

(a) Design a Money abstract type, whose values are amounts of money
expressed in your own currency. Equip your abstract type with operations
such as addition and subtraction of amounts of money, and multiplication by
a given integer. (b) Suggest an efficient representation for your abstract type.
Use any suitable programming language.

(a) Design a Complex abstract type, whose values are complex numbers.
Equip your abstract type with operations such as magnitude, complex addi-
tion, complex subtraction, and complex multiplication. (b) Suggest an efficient
representation for your abstract type.

(a) Design a Date abstract type, whose values are calendar dates. Equip your
abstract type with operations such as equality test, comparison (*‘is before”),

168 Chapter 6 Data abstraction

6.2.4

*6.2.5

Exercises for Section 6.3
6.3.1

6.3.2

*6.3.3

6.3.4

6.3.5

adding or subtracting a given number of days, and conversion to ISO format
“yyyy-mm-dd”. (b) Suggest an efficient representation for your abstract type.

(a) Design a Fuzzy abstract type, whose values are yes, no, and maybe. Equip
your abstract type with operations such as and, or, and not. (b) Suggest an
efficient representation for your abstract type.

(a) Design a Rational abstract type, whose values are rational numbers m/n.
Equip your abstract type with operations such as construction from a given pair
of integers m and n, addition, subtraction, multiplication, equality test, and com-
parison (“is less than”). (b) Implement your abstract type, representing each
rational number by a pair of integers (m, n). (¢) Modify your implementation,
representing each rational number by a pair of integers with no common factor.
What are the advantages and disadvantages of this modified representation?

(a) Design a Counter class, such that each Counter object is to be a counter
(i.e., a nonnegative integer). Equip your class with operations to zero the
counter, increment the counter, and inspect the counter. (b) Implement your
class. Use any suitable object-oriented language.

Consider the class hierarchy in Figure 6.1. (a) Define classes for other useful
shapes, such as straight lines, rectangles, etc., placing them in an appropriate
hierarchy. Each of these classes must provide a draw operation. (b) Define
a Picture class, such that each Picture object is to be a collection of
shapes. Provide an operation that draws the whole picture, by drawing all of its
component shapes.

(a) Design a Text class, where each Text object is to be a text (ie., a
sequence of characters subdivided into paragraphs). Equip your class with
operations to load a text from a given text-file, save a text to a text-file,
insert a given sequence of characters at a selected position in a text, delete a
selected sequence of characters, and display a text within a given line-width.
(b) Implement your class.

Redesign and reimplement your Rational abstract type of Exercise 6.2.5 as
a class.

A fictional bank offers the following types of customer accounts. A basic account
has no frills at all. A savings account pays interest at the end of each day on
the current balance. A current account provides the customer with an overdraft
facility, a checkbook, an ATM card, and a PIN (personal identification number)
to enable an ATM to verify his/her identity.

Suppose that the class hierarchy of Figure 6.4 has been designed for the software
to maintain such accounts.

(a) Say which methods are inherited and which methods are overridden by
each subclass.

(b) Outline how this class hierarchy would be expressed in C++, JAvaA, or
Apa95. Make reasonable assumptions about the parameters and result of
each method. You need not define the methods in detail.

Account «abstract»

name
address
balance

deposit

withdraw

change-address
get-balance
print-statement «abstract»

71

Basic-Account

Savings-Account

Current-Account

print-statement

interest-rate

print-statement
pay-interest

Figure 6.4 Class hierarchy (Exercise 6.3.5).

Exercises for Section 6.4

overdraft-limit
pin
last-check-number

verify

withdraw
print-statement
print-checkbook

Exercises

169

6.4.1 Draw diagrams showing the representation of objects of the classes you designed
in Exercises 6.3.1-6.3.4.

Chapter /

Generic abstraction

Cost-effective software engineering demands reuse of previously-implemented program
units. To be reusable, a program unit must be capable of being used in a variety of
applications. Typical examples of reusable program units are stack, queue, list, and set
classes (or abstract types). It turns out that these and many other reusable program units
are intrinsically generic, i.e., capable of being parameterized with respect to the type of
data on which they operate. Thus the concept of a generic unit is important in practice.
Unfortunately, generic units are supported only by a few of the major programming
languages, and this has tended to inhibit software reuse.
In this chapter we shall study:

e generic units, and how they may be instantiated to generate ordinary program units;
e generic units with type parameters;
e implementation of generic units.

7.1 Generic units and instantiation

In the last chapter we studied program units like packages, abstract types, and
classes. Such program units may depend on entities (such as values and types) that
are defined elsewhere in the program, but then they are not reusable. The key to
reuse is to parameterize such program units.

A generic unit is a program unit that is parameterized with respect to
entities on which it depends. Instantiation of a generic unit generates an ordinary
program unit, in which each of the generic unit’s formal parameters is replaced by
an argument.

A generic unit can be instantiated as often as required, thus generating on
demand a family of similar program units. This concept places a very powerful
tool into programmers’ hands. A single generic unit can be instantiated several
times in the same program, thus avoiding duplication of program code. It can also
be instantiated in many different programs, thus facilitating reuse.

Let us note, in passing, that generic units are predicted by the Abstraction
Principle. In Section 5.1.3 we saw that a function procedure is an abstraction
over an expression, and that a proper procedure is an abstraction over a com-
mand. Likewise:

e A generic unit is an abstraction over a declaration. That is to say, a
generic unit has a body that is a declaration, and a generic instantiation
is a declaration that will produce bindings by elaborating the generic
unit’s body.

171

172 Chapter 7 Generic abstraction

Generic units are in fact supported by Apa, C++, and (since 2004) JAvA.
These three languages have approached the design of generics from three different
angles, and a comparison is instructive.

In this section we study Apa and C++ generic units parameterized with
respect to values on which they depend. (Java does not support such generic
units.) In Section 7.2 we shall study Apa, C++, and JAva generic units param-
eterized with respect to types (or classes) on which they depend, an even more
powerful concept.

7.1.1 Generic packages in Aba

EXAMPLE 7.1

Aba supports both generic procedures and generic packages. Here we shall focus
on generic packages.

Apa generic package

The following Apa generic package encapsulates an abstract type whose values are
bounded queues of characters. The package is parameterized with respect to the capacity
of the queue.

generic
capacity: Positive;
package Queues is

type Queue is limited private;
-- A Queue value represents a queue whose elements are characters and
- - whose maximum length is capacity

procedure clear (q: out Queue);
-- Make queue g empty.

procedure add (q: in out Queue;
e: in Character);
—-— Add element e to the rear of queue q.

procedure remove (q: in out Queue;
e: out Character);
-- Remove element e from the front of queue g.

private

type Queue is

record
length: Integer range 0 .. capacity;
front, rear: Integer range 0 .. capacity-1;
elems: array (0 .. capacity-1) of Character;

end record;
-- A queue is represented by a cyclic array, with the queued elements
—-— stored either in elems (front. .rear-1) orin
-- elems(front..capacity-1) andelems(0..rear-1).

end Queues;

7.1 Generic units and instantiation 173

The clause “capacity: Positive;” between the keywords generic and package
states that capacity is a formal parameter of the generic package, and that it denotes an
unknown positive integer value. This formal parameter is used both in the generic package
specification above (in the definition of type Queue) and in the package body below.

The package body would be as follows (for simplicity neglecting checks for underflow
and overflow):

package body Queues is

procedure clear (qg: out Queue) is
begin

q.front := 0; gqg.rear := 0; g.length := 0;
end;

procedure add (q: in out Queue;
e: in Character) is

begin
g.elems(q.rear) := e;
g.rear := (g.rear + 1) mod capacity;
g.length := g.length + 1;

end;

procedure remove (q: in out Queue;
e: out Character) is

begin
e := g.elems(q.front);
q.front := (q.front + 1) mod capacity;
q.length := g.length - 1;

end;

end Queues;

We must instantiate this generic package by a special form of declaration called an
instantiation:

package Line_Buffers is new Queues(120);

This instantiation of Queues is elaborated as follows. First, the formal parameter capac-
ity is bound to 120 (the argument of the instantiation). Next, the specification and body
of Queues are elaborated, generating a package that encapsulates queues with space for
up to 120 characters. That package is named Line_Buffers.

Here is another instantiation:

package Input_Buffers is new Queues(80);
This instantiation generates a package that encapsulates queues with space for up to 80
characters. That package is named Input_Buffers.

The result of an instantiation is an ordinary package, which can be used like any

other package:

inbuf: Input_Buffers.Queue;

iﬁputhuffers.add(inbuf, LD I

174 Chapter 7 Generic abstraction

7.1.2 Generic classes in C++

EXAMPLE 7.2

C++ supports both generic functions (called function templates) and generic classes
(called class templates). Here we shall focus on generic classes.

C++ generic class

The following C++ generic class is similar to Example 7.1, encapsulating an abstract type
whose values are bounded queues of characters. The class is parameterized with respect to
the capacity of the queue.

template
<int capacity>
class Queue {

// A Queue object represents a queue whose elements are characters and
// whose maximum length is capacity

private:

char elems[capacity];

int front, rear, length;

// The queue is represented by a cyclic array, with the queued elements
// stored eitherin elems[front. .rear-1] orin

// elems[front..capacity-1] andelems[0..rear-1].

public:

Queue (;
// Construct an empty queue.

void add (char e);
// Add element e to the rear of this queue.

char remove ();
// Remove and return the front element of this queue.

}

The clause “int capacity” between angle brackets states that capacity is a formal
parameter of the generic class, and that it denotes an unknown integer value. This formal
parameter is used in the class’s component declarations.

We can define the generic class’s constructor and methods separately, as follows:

template
<int capacity>
Queue<capacity>: :Queue () {
front = rear = length = 0;

}

template
<int capacity>

void Queue<capacity>::add (char e) {
elems[rear] = e;
rear = (rear + 1) % capacity;
length++;

¥

7.1 Generic units and instantiation 175

template
<int capacity>

char Queue<capacity>::remove () {
char e = elems[front];
front = (front + 1) % capacity;
length--;
return e;

3

Note that every constructor and method definition must be prefixed by “template <int
capacity>". This notation is cumbersome and error-prone.
We can instantiate this generic class as follows:

typedef Queue<80> Input_Buffer;
typedef Queue<120> Line_Buffer;

The instantiation Queue<80> generates an instance of the Queue generic class in which
each occurrence of the formal parameter capacity is replaced by the value 80; the
generated class is named Input_Buffer. The instantiation “Queue<120>"’ generates
another instance of Queue in which each occurrence of capacity is replaced by 120; the
generated class is named Line_Buffer.

We can now declare variables of type Input_Buffer and Line_Buffer in the
usual way:

Input_Buffer inbuf;
Line_Buffer outbuf;
Line_Buffer errbuf;

Alternatively, we can instantiate the generic class and use the generated class directly:
Queue<80> inbuf;

Queue<120> outbuf;
Queue<120> errbuf;

A C++ generic class can be instantiated “on the fly”’, as we have just seen.
This gives rise to a conceptual problem and a related pragmatic problem:

e The conceptual problem is concerned with type equivalence. If the two vari-
ables outbuf and errbuf are separately declared with types Queue<120>
and Queue<120>, C++ deems the types of these variables to be equiva-
lent, since both types were obtained by instantiating the same generic class
with the same argument. But if two variables were declared to be of types
Queue<m> and Queue<n-1>, the compiler could not decide whether their
types were equivalent unless it could predict the values of the variables m
and n. For this reason, C++ instantiations are restricted: it must be possible
to evaluate their arguments at compile-time.

e The pragmatic problem is that programmers lose control over code expan-
sion. For example, if “Queue<120>" occurs in several places in the
program, a simple-minded C++ compiler might generate several instances
of Queue, while a smart compiler should create only one instance.

176 Chapter 7 Generic abstraction

(Apa avoids these problems by insisting that generic units are instantiated
before being used. If we instantiated the same ADA generic package twice with
the same arguments, the generated packages would be distinct, and any type
components of these generated packages would be distinct. This is consistent
with Apa’s usual name equivalence rule for types. So Apa allows arguments in
instantiations to be evaluated at run-time.)

7.2 Type and class parameters

We have seen that, if a program unit uses a value defined elsewhere, the program
unit can be made generic and parameterized with respect to that value.

If a program unit uses a type (or class) defined elsewhere, the Correspondence
Principle (see Section 5.2.3) suggests that we should be able to make the program
unit generic and parameterize it with respect to that type. Thus we have a
completely new kind of parameter, a type parameter.

Apa, C++, and JAava generic units may have type parameters. In this section
we use similar examples to compare generic units with type parameters in
these languages.

7.2.1 Type parameters in AbA

An Apa generic unit may be parameterized with respect to any type on which
it depends.

EXAMPLE 7.3 ApA generic package with a type parameter

The following Apa generic package encapsulates an abstract type whose values are homo-
geneous lists. The package is parameterized with respect to the type of the list elements.

generic
type Element is private;
package Lists is

type List is limited private;
-- A List value represents a list whose elements are of type El ement.

procedure clear (1: out List);
-- Make list 1 empty.

procedure add (1l: in out List; e: in Element);
-— Add element e to the end of list 1.

. —— other operations
private
capacity: constant Integer := ...;

type List is
record
length: Integer range 0 .. capacity;

7.2 Type and class parameters 177

elems: array (1 .. capacity) of Element;
end record;

end Lists;

The clause “type Element is private;” between the keywords generic and
package states that Element is a formal parameter of the generic package, and that it
denotes an unknown type. This formal parameter is used both in the package specification
and in the package body

package body Lists is

procedure clear (l: out List) is
begin

l.length := 0;
end;

procedure add (1l: in out List; e: in Element) is

begin
l.length := 1.length + 1;
l.elems(l.length) := e;
end;

. —— other operations

end Lists;
The following instantiation of Lists:
package Phrases is new Lists(Character);

is elaborated as follows. First, the formal parameter El ement is bound to the Character
type (the argument in the instantiation). Then the specification and body of Lists are
elaborated, generating a package that encapsulates lists with elements of type Character.
That package is named Phrases, and can be used like any ordinary package:

sentence: Phrases.List;
Phrases.add(sentence, '.');
Now consider the following application code:

type Transaction is record ... end record;
package Transaction_Lists is new Lists(Transaction);

This instantiation of Lists is elaborated similarly. The generated package named Trans-
action_Lists encapsulates lists with elements of type Transaction.

If a generic unit is parameterized with respect to a value, it can use the
corresponding argument value, although it does not know what that value is. By
the same reasoning, if a generic unit is parameterized with respect to a type, it
should be able to use the corresponding argument type, although it does not know
what that type is. But there is a paradox here: if the generic unit knows nothing
about the argument type, it can declare variables of the type, but it cannot apply

178 Chapter 7 Generic abstraction

EXAMPLE 7.4

any operations to these variables! So the generic unit must know at least some of
the operations with which the type is equipped.

In Example 7.3, the clause “type Element is private;’ between the
keywords generic and package is ApA’s way of stating that the argument type
is equipped with (at least) the assignment and equality test operations. Inside the
generic package, therefore, values of type Element can be assigned by commands
like “1.elems(1l.length) := e;”. The compiler does not know the actual
type of these values, but at least it does know that the type is equipped with the
assignment operation.

Often a type parameter must be assumed to be equipped with a more
specialized operation. The following example illustrates such a situation.

Apa generic package with a type parameter and a function parameter

The following Apa generic package encapsulates sequences, i.e., sortable lists. The generic
package is parameterized with respect to the type Element of the sequence elements.
Since one of its operations is to sort a sequence of elements, the generic package is also
parameterized with respect to a function precedes that tests whether one value of type
Element should precede another in a sorted sequence.

generic

type Element is private;

with function precedes (x, y: Element) return Boolean;
package Sequences is

type Sequence is limited private;
-- A Sequence value represents a sequence whose elements are of
-- type Element.

procedure clear (s: out Sequence);
-—- Make sequence S empty.

procedure append (s: in out Sequence;
e: in Element);
-— Add element e to the end of sequence s.

procedure sort (s: in out Sequence);
—-— Sort sequence s with respect to the function precedes.

private
capacity: constant Integer := ...;

type Sequence is

record
length: Integer range 0 .. capacity;
elems: array (1 .. capacity) of Element;

end record;

end Sequences;

The clause “type Element is private;” states that Element is a formal param-
eter of the generic package, and that it denotes an unknown type equipped with the

7.2 Type and class parameters 179

assignment and equality test operations. The clause “with function precedes (x,
y: Element) return Boolean;” states that precedes is also a formal parameter,
and that it denotes an unknown function that takes two arguments of the type denoted
by Element and returns a result of type Boolean. Between them, these two clauses say
that the unknown type denoted by Element is equipped with a boolean function named
precedes as well as the assignment and equality test operations.

The package body uses both the Element type and the precedes function:

package body Sequences is

procedure sort (s: in out Sequence) is
e: Element;
begin

if precedes(e, s.elems(i)) then ...

end;
end Sequences;
Here is a possible instantiation of Sequences:
type Transaction is record ... end record;

function earlier (tl, t2: Transaction) return Boolean;
—-- Return true if and only if t1 has an earlier timestamp than t2.

package Transaction_Sequences is
new Sequences(Transaction, earlier);

This instantiation is elaborated as follows. First, the formal parameter Element is bound
to the Transaction type (the first argument), and the formal parameter precedes
is bound to the earlier function (the second argument). Then the specification and
body of Sequences are elaborated, generating a package encapsulating sequences of
Transactionrecords that can be sorted into order by timestamp. The generated package
is named Transaction_Sequences, and can be used like any ordinary package:

audit_trail: Transaction_Sequences.Sequence;

Transaction_Sequences.sort(audit_trail);
Here are two further instantiations:

package Ascending_ Sequences is
new Sequences(Float, "<");

package Descending_ Sequences is
new Sequences(Float, ">");

readings: Ascending_ Sequences.Sequence;

Ascending_Sequences.sort(readings);

The first instantiation generates a package encapsulating sequences of real numbers that
can be sorted into ascending order. This is so because ‘<’ denotes a function that takes two
arguments of type Float and returns a result of type Boolean. The second instantiation

180 Chapter 7 Generic abstraction

generates a package encapsulating sequences of real numbers that can be sorted into
descending order. This is so because “>"" also denotes a function that takes two arguments
of type Float and returns a result of type Boolean, but of course the result is true if and
only if its first argument is numerically greater than its second argument.

In general, if an ADA generic unit is to have a type parameter T, we specify it
by a clause of the form:

type T is specification of operations with which 7 is equipped ;
The compiler checks the generic unit itself to ensure that:

operations used for 7 in the generic unit
C operations with which T is equipped (7.1)

The compiler separately checks every instantiation of the generic unit to ensure
that:

operations with which T is equipped
C operations with which the argument type is equipped (7.2)

Together, (7.1) and (7.2) guarantee that the argument type is indeed equipped
with all operations used for 7 in the generic unit.

Summarizing, the design of ApA generic units enables the compiler to type-
check the declaration of each generic unit, and separately to type-check every
instantiation of the generic unit. Thus, once implemented, ADA generic units can
be safely reused.

7.2.2 Type parameters in C++

EXAMPLE 7.5

A C++ generic unit may be parameterized with respect to any type or class on
which it depends.

C++ generic class with a type parameter (1)

The following C++ generic class encapsulates homogeneous lists. It is parameterized with
respect to the type Element of the list elements.

template
<class Element>
class List is

// A List object represents a list whose elements are of type Element.
private:

const int capacity = ...;
int length;
Element elems[capacity];

EXAMPLE 7.6

7.2 Type and class parameters 181

public:

List ();
// Construct an empty list.

void append (Element e);
// Add element e to the end of this list.

... // other methods
}

The clause “class Element” between angle brackets states that Element is a formal
parameter of the generic class, and that it denotes an unknown type. (Do not be misled by
C++’s syntax: the unknown type may be any type, not necessarily a class type.)

As usual, we define the generic class’s constructor and methods separately:

template
<class Element>
List<Element>::List () {
length = 0;
¥

template
<class Element>

void List<Element>::append (Element e) {
elems[length++] = e;

¥

... // other methods
Consider the following instantiation:
typedef List<char> Phrase;

This instantiation List<char> is elaborated as follows. First, the formal parameter
Element is bound to the char type. Then the generic class and the corresponding
constructor and method definitions are elaborated, generating a class that encapsulates
lists with elements of type char. The generated class can be used like any other class:

Phrase sentence;

ééntence.add('.');

Finally, consider the following application code:

struct Transaction { ... };

typedef List<Transaction> Transaction_List;

This instantiation is elaborated similarly. The generated class encapsulates lists with
elements of type Transaction

C++ generic class with a type parameter (2)

The following C++ generic class encapsulates sequences, i.e., sortable lists. It is parameter-
ized with respect to the type Element of the sequence elements.

182 Chapter 7 Generic abstraction

template
<class Element>
class Sequence is

// A Sequence object represents a sequence whose elements are of
// type Element.

private:

const int capacity = ...;
int length;
Element elems[capacity];

public:

Sequence ();
// Construct an empty sequence.

void append (Element e);
// Add element e to the end of this sequence.

void sort ();
// Sort this sequence into ascending order.

}

As usual, we define the constructor and methods separately, for example:

template
<class Element>

void Sequence<Element>::sort () {
Element e;

if (e < elems[i])

}

Note the use of the “<” operation in the definition of the sort method. This code
is perfectly legal, although it assumes without proper justification that the argument type

denoted by Element is indeed equipped with a “<” operation.
Here is a possible instantiation:

typedef Sequence<float> Number_Sequence;
Number_Sequence readings;

readings.sort();

This instantiation Sequence<float> is elaborated as follows. First, the formal parameter
Element is bound to the float type. Then the generic class and corresponding method
definitions are elaborated, generating a class encapsulating sequences of £float values
that can be sorted into ascending order.

Now consider the following instantiation:

typedef char* String;
typedef Sequence<String> String_Sequence;

The instantiation Sequence<String> generates a class String_Sequence encap-
sulating sequences of String values (where a String value is a pointer to an array

7.2 Type and class parameters 183

of characters). Unfortunately, this class’s sort operation does not behave as we might
expect: the ““<” operation when applied to operands of type char* merely compares
pointers; it does not compare the two strings lexicographically!

Finally consider the following instantiation:

struct Transaction { ... };
typedef Sequence<Transaction> Transaction_Sequence;

The compiler will reject the instantiation Sequence<Transaction>, because the
Transaction type is not equipped with a “‘<”” operation.

The problem with the above generic class is that one of its methods is defined in terms
of the ““<” operation, but some types are equipped with an unsuitable “<’’ operation, and
other types are equipped with no “<”” operation at all.

The problem illustrated in Example 7.6 exposes a weakness in C++ generics.
Various workarounds are possible, such as passing a comparison function to the
sort method, but none is entirely satisfactory.

In general, if a C++ generic unit is to have a type parameter T, we specify it
simply by enclosing in angle brackets a clause of the form:

class T

This clause reveals nothing about the operations with which 7 is supposed to be
equipped. When the compiler checks the generic unit, all it can do is to note which
operations are used for 7. The compiler must then check every instantiation of
the generic unit to ensure that:

operations used for 7 in the generic unit
C operations with which the argument type is equipped (7.3)
C++ generic units are not a secure foundation for software reuse. The compiler
cannot completely type-check the definition of a generic unit; it can only type-

check individual instantiations. Thus future reuse of a generic unit might result in
unexpected type errors.

7.2.3 Class parameters in JAvA

EXAMPLE 7.7

Until 2004, Java did not support any form of generic abstraction. However, JAva
now supports generic classes, which are classes parameterized with respect to
other classes.

Java generic class with a class parameter

The following Java generic class encapsulates homogeneous lists. The class is parameterized
with respect to the class of the elements of the list.

class List <Element> {

// A List object represents a list whose elements are of class Element.

184 Chapter 7 Generic abstraction

EXAMPLE 7.8

private length;
private Element[] elems;

public List () {
// Construct an empty list.

}

public void append (Element e) {
// Add element e to the end of this list.

¥
... // other methods

3

The class declaration’s heading states that Element is a formal parameter of the List
generic class, and that it denotes an unknown class.
This generic class can be instantiated as follows:

List<Character> sentence;
List<Transaction> transactions;

Here sentence refers to a list whose elements are objects of class Character, and
transactions refers to a list whose elements are objects of class Transaction.
The argument in an instantiation must be a class, not a primitive type:

List<char> sentence; // illegal!

If a Java generic class must assume that a class parameter is equipped with
particular operations, the class parameter must be specified as implementing a
suitable interface (see Section 6.3.5). Such a class parameter is said to be bounded
by the interface.

Java generic class with a bounded class parameter
Consider the following Java generic interface:
interface Comparable <Item> {

// A Comparable<Item> object can be compared with an object of
// class Item to determine whether the first object is equal to, less than,
// or greater than the second object.

public abstract int compareTo (Item that);
// Return 0 if this object is equal to that, or

// anegative integer if this object is less than that, or

// apositive integer if this object is greater than that.

7.2 Type and class parameters 185

If a class C is declared as implementing the interface Comparable<C>, C must be
equipped with a compareTo operation that compares the target object (of class C) with
another object of class C.

The following Java generic class encapsulates sequences, i.e., sortable lists, equipped
with a sort operation:

class Sequence
<Element implements Comparable<Element>> {

// A Sequence object represents a sequence whose elements are of
// type Element.

private length;
private Element[] elems;

public Sequence () {
// Construct an empty sequence.

,

public void append (Element e) {
// Add element e to the end of this sequence.

, .

public void sort () {
// Sort this sequence into ascending order.
Element e;

if (e.compareTo(elems[i]) < 0)

}

The clause “Element implements Comparable<Element>" between angle brack-
ets states that Element is a formal parameter of the generic class, and that it denotes an
unknown class equipped with a compareTo operation.

Here is a possible instantiation of the Sequence class:

Sequence<Transaction> auditTrail;

AﬁditTrail.sort();
where we are assuming that the Transaction class is declared as follows:
class Transaction implements Comparable<Transaction> {
private ...; // representation

public int compareTo (Transaction that) {

// Return 0 if this transaction has the same timestamp as that, or
// negative if this transaction has an earlier timestamp than that, or
// positive if this transaction has a later timestamp than that.

¥
... // other methods

186 Chapter 7 Generic abstraction

On the other hand, the instantiation Sequence<Point> would be illegal: the
Point class (Example 6.8) is not declared as implementing the Comparable<Point>
interface.

In general, if a JAvaA generic unit is to have a class parameter C, we specify it
by a clause of the form:

class C implements Int

where Int is an interface. (If “implements Int” is omitted, an empty interface is
assumed.) The compiler checks the generic unit itself to ensure that:

operations used for C in the generic unit
C operations declared in Int (7.4)

The compiler separately checks every instantiation of the generic unit to ensure
that:

operations declared in Int
C operations with which the argument class is equipped (7.5)

Together, (7.4) and (7.5) guarantee that the argument class is indeed equipped
with all operations used for C in the generic unit.

The design of Java generic units (unlike those of C++) is based on type
theory. The practical significance of this is that the compiler can type-check the
declaration of each generic unit, and separately type-check every instantiation.
Thus Java generic units can be safely reused.

The weakness of JAva generic classes is that they can be parameterized only
with respect to classes. They cannot be parameterized with respect to primitive
types such as char, int, and float (a consequence of Java’s lack of type
completeness), nor can they be parameterized with respect to values on which
they depend.

7.3 Implementation notes

Generic units with type parameters pose interesting implementation problems.
Since a type parameter denotes an unknown type, the compiler cannot determine
from the generic unit itself how values of that type will be represented. (In
particular, the compiler cannot determine how much storage space variables of
that unknown type will occupy.) Only when the generic unit is instantiated does
the compiler have all that information.

7.3.1 Implementation of Aba generic units

Recall the Lists generic package of Example 7.3. The type parameter Element
denotes an unknown type, so the compiler does not yet know how values of
type Element will be represented. Moreover, the compiler does not yet know
how values of type List will be represented, since that type is defined in terms
of Element.

7.3 Implementation notes 187

(a) package A is new (b) package B is new (c) package C is new

Lists(Character); Lists(Month); Lists(Date);
Representation of Representation of Representation of
type A.List: type B.List: type C.List:
length| 3 length | 4 length | 2
elems(1) | ‘B’ elems(l) | sep (| jan
elems(2) | v elems(2) | apr elems(1)
elems(3) | ‘O elems(3) | jun 1 2) dec
elems(4) ? elems(4) | nov elems | 25
elems(5) ? elems(5) ? 1 3 ?
elems(6) | 2 elems(6) | 2 elems(3)1[™
elems(7) ? elems(7) ? 1 4 ?
elems(8) ? elems(8) ? elems(4) ?
elems(9) ? elems(9) ? : :
elems(10) ? elems(10) ? T !
elems(10) (Z

Figure 7.1 Representations of types obtained by instantiating the Apa generic package
Lists (Example 7.3).

When the generic package is instantiated, however, the type parameter
Element is replaced by a known type. Figure 7.1(a) illustrates an instantiation
in which Element is replaced by Character. Similarly, Figure 7.1(b) and (c)
illustrate instantiations in which Element is replaced by an enumeration type
Month and by a record type Date, respectively. These three instantiations define
three distinct types (A.List, B.List, and C.List), and the compiler knows the
representation of each type.

In general, each instantiation of an ApA generic package is compiled by
generating object code specialized for that instantiation.

In some cases, however, different instantiations can share the same object
code if the types involved have similar representations. In Figure 7.1(a) and (b),
the representations of the types A.List and B.List are similar enough to make
shared object code feasible.

7.3.2 Implementation of C++ generic units

Implementation of C++ generic classes is broadly similar to the implementation
outlined in Section 7.3.1, but is slightly complicated by the fact that C++ generic
classes can be instantiated “‘on the fly”.

Recall the List generic class of Example 7.5. The application code could be
peppered with declarations of variables of type List<float> (say). In C++’s
type system all these types are regarded as equivalent, so all these variables are
equipped with the same operations. If a generic class is instantiated in different
places with the same arguments, the compiler must make all these instantiations
share the same object code.

188 Chapter 7 Generic abstraction

(a) Representation of (b) Representation of
class List<Character>: class List<Date>:
® 9
\ J | A
List List

«Char» Date>
3 2
® ®
\ J v

Char[] Date[]
6 4
® | Char ® | Date
® | Char ‘B’ ® - Date 1
® » Char Y’ L4 12 1
L ‘0’ L 25
[]
[]

Figure 7.2 Representations of classes obtained by instantiating the Java generic class
List (Example 7.7).

7.3.3 Implementation of Java generic units

Implementation of Java generic classes is greatly simplified by the fact that
they can be parameterized with respect to classes only (not values or primitive
types), together with the fact that objects of all classes are accessed through
pointers.

Recall the List generic class of Example 7.7. All objects of class
List<Element> have similar representations, as illustrated in Figure 7.2,
regardless of the actual class denoted by Element. Therefore, all instantiations
of the List generic class can share the same object code.

Summary
In this chapter:

e We have seen the importance of generic abstraction for software reuse.

e We have studied generic units, and seen how they may be instantiated to generate
ordinary program units. We have seen that procedures, packages, and classes can
all be made generic.

e We have seen how generic units may be parameterized with respect to values.

e We have seen how generic units may be parameterized with respect to types,
including types equipped with specific operations.

e We have seen how generic units can be implemented, paying particular attention to
the problems caused by type parameters.

Further reading

A rationale for the design of ADA generic units may be
found in Chapter 8 of ICHBIAH (1979).

Likewise, a rationale for the design of C++ generic
units may be found in Chapter 15 of STROUSTRUP (1994).
Chapter 8 of STROUSTRUP (1997) gives many examples of
C++ generic units, including several possible workarounds

189

Exercises

JAVA generic classes were based on a proposal by BRACHA
et al. (1998). The paper lucidly explains the design of generic
classes, showing how it is solidly founded on type theory.
The paper also shows in detail how generic classes can be
implemented easily and efficiently.

for the problem identified in Example 7.6.

Exercises

Exercises for Section 7.1
7.1.1

Exercises for Section 7.2
721

722

723

*7.2.4

Consider the Apa generic package of Example 7.1 and the C++ generic class of
Example 7.2.

(a) Instantiate each of these generic units to declare a queue 1ine with space
for up to 72 characters. Write code to read a line of characters, adding each
character to the queue 1ine (which is initially empty).

(b) Modify each of these generic units to provide an operation that tests
whether a queue is empty. Write code to remove all characters from the
queue line, and print them one by one.

Consider the Apa generic package of Example 7.3, the C++ generic class of
Example 7.5, and the Java generic class of Example 7.7. Instantiate each of
these so that you can declare a variable i tinerary to contain a list of airports.
Assume that you are given a suitable type or class Airport.

Consider the Apa generic package of Example 7.4, the C++ generic class of
Example 7.6, and the Java generic class of Example 7.8. Instantiate each of
these so that you can declare a sequence of words, where a word is a string of
letters. Do this in such a way that the sort operation will sort the words into
alphabetical order.

Consider the Apa generic package of Example 7.1 and the C++ generic class of
Example 7.2.

(a) Modify each of these generic units so that it is parameterized with respect
to the type of the queue elements as well as the capacity of the queue.

(b) Why cannot we declare a Java generic class whose parameters are the type
of the queue elements and the capacity of the queue?

(c) Declare a Java generic class whose parameter is the class of the queue
elements, such that the capacity of the queue is a parameter of the
constructor.

Design a generic unit that implements sets. A set is an unordered collection

of values in which no value is duplicated. Parameterize your generic unit with
respect to the type of the values in the set. Provide an operation that constructs

190 Chapter 7 Generic abstraction

*7.2.5

an empty set, an operation that adds a given value to a set, an operation that
unites two sets, and an operation that tests whether a given value is contained
in a set. Implement your generic unit in either Apa, C++, or Java.

Assume as little as possible about the type of the values in the set. What
assumption(s) are you absolutely forced to make about that type?

Design a generic unit that implements maps. A map is an unordered collection
of (key, value) entries in which no key is duplicated. Parameterize your generic
unit with respect to the type of the keys and the type of the values. Provide an
operation that constructs an empty map, an operation that adds a given (key,
value) entry to a map, an operation that tests whether a map contains an entry
with a given key, and an operation that retrieves the value in the entry with a
given key. Implement your generic unit in either Apa, C++, or Java.

Assume as little as possible about the type of the keys and the type of the values.
What assumption(s) are you absolutely forced to make about these types?

Chapter 8

Type systems

Older programming languages had very simple type systems in which every variable and
parameter had to be declared with a specific type. However, experience shows that their
type systems are inadequate for large-scale software development. For instance, C’s type
system is too weak, allowing a variety of type errors to go undetected, while on the
other hand, PascaL’s type system is too rigid, with the consequence that many useful
(and reusable) program units, such as generic sorting procedures and parameterized types,
cannot be expressed at all.

These and other problems prompted development of more powerful type systems,
which were adopted by the more modern programming languages such as Apa, C++, Java,
and HASKELL.

In this chapter we shall study:

e inclusion polymorphism, which is concerned with subtypes and subclasses, and their
ability to inherit operations from their parent types and superclasses;

e parametric polymorphism, which is concerned with procedures that operate uni-
formly on arguments of a whole family of types;

e parameterized types, which are types that take other types as parameters;

overloading, whereby the same identifier can denote several distinct procedures in
the same scope;

type conversions, including casts and coercions.

8.1 Inclusion polymorphism

Inclusion polymorphism is a type system in which a type may have subtypes,
which inherit operations from that type. In particular, inclusion polymorphism is
a key concept of object-oriented languages, in which a class may have subclasses,
which inherit methods from that class.

8.1.1 Types and subtypes

Recall that a type T is a set of values, equipped with some operations. A subtype
of T is a subset of the values of T, equipped with the same operations as 7. Every
value of the subtype is also a value of type T, and therefore may be used in a
context where a value of type T is expected.

The concept of subtypes is a fruitful and pervasive notion in programming. A
common situation is that we declare a variable (or parameter) of type T, but know

191

192 Chapter 8 Type systems

EXAMPLE 8.1

that the variable will range over only a subset of the values of type T It is better
if the programming language allows us to declare the variable’s subtype, and thus
declare more accurately what values it might take. This makes the program easier
to understand, and possibly more efficient.

The older programming languages support subtypes in only a rudimentary
form. For example, C has several integer types, of which char and int may be
seen as subtypes of long, and two floating-point types, of which £loat may be
seen as a subtype of double. PAscAL supports subrange types, a subrange type
being a programmer-defined range of values of a discrete primitive type.

Abpa supports subtypes much more systematically. We can define a subtype
of any primitive type (including a floating-point type) by defining a subrange of
that primitive type’s values. We can define a subtype of any array type by fixing its
index bounds. We can define a subtype of any discriminated record type by fixing
the tag.

Apa primitive types and subtypes

The following Apa declarations define some subtypes of Integer:

subtype Natural is Integer range 0 .. Integer'last;
subtype Small is Integer range -3 .. +3;

These subtypes, which are illustrated in Figure 8.1, have the following sets of values:

Natural = {0,1,2,3,4,5,6,...}
Small = {-3, -2, -1,0, +1, +2, +3}

We can declare variables of these subtypes:

i: Integer;
n: Natural;

s: Small;
Now an assignment like “i := n;” or “i := s;” can always be performed, since the
assigned value, although unknown, is certainly in the type of the variable i. On the other
hand, an assignment like “n := i;”,“n := s;”,“s := i;”,0ors := n;” requires

a run-time range check, to ensure that the assigned value is actually in the subtype of the
variable being assigned to.
The following Apa declaration defines a subtype of Float:

subtype Probability is Float range 0.0 .. 1.0;
Integer
Small
e © ¢ &6 ©¢ 0/ © ¢ ¢ & O O
-6 -5 4|3 2 -1(0 1 2 3|4 5 6 ..

Figure 8.1 Integer subtypes in ADA.

8.1 Inclusion polymorphism

EXAMPLE 8.2 Apa array type and subtypes

EXAMPLE 8.3

The following Apa declarations define an array type and some of its subtypes:

type String is array (Integer range <>) of Character;

subtype Stringl is String(l .. 1);
subtype String5 is String(l .. 5);
subtype String7 is String(l .. 7);

193

The values of type String are strings (character arrays) of any length. The values of subtypes
String1, String5, and String7 are strings of length 1, 5, and 7, respectively. These subtypes

are illustrated in Figure 8.2.

Apa discriminated record type and subtypes

The following Apa declarations define a discriminated record (disjoint union) type and all

of its subtypes:
type Form is (pointy, circular, rectangular);
type Figure (f: Form := pointy) is
record

x, y: Float;
case f is
when pointy =>
null;
when circular =>
r: Float;
when rectangular =>
h, w: Float;
end case;
end record;

subtype Point is Figure(pointy);
subtype Circle is Figure(circular);
subtype Rectangle is Figure(rectangular);

The values of type Figure are tagged tuples, in which the tags are values of the type

Form = {pointy, circular, rectangular}:

Figure = pointy(Float x Float)
+ circular(Float x Float x Float)
+ rectangular(Float x Float x Float x Float)

String

String1 String5 String7

o ‘ “A” “B”] ’ ‘

“Susanne” “Jeffrey” ...

“David” “Carol” ...
Figure 8.2 Array subtypes in ApA.

194 Chapter 8 Type systems

Figure
Point Circle Rectangle
[} (] [}
pointy(0.0, 0.0) circular(0.0, 0.0, 1.0) rectangular(0.0, 0.0, 7.0, 2.0)
[} [] [}
pointy(3.0, 4.0) circular(3.0, 4.0, 5.0) rectangular(3.0, 4.0, 1.0, 1.0)

Figure 8.3 Discriminated record subtypes in ADA.

The values of subtype Point are those in which the tag is fixed as pointy, the values of
subtype Circle are those in which the tag is fixed as circular, and the values of subtype
Rectangle are those in which the tag is fixed as rectangular:

Point = pointy(Float x Float)
Circle = circular(Float x Float x Float)
Rectangle = rectangular(Float x Float x Float x Float)

These subtypes are illustrated in Figure 8.3.
Here are some possible variable declarations, using the type and some of its subtypes:

diagram: array (...) of Figure;
frame: Rectangle;
cursor: Point;

Each component of the array diagram can contain any value of type Figure. However,
the variable frame can contain only a value of the subtype Rectangle, and the variable
cursor can contain only a value of the subtype Point.

If the programming language supports subtypes, we cannot uniquely state the
subtype of a value. For example, Figure 8.1 shows that the value 2 is not only in the
type Integer but also in the subtypes Natural and Small, and indeed in numerous
other subtypes of Integer. However, the language should allow the subtype of each
variable to be declared explicitly.

Let us now examine the general properties of subtypes. A necessary condition
for § to be a subtype of T is that every value of S is also a value of 7, in other
words S C 7. A value known to be in subtype S can then safely be used wherever
a value of type T is expected.

The type T is equipped with operations that are applicable to all values of
type T. Each of these operations will also be applicable to values of the subtype
S. We say that S inherits these operations. For example, any function of type
Integer — Boolean can safely be inherited by all the subtypes of Integer, such as
Natural and Small in Figure 8.1, so the same function may be viewed as being
of type Natural — Boolean or Small — Boolean. No run-time check is needed to
ensure that the function’s argument is of type Integer.

Suppose that a value known to be of type 77 is computed in a context where
a value of type 7> is expected. This happens, for example, when an expression £

8.1 Inclusion polymorphism 195

of type 71 occurs in an assignment “V := E” where the variable V is of type T,
or in a function call “F(E)” where F’s formal parameter is of type 75. In such a
context we have insisted until now that 77 must be equivalent to 7, (Section 2.5.2).
In the presence of subtypes, however, we can allow a looser compatibility between
types 77 and 7.

T, is compatible with T if and only if T} and T have values in common. This
implies that 77 is a subtype of T,, or T is a subtype of 71, or both T} and T, are
subtypes of some other type.

If Ty is indeed compatible with T, there are two possible cases of interest:

e T is a subtype of T3, so all values of type T} are values of type 75. In this
case, the value of type 77 can be used safely in a context where a value of
type T is expected; no run-time check is necessary.

e Tjisnotasubtype of 75, so some (but not all) values of type T} are values of
type 75. In this case, the value of type 77 can be used only after a run-time
check to determine whether it is also a value of type 75. This is a kind
of run-time type check, but much simpler and more efficient than the full
run-time type checks needed by a dynamically typed language.

8.1.2 Classes and subclasses

EXAMPLE 8.4

In Section 6.3 we saw that a class C is a set of objects, equipped with some
operations (constructors and methods). These methods may be inherited by the
subclasses of C. Any object of a subclass may be used in a context where an object
of class C is expected.

Consider a class C and a subclass S. Each object of class C has one or
more variable components, and is equipped with methods that access the variable
components. Each object of class S inherits all the variable components of objects
of class C, and may have additional variable components. Each object of class .S
potentially inherits all the methods of objects of class C, and may be equipped
with additional methods that access the additional variable components.

Subclasses are not exactly analogous to subtypes. The objects of the subclass S
may be used wherever objects of class C are expected, but the former objects have
additional components, so the set of objects of subclass § is not a subset of the
objects of C. Nevertheless, the subclass concept is closely related to the subtype
concept. The following example shows how.

Java subclasses as subtypes

Consider the Java class Point of Example 6.8:

class Point {
protected double x, y;

public void draw () {...} // Draw this point.
... // other methods

196 Chapter 8 Type systems

and its subclasses Circle and Rectangle:

class Circle extends Point {
private double r;

public void draw () {...} // Draw thiscircle.

... // other methods
}

class Rectangle extends Point {
private double w, h;

public void draw () {...} // Draw this rectangle.

... // other methods
¥

These classes model points, circles, and rectangles (respectively) on the xy plane. For a
circle or rectangle, x and y are the coordinates of its center.

The methods of class Point are inherited by the subclasses Circle and Rectangle.
This is safe because the methods of class Point can access only the x and y components,
and these components are inherited by the subclasses.

Now let us consider the types Point, Circle, and Rectangle, whose values are Point
objects, Circle objects, and Rectangle objects, respectively. We view objects as
tagged tuples:

Point = Point(Double x Double)

Circle = Circle(Double x Double x Double)
Rectangle = Rectangle(Double x Double x Double x Double)

Clearly, Circle and Rectangle are not subtypes of Point.
However, let Pointf be the type whose values are objects of class Point or any
subclass of Point:

Pointf = Point(Double x Double)
+ Circle(Double x Double x Double)
+ Rectangle(Double x Double x Double x Double)
Clearly, Circle and Rectangle (and indeed Point) are subtypes of Pointi. The relationship
between these types is illustrated in Figure 8.4.

Java allows objects of any subclass to be treated like objects of the superclass. Consider
the following variable:

Pointi
Point Circle Rectangle
[} [} @
Point(0.0, 0.0) Circle(0.0, 0.0, 1.0) Rectangle(0.0, 0.0, 7.0, 2.0)
[} [} @
Point(3.0, 4.0) Circle(3.0, 4.0, 5.0) Rectangle(3.0, 4.0, 1.0, 1.0)

Figure 8.4 Object subtypes in Java.

EXAMPLE 8.5

8.1 Inclusion polymorphism 197

Point p;
P = new Point(3.0, 4.0);

ﬁ'= new Circle(3.0, 4.0, 5.0);

This variable may refer to an object of class Point or any subclass of Point. In other
words, this variable may refer to any value of type Pointi.

In general, if C is a class, then Ci includes not only objects of class C but also
objects of every subclass of C. Following Apa95 terminology, we shall call Ci a
class-wide type.

Comparing Figures 8.3 and 8.4, we see that discriminated record types and
classes have similar roles in data modeling; in fact they can both be understood
in terms of disjoint unions (Section 2.3.3). The major difference is that classes are
superior in terms of extensibility. Each subclass declaration, as well as defining the
set of objects of the new subclass, at the same time extends the set of objects of
the superclass’s class-wide type. The methods of the superclass remain applicable
to objects of the subclass, although they can be overridden (specialized) to the
subclass if necessary. This extensibility is unique to object-oriented programming,
and accounts for much of its success.

Java extensibility

Consider once again the Point class and its Circle and Rectangle subclasses of
Example 8.4. Suppose that we now declare further subclasses:

class Line extends Point {
private double length, orientation;

public void draw () { ... } // Draw this line.
¥

class Textbox extends Rectangle {
private String text;

public void draw () { ... } // Draw this text.
¥

These subclass declarations not only define the set of objects of the two new subclasses:

Line = Line(Double x Double x Double)
Textbox = Textbox(Double x Double x String)
but also extend their superclasses’ class-wide types:
Pointf = Point(Double x Double)

+ Circle(Double x Double x Double)

+ Rectangle(Double x Double x Double x Double)

+ Line(Double x Double x Double)

+ Textbox(Double x Double x String)

198 Chapter 8 Type systems

Rectanglei = Rectangle(Double x Double x Double x Double)
+ Textbox(Double x Double x String)
The draw methods of the Point, Circle, and Rectangle classes are unaffected
by this change. Only the overriding draw methods of the Line and Textbox classes have

to be defined.
See also Exercise 8.1.3.

8.2 Parametric polymorphism

In this section we shall study a type system that enables us to write what are known
as polymorphic procedures.

Consider, for example, a function procedure to compute the length of a list.
An ordinary function could operate on (say) lists of characters, but could not also
operate on lists of other types. A polymorphic function, on the other hand, could
operate on lists of any type, exploiting the fact that the algorithm required to
implement the function (counting the list elements) does not depend on the type
of the list elements.

A monomorphic (‘‘single-shaped”) procedure can operate only on arguments
of a fixed type. A polymorphic (‘“‘many-shaped’’) procedure can operate uniformly
on arguments of a whole family of types.

Parametric polymorphism is a type system in which we can write polymorphic
procedures. The functional languages ML and HASKELL are prominent examples
of languages that exhibit parametric polymorphism. We shall use HASKELL to
illustrate this important concept.

In passing, note that some of the benefits of parametric polymorphism can also
be achieved using C++ or Java generic classes, which we covered in Chapter 7.
(See also Exercise 8.2.7.)

8.2.1 Polymorphic procedures

EXAMPLE 8.6

In HASKELL it is a simple matter to declare a polymorphic function. The key is to
define the function’s type using type variables, rather than specific types. We shall
introduce this idea by a series of examples.

A type variable is an identifier that stands for any one of a family of types.
In this section we shall write type variables as Greek letters (a, B, v, ...), partly
for historical reasons and partly because they are easily recognized. In HASKELL
type variables are conventionally written as lowercase Roman letters (a, b, c, .. .),
which is unfortunate because they can easily be confused with ordinary variables.

Haskew polymorphic function (1)

The following HaskeLL monomorphic function accepts a pair of integers and returns the
second of these integers:

second (x: Int, y: Int) =Yy

EXAMPLE 8.7

8.2 Parametric polymorphism 199

This monomorphic function is of type Integer x Integer — Integer. The function call
“second (13, 21)” will yield 21. However, the function call “second (13, true)”
would be illegal, because the argument pair does not consist of two integers.

But why should this function be restricted to accepting a pair of integers? There is no
integer operation in the function definition, so the function’s argument could in principle
be any pair of values whatsoever. It is in fact possible to define the function in this way:

second (X: o, y: 1) =YV

This polymorphic function is of type ¢ x T — 1. Here o and t are type variables, each
standing for an arbitrary type.

Now the function call “second (13, true)” is legal. Its type is determined as
follows. The argument is a pair of type Integer x Boolean. If we systematically sub-
stitute Integer for ¢ and Boolean for t in the function type ¢ x Tt — 1, we obtain
Integer x Boolean — Boolean, which matches the argument type. Therefore the result
type is Boolean.

Consider also the function call “second(name)”, where the argument name is of
type String x String. This function call is also legal. If we systematically substitute String
for o and String for t in the function type o x T — T, we obtain String x String — String,
which matches the argument type. Therefore the result type is String.

This polymorphic function therefore accepts arguments of many types. However,
it does not accept just any argument. A function call like “second(13)” or “sec-
ond (1978, 5, 5)”isstillillegal, because the argument type cannot be matched to the
function type o x T — t. The allowable arguments are just those values that have types of
the form o x 1, i.e., pairs.

A polytype derives a family of similar types. Two examples of polytypes are
o x tand 6 X T — t. A polytype always includes one or more type variables.

The family of types derived by a polytype is obtained by making all possible
systematic substitutions of types for type variables. The family of types derived by
o X T — tincludes Integer x Boolean — Boolean and String x String — String. It
does not include Integer x Boolean — Integer, or Integer — Integer, or Integer x
Integer x Integer — Integer. In other words, each type in the family derived by
o x T — tis the type of a function that accepts a pair of values and returns a result
of the same type as the second component of the pair.

HasketL polymorphic function (2)
Consider the following HaskeLL monomorphic function:

either (b: Bool) (x1: Char) (x2: Char) =
if b then x1 else x2

The type of this monomorphic function is Boolean — Character — Character —
Character. The following code contains a call to the either function:

translate (x: Char) =
either (isspace x) X

200 Chapter 8 Type systems

EXAMPLE 8.8

The either function’s first parameter clearly must be of type Boolean, since it is
tested by an if-expression. But the second and third parameters need not be of type
Character, since no character operations are applied to them.

Here now is a polymorphic version of the either function:

either (b: Bool) (x1: 1) (x2: 1) =
if b then x1 else x2

The type of this function is Boolean — t — 1 — 1. Thus the first argument must be a
boolean, and the other two arguments must be values of the same type as each other. The
following code illustrates what we can do with the polymorphic either function:

translate (x: Char) =
either (isspace x) x

max (m: Int, n: Int) =
either (m > n) m n

The latter call would be illegal with the original monomorphic either function.

The polytype Boolean — t — t — tderives a family of types that includes Boolean —
Character — Character — Character, Boolean — Integer — Integer — Integer, and many
others.

Haskew polymorphic function (3)
The following defines the integer identity function in HASKELL:
idInt (x: Int) = x

This monomorphic function is of type Integer — Integer, and maps any integer to itself.
The following defines the polymorphic identity function:

id (x: 1) = X

This polymorphic function is of type T — t, and maps any value to itself. In other words, it
represents the following mapping:
id = {false — false, true — true,
ity 2-5-2,-1--1,0-0,1->1,2->2,...,

— 7 “a” - “a”, “ab” — “ab”, ...,

!

8.2.2 Parameterized types

A parameterized typeis a type that takes other type(s) as parameters. For instance,
consider array types in C. We can think of t[] as a parameterized type, which can
be specialized to an ordinary type (such as char[], or float[],or float[][])
by substituting an actual type for the type variable .

All programming languages have built-in parameterized types. For instance,
C and C++ have t[] and t*, while Apa has “array (c¢) of 1 and “access
1”. But only a few programming languages, notably ML and HAskELL, allow

EXAMPLE 8.9

EXAMPLE 8.10

8.2 Parametric polymorphism 201

programmers to define their own parameterized types. The following examples
illustrate the possibilities.

HaskeL parameterized type (1)

Consider the following HAsKELL parameterized type definition:
type Pair t = (t, 1)

In this definition T is a type parameter, denoting an unknown type. The definition makes
“Pair t” a parameterized type whose values are homogeneous pairs.

An example of specializing this parameterized type would be “Pair Int”. By
substituting Int for t, we see that the resulting type is “(Int, Int)”, whose values are
pairs of integers. Another example would be “Pair Float”, a type whose values are
pairs of real numbers.

HaskeLL parameterized type (2)

The following HAskeLL (recursive) parameterized type definition defines homogeneous
lists with elements of type T

data List t = Nil | Cons (rx, List 1)

Now “List Int” is atype whose values are lists of integers.
We can go on to define some polymorphic functions on lists:

head (1: List 1) =
case 1 of
Nil -> ... —- error
Cons(x,xs8) -> X

tail (1: List 1) =
case 1 of
Nil -> ... —--— error
Cons(x,xs) -> XS

length (1: List) =
case 1 of
Nil -> 0
Cons(x,xs) -> 1 + length(xs)

As a matter of fact, HAskeLL has a built-in parameterized list type, written [t],
equipped with head, tail, and 1length functions.

Rather than using the notation of any particular programming language,
we shall henceforth use mathematical notation like Pair<t> and List<t> for
parameterized types. Thus we can rewrite the type definitions of Examples 8.9
and 8.10 as equations:

Pair<t>=1tx 1 (8.1)
List<t> = Unit + (t x List<t>) (8.2)

202 Chapter 8 Type systems

Using this notation, the types of the functions defined in Example 8.10 are
as follows:

head : List<t> — 1
tail : List<t> — List<t>
length : List<t> — Integer

8.2.3 Type inference

EXAMPLE 8.11

Most statically typed programming languages insist that we explicitly declare the
type of every entity declared in our programs. This is illustrated clearly by Apa
constant, variable, and function declarations:

I: constant T := E;

I: T;

function 7 (/': T') return T;
in which the type of each constant, variable, parameter, and function result is
declared explicitly.

By contrast, consider the HASKELL constant definition:

1 =F

The type of the declared constant is not stated explicitly, but is inferred from the
type of the expression E.

Type inference is a process by which the type of a declared entity is inferred,
where it is not explicitly stated. Some functional programming languages such as
HaskeLL and ML rely heavily on type inference, to the extent that we rarely need
to state types explicitly.

So far we have been writing HASKELL function definitions in the form:

I (I': T') = E

Here the type of the formal parameter I’ is explicitly declared to be 7’. On the
other hand, the function result type must be inferred from the function body
E. In fact, we need not declare the parameter type either; instead we can write
more concisely:

I11' =E

The type of I’ is then inferred from its applied occurrences in the function’s
body E.

Haskew type inference (1)
Consider the following HaskeLL function definition:

even n = (n 'mod' 2 = 0)

113

The operator mod has type Integer — Integer — Integer. From the subexpression ‘“n
'mod' 2” we can infer that n must be of type Integer (otherwise the subexpression would
be ill-typed). Then we can infer that the function body is of type Boolean. So the function
even is of type Integer — Boolean.

EXAMPLE 8.12

EXAMPLE 8.13

EXAMPLE 8.14

8.2 Parametric polymorphism 203

Type inference sometimes yields a monotype, but only where the avail-
able clues are strong enough. In Example 8.11, the function’s body contained a
monomorphic operator, mod, and two integer literals. These clues were enough to
allow us to infer a monotype for the function.

The available clues are not always so strong: the function body might be
written entirely in terms of polymorphic functions. Indeed, it is conceivable that
the function body might provide no clues at all. In these circumstances, type
inference will yield a polytype.

Haskew type inference (2)

Consider the following HaskeLL function definition:
id x = x

Let t be the type of x. The function body yields no clue as to what t is; all we can infer
is that the function result will also be of type t. Therefore the type of id is t — t. This
function is, in fact, the polymorphic identity function of Example 8.8.

Haskew type inference (3)

Consider the following definition of an operator ““. "
f . g=
\x -> f(g(x))

We can see that both f and g are functions, from the way they are used. Moreover, we can
see that the result type of g must be the same as the parameter type of f. Let the types of
fand g be p — y and a — B, respectively. The type of x must be «, since it is passed as an
argument to g. Therefore, the subexpression “f(g(x))” is of type y, and the expression
“\x -> £(g(x))” is of type a — y. Therefore, “.” is of type (B = y) = (¢ — B) —
(00— y).

In fact, ““.”” is HASKELL’s built-in operator that composes two given functions.

HaskeLL type inference (4)
Recall the following HAsKELL parameterized type definition from Example 8.10:
data List t = Nil | Cons (r, t list)

The following function definition does not state the type of the function’s parameter or
result, but relies on type inference:

length 1 =
case 1 of
Nil -> 0
Cons(x,xs) -> 1 + length(xs)

204 Chapter 8 Type systems

The result type of 1length is clearly Integer, since one limb of the case expression is an
integer literal (and the other is an application of the operator “+’ to an integer literal). The
case expression also tells us that the value of 1 is either Nil or of the form “Cons (x,xs)”.
This allows us to infer that 1 is of type List<t>. We cannot be more specific, since the
function body contains no clue as to what t is. Thus 1ength is of type List<t> — Integer.

HaskELL adopts a laissez-faire attitude to typing. The programmer may declare
the type of an entity voluntarily, or may leave the compiler to infer its type.

Excessive reliance on type inference, however, tends to make large programs
difficult to understand. A reader might have to study the whole of a program
in order to discover the types of its individual functions. Even the implementer
of the program could have trouble understanding it: a slight programming error
might cause the compiler to infer different types from the ones intended by the
implementer, resulting in obscure error messages. So explicitly declaring types,
even if redundant, is good programming practice.

8.3 Overloading

EXAMPLE 8.15

In discussing issues of scope and visibility, in Section 4.2.2, we assumed that
each identifier denotes at most one entity in a particular scope. Now we relax
that assumption.

An identifier is said to be overloaded if it denotes two or more distinct proce-
dures in the same scope. Such overloading is acceptable only if every procedure
call is unambiguous, i.e., the compiler can uniquely identify the procedure to be
called using only type information.

In older programming languages such as C, identifiers and operators denoting
certain built-in functions are overloaded. (Recall, from Section 2.6.3, that we may
view an operator application like ““n + 1”* as a function call, where the operator
“4+” denotes a function. From this point of view, an operator acts as an identifier.)

C overloaded functions
The C “-”’ operator simultaneously denotes four distinct built-in functions:

e integer negation (a function of type Integer — Integer)
o floating-point negation (a function of type Float — Float)
e integer subtraction (a function of type Integer x Integer — Integer)

floating-point subtraction (a function of type Float x Float — Float).

No ambiguity can arise. In function calls such as “~y’” and “x-y”’, the number of operands
and their types uniquely determine which function is being called.

In more modern languages such as Apa, C++, and Java, overloading is
not restricted to built-in procedures. Programmers are at liberty to overload
previously-defined identifiers and operators.

8.3 Overloading 205

EXAMPLE 8.16 Apa overloaded functions

The Apa ““/” operator simultaneously denotes two distinct built-in functions:

e integer division (a function of type Integer x Integer — Integer)
o floating-point division (a function of type Float x Float — Float).
For example, the function call ““7/2” yields the Integer value 3, while “7.0/2.0” yields

the Float value 3.5.
The following function declaration further overloads the ““/*’ operator:

function "/" (m, n: Integer) return Float;
-- Return the quotient of m and n as a real number.

Now ““/”” denotes three distinct functions:

e integer division (a function of type Integer x Integer — Integer)
o floating-point division (a function of type Float x Float — Float)
o floating-point division of integers (a function of type Integer x Integer — Float).

Now the function call ““7/2” yields either the Integer value 3 or the Float value 3.5,
depending on its context.

Because the functions for integer division and floating-point division of integers differ
only in their result types, in general the identification of ©“/”’ in a function call will depend
on the context as well as the number and types of actual parameters. The following function
calls illustrate the resulting complexities. (In the right-hand column, subscripting is used to
distinguish the three functions: ““/;;” is integer division, * /" is floating-point division, and
“/it”" is floating-point division of integers.)

n: Integer; x: Float;

X 1= 7.0/2.0; — computes 7.0/g2.0 = 3.5

X = 7/2; — computes 7/2 = 3.5

n :=7/2; — computes 7/;;2 = 3

n := (7/2)/(5/2); — computes (7/42)/ii(5/52) = 3/i2 = 1

Some function calls are ambiguous, even taking context into account:
x 1= (7/2)/(5/2); - computes

either (7/32)/it(5/u2) = 3/it 2
or (1/i¥2)/#(5/i¢2) = 3.5/¢ 2.5

n W

We can characterize overloading in terms of the types of the overloaded
functions. Suppose that an identifier ' denotes both a function f; of type S; — T
and a function f, of type S, — T5. (Recall that this covers functions with multiple
arguments, since S7 or S, could be a Cartesian product.) The overloading may be
either context-independent or context-dependent.

Context-independent overloading requires that S; and S, are non-equivalent.
Consider the function call “F (E)”. If the actual parameter E is of type Si, then F
here denotes f; and the result is of type 77. If E is of type S,, then F here denotes
f> and the result is of type T,. With context-independent overloading, the function
to be called is always uniquely identified by the type of the actual parameter.

206 Chapter 8 Type systems

EXAMPLE 8.17

Context-dependent overloading requires only that S; and S, are non-equiva-
lent or that 77 and 7T, are non-equivalent. If S§; and S, are non-equivalent, the
function to be called can be identified as above. If S and S, are equivalent but
T, and T, are non-equivalent, context must be taken into account to identify the
function to be called. Consider the function call “F(E)”, where E is of type $;
(equivalent to S3). If the function call occurs in a context where an expression of
type T is expected, then F' must denote fi; if the function call occurs in a context
where an expression of type 715 is expected, then F must denote f>.

With context-dependent overloading, it is possible to formulate expressions
in which the function to be called cannot be identified uniquely, as we saw
in Example 8.16. The programming language must prohibit such ambiguous
expressions.

C exhibits context-independent overloading: the parameter types of the
overloaded functions are always non-equivalent. ApA exhibits context-dependent
overloading: either the parameter types or the result types of the overloaded
functions may be non-equivalent.

Not only function procedures but also proper procedures and even literals
can be overloaded, as the following example illustrates. (See also Exercises 8.3.2
and 8.3.3.)

Apa overloaded proper procedures

The Apa Text_T0 package overloads the identifier “put” to denote two distinct built-in
proper procedures:

procedure put (item: Character);
—-- Write item to standard output.

procedure put (item: String);
—-— Write all characters of i tem to standard output.

”

For example, the procedure call “put('!"');
("hello");” writes a string of characters.
The following is a legal Apa procedure declaration:

writes a single character, while “put

procedure put (item: Integer);
-—- Convert itemto asigned integer literal and write it to standard output.

Now the procedure call “put (13) ;” would write “+13”.

We must be careful not to confuse the distinct concepts of overloading
(which is sometimes called ad hoc polymorphism) and parametric polymorphism.
Overloading means that a small number of separately-defined procedures happen
to have the same identifier; these procedures do not necessarily have related
types, nor do they necessarily perform similar operations on their arguments.

8.4 Type conversions 207

Polymorphism is a property of a single procedure that accepts arguments of
a large family of related types; the parametric procedure is defined once and
operates uniformly on its arguments, whatever their type.

Overloading does not actually increase the programming language’s expres-
sive power, as it could easily be eliminated by renaming the overloaded procedures.
Thus the Apa procedures of Example 8.17 could be renamed putChar, putStr,
and putInt, with no consequence other than a modest loss of notational con-
venience. On the other hand, parametric polymorphism genuinely increases the
language’s expressive power, since a polymorphic procedure may take arguments
of an unlimited variety of types.

8.4 Type conversions

A type conversion is a mapping from the values of one type to corresponding
values of a different type. A familiar example of a type conversion is the natural
mapping from integers to real numbers:

{..,-2—-»-20,-1- -10,0—- 0.0, +1 - +1.0, 42 - +2.0, ...}

There are many possible type conversions from real numbers to integers, including
truncation and rounding. Other examples of type conversions are the mapping
from characters to the corresponding strings of length 1, the mapping from
characters to the corresponding character-codes (small integers), and the mapping
from character-codes to the corresponding characters.

Type conversions are not easily characterized mathematically. Some type
conversions map values to mathematically-equal values (e.g., integers to real
numbers), but others donot (e.g., truncation and rounding). Some type conversions
are one-to-one mappings (e.g., the mapping from characters to strings of length 1),
but most are not. Some type conversions are total mappings (e.g., the mapping from
characters to character-codes), but others are partial mappings (e.g., the mapping
from character-codes to characters). Where a type conversion is a partial mapping,
there is a significant practical consequence: it could cause the program to fail.

Programming languages vary, not only in which type conversions they define,
but also in whether these type conversions are explicit or implicit.

A cast is an explicit type conversion. In C, C++, and Java, a cast has the form
“(T)YE”.In ADA, a cast has the form “T (E)”. If the subexpression E is of type S
(not equivalent to T, and if the programming language defines a type conversion
from S to T, then the cast maps the value of E to the corresponding value of
type T.

A coercion is an implicit type conversion, and is performed automatically
wherever the syntactic context demands it. Consider an expression E in a context
where a value of type T is expected. If E is of type S (not equivalent to T), and if the
programming language allows a coercion from S to 7 in this context, then the coer-
cion maps the value of E to the corresponding value of type 7. A typical example
of such a syntactic context is an assignment “V := E”, where V is of type T.

208 Chapter 8 Type systems

EXAMPLE 8.18

PAscAL coercions and Apa casts

PascaL provides a coercion from Integer to Float, using the natural mapping from integers
to real numbers shown above. On the other hand, PascaL provides no coercion from
Float to Integer, but forces the programmer to choose an explicit type conversion function
(trunc or round) to make clear which mapping is desired.

var n: Integer; x: Real;

X

= n; —— converts the value of n to a real number
n := x; -— illegal!
n := round(x); —— converts the value of x to an integer by rounding

Apa does not provide any coercions at all. But it does support all possible casts
between numeric types:

n: Integer; x: Float;

X = n; -— illegal!

n = X; -— illegal!

x := Float(n); —— converts the value of n to a real number

n := Integer(x); -- converts the value of X to an integer by rounding

Note that Apa chooses rounding as its mapping from real numbers to integers. This choice
is arbitrary, and programmers have no choice but to memorize it.

Some programming languages are very permissive in respect of coercions. For
instance, C allows coercions from integers to real numbers, from narrow-range to
wide-range integers, from low-precision to high-precision real numbers, and from
values of any type to the unique value of type void. To these Java adds coercions
from every type to String, from a subclass to its superclass, from a primitive
type to the corresponding wrapper class and vice versa, and so on.

The general trend in modern programming languages is to minimize or even
eliminate coercions altogether, while retaining casts. At first sight this might
appear to be a retrograde step. However, coercions fit badly with parametric poly-
morphism (Section 8.2) and overloading (Section 8.3), concepts that are certainly
more useful than coercions. Casts fit well with any type system, and anyway are
more general than coercions (not being dependent on the syntactic context).

8.5 Implementation notes

This chapter is largely theoretical, but it raises one practical issue not consid-
ered elsewhere in this book: how can we implement parametric polymorphism
efficiently?

8.5.1 Implementation of parametric polymorphism

Polymorphic procedures operate uniformly on arguments of a variety of types.
An argument passed to a polymorphic procedure might be an integer in one call,
a real number in a second call, a tuple in a third call, and a list in a fourth call.

8.5 Implementation notes 209

One way to implement a polymorphic procedure would be to generate a
separate instance of the procedure for each distinct argument type. However, such
an implementation would be unsuitable for a functional programming language
such as ML or HASKELL, in which programs tend to include a large proportion of
polymorphic procedures.

A better way is to represent values of all types in such a way that they look
similar to a polymorphic procedure. We can achieve this effect by representing
every value by a pointer to a heap object, as shown in Figure 8.5. Consider the
following polymorphic functions:

e The polymorphic either function of Example 8.7 has type Boolean —
T — T — t. Its second and third arguments are of type 1, i.e., they could
be values of any type. The function can only copy the values, and this is
implemented by copying the pointers to the values.

e The second function of Example 8.6 has type ¢ x T — t. Its argument is
of type o x 1, so it must be a pair, but the components of that pair could

(a) Boolean Integer Float
[o] [o] [o]
Y Y

True 7 3.1416
(b) Integer x Month Month x Integer Integer x Month x Integer
® ® ®
A\ \ \
5 | [ePr{am | [e—rlon]
— Il oy —l 5 | —{» Nov |
e 5 |

(c) Listnteger> List<Float>
® 'Y
Y Y
Cons Cons
—l 2 | o—>| 0.5
® °
Y \
Cons Cons
— 3 | 0—>| 0.3333
° ®
Y Y
Cons Cons
—i»{ 5 | o—»{ 025
® '
Y Y
Nil Nil

Figure 8.5 Representation of values of different types in the presence of parametric
polymorphism: (a) primitive values; (b) tuples; (c) lists.

210 Chapter 8 Type systems

be values of any type. The function could select either component of the
argument pair, so all pairs must have similar representations. Compare the
pairs of type Integer x Month and Month x Integer in Figure 8.5(b).

e The head, tail, and length functions of Example 8.10 have types
List<t> — 1, List<t> — List<t>, and List<t> — Integer, respectively.
Each function’s argument is of type List<t>, so it must be a list, but
the components of that list could be values of any type. The function could
test whether the argument list is empty or not, or select the argument list’s
head or tail, so all lists must have similar representations. Compare the lists
of type List<Integer> and List<Float> in Figure 8.5(c).

When a polymorphic procedure operates on values of unknown type, it cannot
know the operations with which that type is equipped, so it is restricted to copying
these values. That can be implemented safely and uniformly by copying the
pointers to these values.

This implementation of parametric polymorphism is simple and uniform, but
it is also costly. All values (even primitive values) must be stored in the heap;
space must be allocated for them when they are first needed, and deallocated by
a garbage collector when they are no longer needed.

Summary
In this chapter:
e We have studied inclusion polymorphism, which enables a subtype or subclass to
inherit operations from its parent type or class.

e We have studied parametric polymorphism, which enables a procedure to operate
uniformly on arguments of a whole family of types, and the related concept of
parameterized types.

e We have studied type inference, whereby the types of declared entities are not
stated explicitly in the program but are left to be inferred by the compiler.

e We have studied overloading, whereby several procedures may have the same
identifier in the same scope, provided that these procedures have non-equivalent
parameter types and/or result types.

e We have studied type conversions, both explicit (casts) and implicit (coercions).

e We have seen how parametric polymorphism influences the representation of values
of different types.

Further reading

Much of the material in this chapter is based on an illu-
minating survey paper by CARDELLI and WEGNER (1985).
The authors propose a uniform framework for understand-
ing parametric polymorphism, abstract types, subtypes, and
inheritance. Then they use this framework to explore the
consequences of combining some or all of these concepts
in a single programming language. (However, no major
language has yet attempted to combine them all.)

For another survey of type systems see REYNOLDs (1985).
Unlike Cardelli and Wegner, Reynolds adopts the point
of view that the concepts of coercion and subtype are
essentially the same. For example, if a language is to provide
a coercion from Integer to Float, then Integer should be
defined as a subtype of Float. From this point of view,
subtypes are not necessarily subsets.

The system of polymorphic type inference used in lan-
guages like ML and HASKELL is based on a type inference
algorithm independently discovered by HINDLEY (1969)
and MILNER (1978). ML’s type system is described in

Exercises

Exercises for Section 8.1

Exercises 211

detail in WIKSTROM (1987), and HASKELL’s type system
in THOMPSON (1999).

For a detailed discussion of overloading in ADA, see
IcHBIAH (1979).

8.1.1 Show that two different subtypes of an Apa primitive type may overlap, but two
different subtypes of an Apa array or record type are always disjoint.

8.1.2 Consider the class hierarchy of Figure 6.4. Write down equations (similar to
those at the end of Example 8.4) defining the set of values of each of the types
Account, Basic-Account, Savings-Account, Current-Account, and Accounti.

8.1.3 Compare Apa discriminated record types with Java classes and subclasses, in

terms of extensibility.

(a) Define the following Apa function, where Figure is the discriminated
record type of Example 8.3:

function area (fig: Figure) return Float;

(b) Now suppose that straight lines and text boxes are to be handled as well
as points, circles, and rectangles. Modify the Apa code (type and function
definitions) accordingly.

(c) Add definitions of the following Java method to each of the classes of

Example 8.4:

float area ();

(d) Now suppose that straight lines and text boxes are to be handled as well.
Modify the Java code accordingly.

Exercises for Section 8.2

8.2.1 Consider the HaskeLL list functions defined in Example 8.10. Similarly define:
(a) a function to reverse a given list; (b) a function to concatenate two given
lists; (c) a function to return the kth element of a given list. State the type of
each function, using the notation defined at the end of Section 8.2.2.

8.2.2 Define the following polymorphic functions in Haskerr: (a) “map £ xs”
returns a list in which each element is obtained by applying the function £ to the
corresponding element of list xs; (b) “filter f xs” returns a list consisting
of every element x of list xs such that £ x yields true. State the types of map

and filter.

*8.2.3 Define a parameterized type Set<t> in HaskeLL. Equip it with operations
similar to those in Exercise 7.2.4, and state the type of each operation.

212 Chapter 8 Type systems

8.2.4 Write a HaskeLL function twice, whose argument is a function f and whose

result is the function % defined by A(x) = f(f(x)). What is the type of twice ?
Given that the following function returns the second power of a given integer:

sqr (i: Int) =i * i

use twice to define a function that returns the fourth power of a given integer.

8.2.5 Infer the types of the following HAskeLL functions, given that the type of not

is Boolean — Boolean:
negation p = not . p;

cond b f g =
\ x -> if b x then f x else g x

8.2.6 Infer the types of the following HaskeLL list functions, given that the type of

“+” is Integer — Integer — Integer:

suml []

0
suml (n:ns) n

+ suml ns

z
f x (insert z f xs)

insert z £ []
insert z f (x:xs)

sum2 xs = insert 0 (+) xs

Compare the functions suml and sum?2.

*8.2.7 Investigate the extent to which the benefits of parametric polymorphism can

be achieved, in either C++ or Java, using generic classes and generic functions
(methods). In your chosen language, attempt to code (a) the second polymor-
phic function of Example 8.6; (b) the id polymorphic function of Example 8.8;
(c) the Pair parameterized type of Example 8.9; (d) the List parameterized
type and the head, tail,and 1ength polymorphic functions of Example 8.10.

Exercises for Section 8.3

8.3.1

83.2

Suppose that the operator “++” (denoting concatenation) is overloaded, with
types Character x Character — String, Character x String — String, String x
Character — String, and String x String — String. Is this overloading context-
dependent or context-independent? Identify each occurrence of “++’ in the
following expressions:

c ++ s
(s ++ c) ++ c
s ++ (¢ ++ <)

where c is a Character variable and s is a String variable.

Adapt the characterization of overloading in Section 8.3 to cover proper
procedures. Is the overloading of proper procedures context-dependent or
context-independent?

Consider a language in which the operator “/” is overloaded, with types that
include Integer x Integer — Integer and Integer x Integer — Float. The language

Exercises 213

also has an overloaded proper procedure write whose argument may be either
Integer or Float. Find examples of procedure calls in which the procedure to be
called cannot be identified uniquely.

8.3.3 Adapt the characterization of overloading in Section 8.3 to cover literals. Is the
overloading of literals context-dependent or context-independent?
Consider a language in which arithmetic operators such as “+” and “-” are
overloaded, with types Integer x Integer — Integer and Float x Float — Float. It
is now proposed to treat the literals 1, 2, 3, etc., as overloaded, with types Integer
and Float, in order to allow expressions like “x+1”, where x is of type Float.
Examine the implications of this proposal. (Assume that the language has no
coercion that maps Integer to Float.)

Exercises for Section 8.4

8.4.1 What type conversions are allowed in your favorite language? What is the
mapping performed by each type conversion? Separately consider (a) casts and
(b) coercions.

Chapter 9

Control flow

Using sequential, conditional, and iterative commands (Section 3.7) we can implement a
variety of control flows, each of which has a single entry and a single exit. These control
flows are adequate for many purposes, but not all.

In this chapter we study constructs that enable us to implement a greater variety of
control flows:

e sequencers, which are constructs that influence the flow of control;
e jumps, which are low-level sequencers that can transfer control almost anywhere;

e escapes, which are sequencers that transfer control out of textually enclosing
commands or procedures;

e exceptions, which are sequencers that can be used to signal abnormal situations.

9.1 Sequencers

Figure 9.1 shows four flowcharts: a simple command, a sequential subcommand,
an if-command, and a while-command. Each of these flowcharts has a single entry
and a single exit. The same is true for other conditional commands, such as case
commands, and other iterative commands, such as for-commands. (See Exercise
9.1.1.) It follows that any command formed by composing simple, sequential,
conditional, and iterative commands has a single-entry single-exit control flow.

Sometimes we need to implement more general control flows. In particular,
single-entry multi-exit control flows are often desirable.

A sequencer is a construct that transfers control to some other point in the
program, which is called the sequencer’s destination. Using sequencers we can
implement a variety of control flows, with multiple entries and/or multiple exits.
In this chapter we shall examine several kinds of sequencers: jumps, escapes,
and exceptions. This order of presentation follows the trend in language design
from low-level sequencers (jumps) towards higher-level sequencers (escapes
and exceptions).

The mere existence of sequencers in a programming language radically affects
its semantics. For instance, we have hitherto asserted that the sequential command
“C1; Gy is executed by first executing C; and then executing C,. This is true
only if C; terminates normally. But if C; executes a sequencer, C; terminates
abruptly, which might cause C; to be skipped (depending on the sequencer’s
destination).

215

216 Chapter 9 Control flow

9.2 Jumps

EXAMPLE 9.1

(a) primitive ® C; G © if (B) ¢ () while (E) C
command C else G,

true Jalse o Jalse

true

Figure 9.1 Flowcharts of primitive, sequential, if-, and while-commands.

Some kinds of sequencers are able to carry values. Such values are computed
at the place where the sequencer is executed, and are available for use at the
sequencer’s destination.

A jump is a sequencer that transfers control to a specified program point. A
jump typically has the form “goto L;”’, and this transfers control directly to the
program point denoted by L, which is a label.

Jumps

The following program fragment (in a C-like language) contains a jump:

if (ED

while (E,) {
Cy

X: C5

¥

Here the label X denotes a particular program point, namely the start of command Cs.
Thus the jump “goto X; " transfers control to the start of Cs.

Figure 9.2 shows the flowchart corresponding to this program fragment. Note that the
if-command and while-command have identifiable subcharts, which are highlighted. The
program fragment as a whole has a single entry and a single exit, but the if-command has
two exits, and the while-command has two entries.

Unrestricted jumps allow any command to have multiple entries and multiple
exits. They tend to give rise to “‘spaghetti”’ code, so called because its flowchart
is tangled.

9.2 Jumps 217

Figure 9.2 Flowchart of a program fragment with a jump
(Example 9.1).

“Spaghetti” code tends to be hard to understand. It is worth reflecting on
why this is so. Simple commands like assignments, and even composite single-
entry single-exit commands, are largely self-explanatory. But jumps are not
self-explanatory at all. For example, what effect does the jump “goto Z;” have
on the program’s behavior? It might be a forward jump that causes commands to
be skipped, or a backward jump that causes commands to be repeated. We cannot
tell until we locate the label Z, which might be many pages away.

Most major programming languages support jumps, but they are really obso-
lete in the modern languages. JAva refuses to support jumps, on the grounds that
the higher-level escapes and exceptions are sufficient in practice.

Even in programming languages that do support jumps, their use is constrained
by the simple expedient of restricting the scope of each label: the jump “goto
L ;" is legal only within the scope of L. In C, for example, the scope of each label
is the smallest enclosing block command (“{ ... }”). It is therefore possible to
jump within a block command, or from one block command out to an enclosing
block command; but it is not possible to jump into a block command from outside,
nor from one function’s body to another. The jump in Example 9.1 would in fact
be illegal in C.

The last point does not imply that the flowchart of Figure 9.2 cannot be
programmed in C. We simply rewrite the while-command in terms of equivalent
conditional and unconditional jumps:

while (E,) { = goto Y;
C4 w: C4
X: C5 X: CS

¥ Y: if (E,) goto W;

218 Chapter 9 Control flow

EXAMPLE 9.2

The resulting code is even less readable, however. C’s jumps are not restricted
enough to prevent “‘spaghetti”’ coding.

A jump within a block command is relatively simple, but a jump out of a
block command is more complicated. Such a jump must destroy the block’s local
variables before transferring control to its destination.

Jump out of a block command
Consider the following (artificial) C code:

char stop;
stop = '."';
do {
char ch;
ch = getchar();
if (ch == EOT) goto X;
putchar(ch);
} while (ch != stop);
printf("done");
X:

The jump “goto X;” transfers control out of the block command {...}. Therefore it also
destroys the block command’s local variable ch.

A jump out of a procedure’s body is still more complicated. Such a jump must
destroy the procedure’s local variables and terminate the procedure’s activation
before transferring control to its destination. Even greater complications arise
when a jump’s destination is inside the body of a recursive procedure: which
recursive activations are terminated when the jump is performed? To deal with
this possibility, we have to make a label denote not simply a program point, but a
program point within a particular procedure activation.

Thus jumps, superficially very simple, in fact introduce unwanted complexity
into the semantics of a high-level programming language. Moreover, this com-
plexity is unwarranted, since wise programmers in practice avoid using jumps in
complicated ways. In the rest of this chapter, we study sequencers that are both
higher-level than jumps and more useful in practice.

9.3 Escapes

An escape is a sequencer that terminates execution of a textually enclosing
command or procedure. In terms of a flowchart, the destination of an escape
is always the exit point of an enclosing subchart. With escapes we can program
single-entry multi-exit control flows.

ADA’s exit sequencer terminates an enclosing loop, which may be a while-
command, a for-command, or a basic loop (“loop C end loop;” simply causes
the loop body C to be executed repeatedly). An exit sequencer within a loop body
terminates the loop.

9.3 Escapes 219

Figure 9.3 Flowchart of a loop with
an escape.

In the following basic loop, there is a single (conditional) exit sequencer:

loop
G
exit when E;
@]

end loop;

The corresponding flowchart is shown in Figure 9.3, in which both the loop body
and the basic loop itself are highlighted. Note that the loop has a single exit,
but the loop body has two exits. The normal exit from the loop body follows
execution of C,, after which the loop body is repeated. The other exit from
the loop body is caused by the exit sequencer, which immediately terminates
the loop.

It is also possible for an exit sequencer to terminate an outer loop. An ApA
exit sequencer may refer to any named enclosing loop. The following example
illustrates this possibility.

EXAMPLE 9.3 Apa exit sequencer
The following type represents a diary for a complete year:

type Year Diary is array (Month_Number, Day_ Number)
of Diary_Entry;

Consider the following procedure:

function search (diary: Year_Diary;
this_vyear: Year_ Number;
key_word: String)
return Date is
—-— Search diary for the first date whose entry matches key_word.
-- Return the matching date, or January 1 if there is no match.
match_date: Date := (this_year, 1, 1);

220 Chapter 9 Control flow

begin
search:
D for m in Month Number loop
2) for d in Day_Number loop
if matches(diary(m,d), key word) then
match_date := (this_year, m, d);
3) exit search;
end if;
end loop;
end loop;
return match_date;
end;

Here the outer loop starting at (1)is named search. Thus the sequencer “exit
search;” at (3) terminates that outer loop.

On the other hand, a simple “exit;” at (3) would terminate only the inner
loop (2).

The break sequencer of C, C++, and Java allows any composite command
(typically a loop or switch command) to be terminated immediately.

EXAMPLE 9.4 Java break sequencers

The following Java method corresponds to Example 9.3:

static Date search (DiaryEntry[][] diary;
int thisYear;
String keyWord) {
Date matchDate = new Date(thisyear, 1, 1);
search:
for (dnt m = 1; m <= 12; m++) {
for (dnt d = 1; d <= 31; d++) {
if (diary[m][d].matches(keyWord)) {
matchDate = new Date(thisYear, m, d);
break search;

}
}

return matchDate;

A particularly important kind of escape is the return sequencer. This may occur
anywhere in a procedure’s body, and its destination is the end of the procedure’s
body. A return sequencer in a function’s body must also carry the function’s result.
Return sequencers are supported by C, C++, JAva, and ADA.

9.4 Exceptions 221

EXAMPLE 9.5 C++ return sequencer
Consider the following C++ function:
int gcd (int m, n) {

// Return the greatest common divisor of positive integers m and n.
int p = m, q = n;

for (;;) {
int r = p % q;
if (r == 0) return q;

Pp=4d; 4q=r;
}

The sequencer “return g;” escapes from the function’s body, carrying the value of g as
the function’s result.

Escapes are usually restricted so that they cannot transfer control out of
procedures. For example, a return sequencer always terminates the immediately
enclosing procedure body, and an exit sequencer inside a procedure’s body
can never terminate a loop enclosing that procedure. Without such restrictions,
escapes would be capable of terminating procedure activations, causing undue
complications (similar to those caused by jumps out of procedures, explained at
the end of Section 9.3).

The only escape that can terminate procedure activations without undue
complications is the halt sequencer, which terminates the whole program. In some
programming languages this is provided as an explicit sequencer (such as STOP
in FORTRAN); in others it is lightly disguised as a built-in procedure (such as
exit () in C). A halt sequencer may carry a value (typically an integer or string),
representing the reason for terminating the program, that will be reported to the
user of the program.

9.4 Exceptions

An abnormal situation is one in which a program cannot continue normally.
Typical examples are the situations that arise when an arithmetic operation
overflows, or an input/output operation cannot be completed. Some abnormal
situations are specific to particular applications, for example ill-conditioned data
in mathematical software, or syntactically ill-formed source code in a compiler.

What should happen when such an abnormal situation arises? Too often, the
program simply halts with a diagnostic message. It is much better if the program
transfers control to a handler, a piece of code that enables the program to recover
from the situation. A program that recovers reasonably from such situations is
said to be robust.

Typically, an abnormal situation is detected in some low-level program unit,
but a handler is more naturally located in a high-level program unit. For example,

222 Chapter 9 Control flow

suppose that an application program attempts to read a nonexistent record from a
file. This abnormal situation would be detected in the input/output subsystem, but
any handler should be located in the application code where a suitable recovery
action can be programmed. Furthermore, the program might contain several calls
to the input/output subsystem, reading records for different purposes. The most
appropriate recovery action will depend on the purpose for which the record was
read. Thus the program might need several handlers specifying different recoveries
from the same kind of abnormal situation. For all these reasons, neither jumps
nor escapes are powerful enough to transfer control from the point where the
abnormal situation is detected to a suitable handler.

A common technique for handling abnormal situations is to make each
procedure pass back a suitable status flag. (In the case of a function procedure,
the status flag can be the function result, which is the C convention. In the case
of a proper procedure, the status flag must be passed back through a parameter.)
The procedure sets its status flag to indicate which if any abnormal situation it has
detected. On return, the application code can test the status flag. This technique
has the advantage of requiring no special programming language construct, but
it also has serious disadvantages. One is that the application code tends to get
cluttered by tests of status flags. Another is that the programmer might forgetfully
or lazily omit to test a status flag. In fact, abnormal situations represented by status
flags are by default ignored!

Exceptions are a superior technique for handling abnormal situations. An
exception is an entity that represents an abnormal situation (or a family of
abnormal situations). Any code that detects an abnormal situation can throw (or
raise) an appropriate exception. That exception may subsequently be caught in
another part of the program, where a construct called an exception handler (or
just handler) recovers from the abnormal situation. Every exception can be caught
and handled, and the programmer has complete control over where and how each
exception is handled. Exceptions cannot be ignored: if an exception is thrown, the
program will halt unless it catches the exception.

The first major programming language with a general form of exception
handling was PL/I. An on-command associates a handler with a given exception
e. Thereafter, if any operation throws exception e, the associated handler is
executed, then the offending operation may be resumed. The handler associated
with a given exception may be updated at any time. The dynamic nature of the
exception—handler association and the fact that the offending operation may be
resumed make the PL/I exception concept problematic, and we shall not consider
it further here.

A better exception concept has been designed into more modern languages
such as Apa, C++, and Java. A handler for any exception may be attached to any
command. If that command (or any procedure called by it) throws the exception,
execution of that command is terminated and control is transferred to the handler.
The command that threw the exception is never resumed.

Let us first consider Apa exceptions, which are the simplest. The sequencer
“raise e;” throws exception e. ADA has an exception-handling command of
the form:

9.4 Exceptions 223

begin
Co
exception
when ¢, => (

when ¢, => C,
end;

This is able to catch any of the exceptions ey, ..., e,. There are three
possibilities:

e If the subcommand C, terminates normally, then the exception-handling
command as a whole terminates normally. (None of the handlers is exe-
cuted.)

e If the command Cj throws one of the named exceptions e;, then execution
of Cy is terminated abruptly, the handler C; is executed, and then the
exception-handling command as a whole terminates normally.

e If the command Cj throws any other exception, then the exception-handling
command itself is terminated abruptly, and throws that same exception.

EXAMPLE 9.6 Apa exceptions

Consider an Apa program that is to read and process rainfall data for each month of the
year. Assume the following type definition:

type Annual_Rainfall is array (Month_Number) of Float;
The following procedure reads the annual rainfall data:

procedure get_annual (input: in out File_Type;
rainfall: out Annual_Rainfall) is

r: Float;
begin
for m in Month_Number loop
@) begin
2) get(input, r);
3) rainfall(m) := r;
exception
when data_error =>
4) put("Bad data for "); put(m);
skip_bad_data(input);
rainfall(m) := 0.0;
end;
end loop;
end;

This illustrates how the program can recover from reading ill-formed data. The command
(2) calls the library procedure get to read a numeric literal. That procedure will throw the
end_error exception if no more data remain to be read, or the data_error exception
if the numeric literal is ill-formed. The enclosing exception-handling command starting
at (1) is able to catch a data_error exception. If the command (2) does indeed throw
data_error, the sequential command (2,3) is terminated abruptly, and the exception

224 Chapter 9 Control flow

handler starting at (4) is executed instead; this prints a warning message, skips the ill-
formed data, and substitutes zero for the missing number. Now the exception-handling
command terminates normally, and execution of the enclosing loop then continues. Thus
the procedure will continue reading the data even after encountering ill-formed data.

The following main program calls get_annual:

procedure main is
rainfall: Annual_Rainfall;
input: File_Type;

(5) begin
open(input, ...);
(6) get_annual (input, rainfall);
(7) ... // process the datain rainfall
exception
when end_error =>
8) put("Annual rainfall data is incomplete");
end;

This illustrates how the program can respond to incomplete input data. As mentioned
above, the library procedure get will throw end_error if no more data remain to be
read. If indeed this happens, the procedure get_annual does not catch end_error,
so that exception will be thrown by the command (6) that calls get_annual. Here the
exception will be caught, with the exception handler being the command (8), which simply
prints a message to the user. In consequence, the command (7) will be skipped.

Although not illustrated by Example 9.6, we can attach different handlers for
the same exception to different commands in the program. We can also attach
handlers for several different exceptions to the same command.

Note the following important properties of exceptions:

e If a subcommand throws an exception, the enclosing command also throws
that exception, unless it is an exception-handling command able to catch
that particular exception. If a procedure’s body throws an exception, the
corresponding procedure call also throws that exception.

e A command that throws an exception is terminated abruptly (and will never
be resumed).

e Certain exceptions are built-in, and may be thrown by built-in operations.
Examples are arithmetic overflow and out-of-range array indexing.

e Further exceptions can be declared by the programmer, and can be thrown
explicitly when the program itself detects an abnormal situation.

C++ and JAava, being object-oriented languages, treat exceptions as objects.
Java, for instance, has a built-in Exception class, and every exception is an object
of a subclass of Exception. Each subclass of Exception represents a different
abnormal situation. An exception object contains an explanatory message (and
possibly other values), which will be carried to the handler. Being first-class
values, exceptions can be stored and passed as parameters as well as being thrown
and caught.

EXAMPLE 9.7

9.4 Exceptions 225

The Java sequencer “throw E;”’ throws the exception yielded by expression
E. The Java exception-handling command has the form:

try
Co
catch (7)) C

catch (7, I,) C,
finally C;

this is able to catch any exception of class T} or ... or T,. If the subcommand
Cyp throws an exception of type T;, then the exception handler C; is executed
with the identifier /; bound to that exception. Just before the exception-handling
command terminates (whether normally or abruptly), the subcommand Cy is
executed unconditionally. (The £inally clause is optional.)

Animportant feature of Java is that every method must specify the exceptions
that it might throw. A method’s heading may include an exception specification of
the form “throws 77, ..., T,”, where T1, ..., T, are the classes of exceptions
that could be thrown. In the absence of an exception specification, the method is
assumed never to throw an exception. (Actually, this is an over-simplification: see
Section 12.4.2.)

JAVA exceptions

Consider a Java program that is to read and process rainfall data for each month of the
year (as in Example 9.6).
The following method attempts to read a numeric literal:

static float readFloat (BufferedReader input)
throws IOException, NumberFormatException {

... // skip space characters
if (...) // endofinput reached

1) throw new IOException("end of input");
String literal = ...; // readnon-space characters

(2) float f = Float.parseFloat(literal);
return f;

}

This method specifies that it might throw an exception of class IOException or Num-
berFormatException (but no other). If the end of input is reached (so that no literal
can be read), the sequencer at (1) constructs an exception of class IOException (con-
taining an explanatory message) and throws that exception. If a literal is read but turns
out not to be a well-formed numeric literal, the library method Float.parseFloat
called at (2) constructs an exception of class NumberFormatException (containing the
ill-formed literal) and throws that exception.
The following method reads the annual rainfall data:

static float[] readAnnual (BufferedReader input)
throws IOException {
float[] rainfall = new float[1l2];
for (dnt m = 0; m < 12; m++) {

226 Chapter 9 Control flow

(3 try {
4) float r = readFloat(input);
(5) rainfall[m] = r;
}
catch (NumberFormatException e) {
(6) System.out.println(e.getMessage()

+ " is bad data for
rainfall[m] = 0.0;

+ m);

}
}

return rainfall;

3

This illustrates how the program can recover from reading ill-formed data. Consider
the call to readFloat at (4). The enclosing exception-handling command, which starts
at (3), is able to catch a NumberFormatException. Thus if readFloat throws a
NumberFormatException, the code (4,5) is terminated abruptly, and the exception
handler starting at (6) is executed instead; this prints a warning message incorporating
the ill-formed literal carried by the exception (extracted by “e.getMessage()”), and
substitutes zero for the missing number. Now the exception-handling command terminates
normally, and the enclosing loop continues. Thus the remaining rainfall data will be
read normally.
The following main program calls readAnnual:

static void main () {
float[] rainfall;

(7) try {
8) rainfall = readAnnual();
9) ... // processthe datainrainfall

catch (IOException e) {
(10) System.out.println(
"Annual rainfall data is incomplete");

}

This illustrates how the program can respond to incomplete input data. If readFloat
throws an TOException, the method readAnnual does not catch it, so it will be thrown
by the method call at (8). The enclosing exception-handling command, starting at (7), does
catch the exception, the handler being the command (10), which simply prints a warning
message to the user. In consequence, the command (9) will be skipped.

9.5 Implementation notes
9.5.1 Implementation of jumps and escapes

Most jumps and escapes are simple transfers of control, easily implemented in
object code. However, a jump or escape out of a block is more complicated:
variables local to that block must be destroyed before control is transferred. A
jump or escape out of a procedure is still more complicated: the procedure’s stack
frame must be popped off the stack before control is transferred.

Summary 227

9.5.2 Implementation of exceptions

The implementation of exceptions is interesting because it entails a trade-off.
The issue is how efficiently control is transferred to the appropriate exception
handler when an exception is thrown, bearing in mind that the exception handler
is typically not in the procedure that throws the exception but in a calling
procedure. The best implementation depends on how frequently exceptions
are thrown.

If we assume that exceptions are infrequently thrown, the program should
be executed at close to full speed as long as it does not throw an exception, but
transfer of control to an exception handler need not be particularly fast when (and
if) the program does throw an exception. In this case an efficient implementation
is as follows:

(a) Ata procedure call, mark the calling procedure’s activation frame to indi-
cate whether the procedure call is inside an exception-handling command.

(b) When exception e is thrown, pop unmarked activation frames off the stack
one by one. Then transfer control to the appropriate exception-handling
command. If the latter contains a handler for exception e, execute that
handler. If not, throw exception e again.

If we assume that exceptions are frequently thrown, transfer of control to the
exception handler should be reasonably fast, even if extra instructions are needed
to anticipate this eventuality. In this case, an efficient implementation is as follows:

(a) At the start of an exception-handling command, push the address of the
exception-handling code and the address of the topmost activation frame
on to a separate exception stack.

(b) At the end of an exception-handling command, pop a pair of addresses
off the exception stack.

(¢) When exception e is thrown, note the exception-handling code and activa-
tion frame addresses at the top of the exception stack. Pop all activation
frames above the noted activation frame. Then transfer control to the
noted exception-handling code. If the latter contains a handler for excep-
tion e, execute that handler. If not, throw exception e again.

Summary
In this chapter:

e We have studied the effect of sequencers on the program’s control flow.

e We have studied jumps, seeing how they result in “‘spaghetti” code, and how jumps
out of procedures cause undue complications.

e We have studied escapes, including exits and returns, which support flexible single-
entry multi-exit control flows.

e We have studied exceptions, which are an effective technique for robust handling
of abnormal situations.

e We have seen how jumps, escapes, and exceptions can be implemented efficiently.

228 Chapter 9 Control flow

Further reading

BoHM and JAcoPINI (1966) proved that every flowchart
can be programmed entirely in terms of sequential com-
mands, if-commands, and while-commands. Their theorem
is only of theoretical interest, however, since the elimina-
tion of multi-entry and multi-exit control flows requires us
to introduce auxiliary boolean variables and/or to dupli-
cate commands. Since that is unnatural, the existence of
sequencers in programming languages is justified.

The dangers of jumps were exposed in a famous letter by
DuksTRA (1968b). An extended discussion of the use and
abuse of jumps may be found in KNUTH (1974).

A variety of loops with multiple exits were proposed by
ZAHN (1974).

The term sequencer was introduced by TENNENT (1981).
Tennent discusses the semantics of sequencers in terms of

Exercises

Exercises for Section 9.1

continuations, a very powerful semantic concept beyond
the scope of this book. Tennent also proposed a sequencer
abstraction — an application of the Abstraction Principle —
but this proposal has not been taken up by any major
programming language.

A discussion of exceptions may be found in Chapter 12
of IcHBIAH (1979). This includes a demonstration that
exception handling can be implemented efficiently — with
negligible overheads on any program unless it actually
throws an exception.

Which (if any) exceptions a procedure might throw is an
important part of its observable behavior. JAvA methods
must have exception specifications, but in C++ function
definitions they are optional. A critique of C++ exception
specifications may be found in SUTTER (2002).

9.1.1 Extend Figure 9.1 by drawing the flowcharts of: (a) a C, C++, or Java do-while
command; (b) a C, C++, or Java for-command; (c) a C, C++, or Java switch
command; (d) an Apa case command.

Exercises for Section 9.2

9.2.1 Consider the following code fragment (in C, C++, or Java):

pPp=1; m=mn; a=b;
while (m > 0) {
if (m % 2 != 0) p *= a;
m /= 2;
a *= a;

(a) Draw the corresponding flowchart. Outline the subcharts corresponding
to the while-command, the if-command, and the bracketed sequential
command. Note that these subcharts are properly nested.

(b) Rewrite the code fragment entirely in terms of conditional and uncondi-
tional jumps. Explain why this makes the code fragment harder to read.

*9.2.2 Some programming languages count labels as values.
(a) Arcor60 allows labels to be passed as arguments. Explain why use of this
feature can make a program hard to understand.

(b) PL/I counts labels as first-class values, which can be stored as well as passed
as arguments. Explain why use of this feature can make a program even
harder to understand.

(c) Show that the effect of passing a label as an argument can be achieved

(indirectly) in C.

Exercises for Section 9.3
9.3.1

9.3.2

933

9.3.4

Exercises for Section 9.4
94.1

9.42

943

*9.44

Exercises 229

Consider the hypothetical form of loop, “do C; while (E) C,”, which was

mentioned in Section 3.7.7.

(a) Draw the hypothetical loop’s flowchart. Compare it with the Apa loop
whose flowchart is in Figure 9.3.

(b) We would classify the hypothetical loop as a single-entry single-exit control
flow, but the Apa loop as a single-entry multi-exit control flow. What is the
distinction?

Modify the Apa code of Example 9.3 and the Java code of Example 9.4 to avoid

using any sequencer. You will need to replace the for-loops by while-loops. Is

your code more or less readable than the original code?

Modify the Apa code of Example 9.3 and the Java code of Example 9.4 to
construct the default date (January 1) only if the search fails.

C, C++, and Java have a continue sequencer, which terminates the current
iteration of the enclosing loop, thus causing the next iteration (if any) to be
started immediately. Show that the continue sequencer can be understood in
terms of an all-purpose escape.

Rewrite the Apa program of Example 9.6 or the Java program of Example 9.7
using status flags rather than exceptions. Each status flag is to be a copy-out
parameter or function result of type {ok, end-error, data-error}. Compare and
contrast the status-flag and exception-handling versions of the program.

Consider the Apa package The_Dictionary of Example 6.3. Make this
package declare an exception, which is to be thrown on attempting to add a
word to a full dictionary.

Consider your text input/output package of Exercise 6.1.2. Make your package
declare suitable exceptions, which are to be thrown on attempting to read past
end-of-file, to read ill-formed input data, etc.

C++’s input/output library classes use status flags. Redesign them to use
exceptions instead.

Chapter 10

Concurrency

The constructs introduced in the preceding chapters are sufficient to write sequential
programs in which no more than one thing happens at any time. This property is inherent
in the way control passes in sequence from command to command, each completing before
the next one starts. Concurrent programs are able to carry out more than one operation at
a time. Concurrent programming in high-level languages dates back to PL/1 and ALcoL68,
but did not become commonplace until relatively recently, with languages such as Apa and
Java.

This chapter removes our former restriction to sequential program structures and
considers the language design concepts needed for concurrent programming. In particular,
we shall study:

¢ the semantic differences between sequential and concurrent programming;

e the problematic ways in which basic programming constructs interact with each
other in the presence of concurrency;

e low-level primitives that introduce and control concurrencys;

e high-level control abstractions in modern, concurrent languages.

10.1 Why concurrency?

To be honest, concurrency is a nuisance. It makes program design more difficult,
and it greatly reduces the effectiveness of testing. Nevertheless, there are important
reasons for including concurrency in our repertoire of programming language
design concepts.

The first of these reasons, and historically the most important one, is the
quest for speed. An early milestone in computer architecture was the provision of
hardware to let a computer execute input/output operations and CPU operations
simultaneously. This immediately introduced concurrent programming. For best
performance, computation had to be optimally overlapped with input and output.
This was far from easy. So computer manufacturers introduced operating systems
to automate the handling of concurrency. Operating systems are the archetypal
concurrent programs, and the need to overlap computation with input/output still
offers an important motivation for concurrent programming.

By running two or more jobs concurrently, multiprogramming systems try
to make good use of resources that would otherwise be left idle. When a job is
held up, waiting for the end of an input/output operation that cannot be fully
overlapped, a multiprogramming system passes control of the CPU to a lower-
priority job that is ready to run. At the end of the awaited input/output operation,

231

232 Chapter 10 Concurrency

the low-priority job is interrupted and the high-priority job is resumed. If the speed
of the high-priority job is limited by input/output and the speed of the low-priority
job is limited by the CPU, they run synergistically, using both input/output devices
and CPU to good effect.

Multiaccess, or server, systems extend this principle, allowing many jobs to be
run, each on behalf of a remote user. The demand from many concurrent users
may easily exceed the capacity of one CPU. Multiprocessor systems deal with this
by providing two or more CPUs, operating simultaneously on a common workload
in shared storage.

Distributed systems consist of several computers that not only operate inde-
pendently but can also intercommunicate efficiently. These have the potential
for both higher (aggregate) performance and greater reliability than centralized
systems based on similar hardware.

As CPU speeds begin to approach basic technological limits, further gains in
performance can be looked for only in the better exploitation of concurrency. In
that sense, concurrent programming is the future of all programming.

The second reason for including concurrency in programming languages is the
need to write programs that faithfully model concurrent aspects of the real world.
For example, simulation is a field in which concurrent programming has a long
history. This takes concurrency out of the narrow domain of operating systems
and makes it an important topic for many application programmers.

The third reason for interest in concurrency is the development of new, and
more highly concurrent, computer architectures.

The least radical of these ideas gives a single CPU the ability to run more than
one program at a time. It switches from one program to another (under hardware
control) when it would otherwise be held up, waiting for access to main storage.
(Main storage access is typically much slower than the execution time of a typical
instruction.) In effect, this simulates a multiprocessor computer in a single CPU.

Many other architectures inspired by concurrency have been tried, but none
of them has had enough success to enter the mainstream. They may yet have
their day.

e Array processors provide many processing elements that operate simul-
taneously on different parts of the same data structure. By this means
high performance can be achieved on suitable tasks — essentially, those for
which the data fall naturally into rectangular arrays. Problems in linear
algebra, which arise in science, engineering, and economics, are well suited
to array processors.

e Dataflow computers embody an approach in which operations wait until
their operands (perhaps the results of earlier operations) become avail-
able. They are aimed at extracting the maximum concurrency from the
evaluation of expressions and may be especially suitable for functional
programming languages.

e Connectionism, also known as parallel distributed processing, is a funda-
mentally different approach based on the modeling of neural networks in
living brains. Some think that this is the way to realize the dream of artificial
intelligence.

10.2 Programs and processes 233

The study of concurrent programming aims to provide a framework that would
unify all of these developments. It must be admitted that this goal is still remote.

Well-designed sequential programs are reasonably understandable; their com-
plexity grows in proportion to their size. This is possible because sequential
programs have important properties that make them, more or less, intellectu-
ally manageable. As we shall see, concurrent programs do not generally share
these properties.

10.2 Programs and processes

A sequential process is a totally ordered set of steps, each step being a change of
state in some component of a computing system. Their total ordering is defined in
the sense that, given any two steps, it is always possible to say which is the earlier.
A sequential program specifies the possible state changes of a sequential process,
which take place in an order determined by the program’s control structures. A
concurrent program specifies the possible state changes of two or more sequential
processes. No ordering is naturally defined between the state changes of one of
these processes and the state changes of any of the others. Therefore, they are
said to execute concurrently, and they may even execute simultaneously.

An example of a sequential process is the execution of a program written
in a simple language such as C. The state changes constituting such a process
are the results of executing assignment and input/output commands that update
the variables of the program. These actions are ordered by the sequencing rules
of the language, which define how control flows from command to command.
Note that, because of the total ordering, we can associate the state changes of a
sequential process with the passage of real (physical) time, although no specific
rate of progress is implied.

If we consider the execution of a machine-code program the same holds good,
except that the sequencing rules are defined by the computer architecture, and
that not only storage but also registers (such as the program counter) are variables
of the state.

To be completely honest, state changes at the most basic level might not
be totally ordered in time. For example, during a store instruction, the bits of
the source operand may be copied concurrently into the destination operand.
However, it is not possible to examine the bits of the destination operand inde-
pendently, to monitor the order in which they change. As far as the programmer
is concerned, they all change at once. This departure from strict sequentiality is
therefore irrelevant, because it is not observable.

For the sake of speed, some realizations of a computer architecture may allow
even greater departures from strictly sequential execution. For example, a CPU
may be able to overlap three instructions, one in the instruction-fetch phase, one
in the instruction-decode phase, and one in the instruction-execute phase. If this
has no observable side effects, the departure from sequentiality again is irrelevant
to the programmer. Computer architects include interlocks in the hardware to
ensure that overlapped execution does not affect the outcome. For example, if
two instructions are in progress at the same time, and the second depends on a

234 Chapter 10 Concurrency

result of the first, the computer will delay the second instruction to ensure that the
result becomes available before any attempt is made to use it.

Similarly, a high-level programming language might allow some freedom as to
the ordering of operations within a program. In a language where expressions have
no side effects, for example, two subexpressions may be evaluated in either order,
or collaterally, or even concurrently. We can preserve the notion of a sequential
process by looking at a large enough unit of action, such as the evaluation of a
complete expression, or the execution of a complete command.

10.3 Problems with concurrency

We now look at ways in which concurrent programs differ from sequen-
tial programs.

10.3.1 Nondeterminism

Correct sequential programs are deterministic. A deterministic program (see
Section 3.7.5) follows a sequence of steps that is completely reproducible in
multiple executions with the same input. Determinism is a very important property,
since it makes it feasible to verify programs by testing.

A few constructs, such as collateral commands (Section 3.7.5) and nondeter-
ministic conditional commands (Section 3.7.6), introduce some unpredictability
into sequential programs — we cannot tell in advance exactly which sequence of
steps they will take. The compiler is free to decide the order of execution, so a
given program might behave differently under different compilers. In practice,
however, a particular compiler will fix the order of execution. The program’s
behavior is still reproducible, even if not portable.

A concurrent program, on the other hand, is likely to be genuinely nondeter-
ministic, even under a specific compiler. That is to say, we cannot predict either
the sequence of steps that it takes or its final outcome.

Usually we attempt to write programs that are effectively deterministic
(Section 3.7.5), so that their outcomes are predictable. But an incorrect con-
current program may behave as expected most of the time, deviating from its
normal behavior intermittently and irreproducibly. Such concurrent program-
ming errors are among the most difficult to diagnose. The search for ways to
prevent them motivates much of what follows.

10.3.2 Speed dependence

A sequential program is speed-independent because its correctness does not
depend on the rate at which it is executed. This is a property so basic that we tend
to take it for granted. Among other benefits, it allows computer manufacturers to
produce a range of architecturally compatible machines that differ in speed and
cost. The same software runs correctly on all models in the range, thanks to speed
independence.

The outcome of a concurrent program is speed-dependent, in general, as it may
depend on the relative speeds at which its constituent sequential processes run.

EXAMPLE 10.1

EXAMPLE 10.2

10.3 Problems with concurrency 235

Consequently, small random fluctuations in the speeds of CPUs and input/output
devices may lead to nondeterminism.

Where absolute speeds must be taken into account — where the computer must
synchronize its behavior with external physical equipment such as sensors and
servomechanisms — we have a real-time program.

When outcomes are speed-dependent, a race condition is said to exist.

Race conditions

Suppose that two processes, P and O, update the same String variable s, as follows:
InP: s := "ABCD";
InQ: s := "EFGH";

The programmer reasons as follows. One outcome is that P completes its assignment to s
before Q starts on its assignment, so that the final value of s is “EFGH”. If things happen
the other way about, the outcome is that s takes the value “ABCD”.

But other outcomes are possible. Suppose that P and Q update s one character at
a time. Then s could end up with any of the sixteen values “ABCD”, “ABCH”, ...,
“EFGD”, “EFGH”’; and there could be a different outcome each time P races Q in
this way!

Example 10.1 shows that just two processes sharing access to a single variable
can produce many different outcomes, and that the outcome on any one occasion
is not predictable. Think of the chaos that could result from multiple uncontrolled
accesses by dozens of processes to hundreds of variables! This is the nightmare
that the discipline of concurrent programming aims to prevent.

Some help is provided in cases like this by the ability to declare that a variable
is atomic;i.e., that it must be inspected and updated as a whole, and not piecemeal.
In Java, object references and variables of primitive types other than long and
double are always atomic. In Apa, any variable v can be declared atomic by
“pragma atomic(v);”,althoughthe compilerisfree torejectsuch adeclaration
if it cannot be feasibly implemented on the target architecture. The components of
an ApA array a can be made atomic by: “pragma atomic_components(a);”.

If the declaration “pragma atomic(s);” for the variable in Example 10.1
were accepted, that would reduce the number of outcomes from sixteen to just
two: a final value of “ABCD” and a final value of “EFGH”.

However, this is far from a complete solution to the general problem.

A race condition despite atomicity

Suppose that two processes, P and O, update the same Integer variable i, which is
declared to be atomic and to have initial value 0, thus:

InP: i :=1i + 1;
InQ: i :=2 * 1i;

236 Chapter 10 Concurrency

The programmer reasons as follows. One outcome is that P gains access to i before Q, so
that i is first incremented, then multiplied, with result 2. Another outcome is that Q gains
access to i before P, so that i is first multiplied, then incremented, with result 1. Therefore
i must finally contain either 1 or 2.

But there is a third possible outcome. Bear in mind that most computer architectures
implement an assignment by firstly evaluating the expression in a CPU register, and then
copying the result from the register into the destination cell. Now consider this train of
events: P loads i into a register; O loads i into a register; P adds 1 and yields 1; Q multiplies
by 2 and yields 0; P stores its register into i; Q stores its register into i. The result of this
interleaving of P and Q is to leave i with the value 0!

10.3.3 Deadlock

Deadlock is a situation in which two or more processes are unable to make any
further progress because of their mutually incompatible demands for resources.
Deadlock can occur if, and only if, the following conditions all hold.

e Mutual exclusion: A process may be given exclusive access to resources.

For example, if a process were reading data from a keyboard, it would make
no sense to allow another process to use the keyboard at the same time.

e Incremental acquisition: A process continues to hold previously acquired
resources while waiting for a new resource demand to be satisfied.

For example, if a process must wait for a DVD drive to be allocated, it would
be senseless to take away a scanner that had previously been acquired in
order to copy data from it on to the DVD.

e No preemption: Resources cannot be removed from a process until it
voluntarily relinquishes them.

For example, if a process has opened a file for writing, it must be allowed
to keep it until it has completed. Forcibly removing the file would be
tantamount to killing the process, and might leave the contents of the file in
a corrupted state.

e Circular waiting: There may be a cycle of resources and processes in which
each process is awaiting resources that are held by the next process in
the cycle.

For example, process P holds a DVD drive; the DVD drive is needed by
process Q; O holds a scanner; and the scanner is needed by process P.

So: P cannot proceed until it gets the scanner; the scanner will not become
available until Q completes and frees it; Q will not complete until after
it gets the DVD; the DVD will not become available until P completes
and frees it; P will not complete until after it gets the scanner; and so on
ad infinitum.

There are several approaches to the problem of deadlock.
The simplest approach is to ignore it and hope that it will not happen often
enough to have a serious effect on reliability. When deadlock does strike, the

10.3 Problems with concurrency 237

system’s users must deal with it as best they can (probably by restarting the
whole system).

A more principled approach is to allow deadlocks to take place, but undertake
to detect them and to recover from them automatically, so that the system as a
whole keeps running. This involves killing some of the processes involved, and
should be done in such a way as to minimize the cost of the work lost. In
an embedded system, especially, this might not be a feasible strategy, for the
processes to be killed might be critical to its mission. An alternative is to roll
back the execution of some processes to a point before the problem arose. This
is done by restoring the processes to the state they were in when it was recorded
at an earlier checkpoint. Execution can then be resumed, but this time suspending
the rolled-back processes until the danger has passed. Again, this strategy is not
always workable.

A third approach is to prevent deadlocks by removing one or more of the
preconditions. As we have seen, some resources must be granted for exclusive use,
and since forcible removal of resources may be equivalent to killing the process
involved, just two possibilities remain:

(a) Eliminate the incremental acquisition condition by requiring every pro-
cess to request, at once, all the resources it will need.

(b) Eliminate the circular waiting condition by imposing a total ordering on
resources and insisting that they be requested in that order.

Method (a) can lead to poor utilization of resources if processes are forced to
acquire them prematurely. Method (b) may be better in this respect, if the total
ordering is well chosen, but it requires considerable programming discipline, and
cannot be appropriate for good utilization in all cases.

A fourth possible approach is to make the schedulers of the system actively
avoid deadlock by timing the allocation of requested resources, in such a way that
deadlock cannot occur. The maximum resource requirement must be declared
to the schedulers in advance, but need not be reserved at once. The banker’s
algorithm (to be discussed in Section 13.3.4) is such a scheduler.

10.3.4 Starvation

A concurrent program has the liveness property if it is guaranteed that every
process will make some progress over a sufficiently long (but finite) span of
time. To meet this condition the system must be (a)free of deadlock, and
(b) scheduled fairly.

Scheduling is the allocation of resources to processes over time, aiming to
further some objective, such as good response time or high CPU utilization. Fair
scheduling ensures that no process needing a resource is indefinitely prevented
from obtaining it by the demands of competing processes.

An example of a fair scheduling rule is to make the processes that need a
resource queue for it, in first-come first-served order. This guarantees that, if the
resource becomes available often enough, a process needing it will eventually
make its way to the head of the queue and so gain access. An example of an unfair

238 Chapter 10 Concurrency

rule is one that gives preferential access to high-priority processes, for it might
indefinitely delay a low-priority process should there always be a high-priority
demand waiting to be serviced. The term starvation is used when a process is
indefinitely prevented from running by unfair scheduling.

10.4 Process interactions

Section 3.7.4 introduced the notation “B; C” for the sequential composition of
commands B and C, and Section 3.7.5 gave the notation “B, C” for their collateral
composition. The difference is that in sequential composition all of the steps of B
must be completed before any of the steps of C are begun; whereas, in collateral
composition, the steps of B and C may be interleaved arbitrarily.

However, neither notation admits the possibility that the commands B and C
may be executed simultaneously. A parallel command specifies that two (or more)
commands may be executed concurrently. We write “B || C”’ to mean that B and
C may be executed simultaneously or interleaved arbitrarily. (The symbol “||”’
is used to suggest parallelism.) Note that “B || C”” does not require simultaneity,
but does permit it. Concurrent composition also permits collateral execution and
sequential execution, each a special case of reduced concurrency.

Concurrent programs are distinguished from sequential programs, not only by
the presence of concurrent composition, but also by the presence of operations that
cause interactions between processes. We now consider the kinds of interaction
that may take place between commands that are composed concurrently.

10.4.1 Independent processes

Commands B and C are independent if no step of B can affect the behavior of any
component step of C, and vice versa. If B and C are independent, it follows that
any step of B may be executed either before, or after, or at the same time as, any
step of C. In particular, all the steps of B can be executed either before or after
all the steps of C, so “B;C” and “C; B’ are both equivalent to “B || C”’ (and so
is “B, C”). It follows that the concurrent composition of independent processes is
deterministic.

This is an important result, because it provides the basis for multiaccess
server systems that run many jobs by multiprogramming one or more processors.
Provided only that the jobs are independent, the users of such a system need take
no special precautions arising from the concurrency.

Unfortunately, it is undecidable, in general, whether commands B and C
actually are independent. However, a sufficient condition is that neither command
can update a variable that the other inspects or updates. This criterion has the
advantage that it can be (at least partially) checked at compile-time, so long as
there is no aliasing. However, we have to define variable in its widest sense, as any
component of the system whose state may be changed.

10.4.2 Competing processes

Commands B and C compete if each needs exclusive access to the same resource
r for some of its steps. Let B be the sequence “Bjp; By; B3, and let C be the

10.4 Process interactions 239

sequence “Cy; Cyp; C3”°. We assume that By, Ci, Bz, and Cs are independent, none
of them accessing r. However, B, and C, must not take place simultaneously nor
overlap in time, for both require exclusive access to r. They are called critical
sections with respect to r.

“B || C” may be executed in either of the following ways:

w5 By Gy
or:

w5 Gy B
but not:

s By] Gy

So “B || C” has two possible outcomes, which are exactly the outcomes of the
sequences “B;C” and “C; B” respectively. If the effects of the critical sections
depend on the state of r when it is acquired, and if they change that state, then
“B || C” is nondeterministic in general —its outcome depends on the relative
speeds at which B and C are executed.

A concurrent program is said to have the safety property if its critical sections
never overlap in time. (It is safe in the sense that all of the commands it applies to
a resource will have their normal, sequential, effect.)

EXAMPLE 10.3 Nondeterminism despite mutual exclusion

Suppose that two processes, P and Q, update the same Integer variable i, assumed to
be atomic and to have initial value 0. Assume also that arrangements have been made for
P and Q to mutually exclude each other’s assignment command in its entirety:

InP: i :=1i + 1;
InQ: i =2 * i;

If P executes its assignment before Q, the final value of i is 2. If O executes its assignment
before P, the final value of i is 1. There is a race between P and Q, but these are its only
possible outcomes.

Example 10.3 illustrates bounded nondeterminism: the outcome is not pre-
dictable, but belongs to a known, fixed set of outcomes, all of which may be
equally acceptable.

10.4.3 Communicating processes

Again, let B be the sequence ““Bj; B;; B3”’, and let C be the sequence “Cy; Cy; C37.
There is communication from B to C if B, produces data that C, consumes, so
that B, must complete before C, starts. In this situation, “B || C”” has the same
outcome as “B; C”.

240 Chapter 10 Concurrency

EXAMPLE 10.4

It is useful to extend this to a cascade of processes, each consuming the output
of the preceding process and producing input for the next. In software, as in
hardware, such a cascade is commonly known as a pipeline.

Unix and MS-DOS pipelines

The Unix operating system’s command language provides the notation “B | C”. This means
that the commands B and C are executed concurrently, with the output from command
B becoming the input to C. The notation can easily be extended to a longer pipeline,
“A|...|Z”. In this way, commands that were written independently may be composed,
contributing much to the power of the command language.

The MS-DOS operating system’s command language also provided this notation, but
did not support concurrent execution. It therefore implemented the command “B | C” as
if the user had issued the sequence of two commands “B > f; C < f”, where B writes its
output (in its entirety) to a temporary file f, then C runs and reads its input from that
temporary file.

Processes B and C intercommunicate if there is communication in both direc-
tions. This makes the possible outcomes of “B || C’ very much more numerous.
We are therefore forced to impose a severe discipline on the forms of intercom-
munication permitted, if we want to preserve the intellectual manageability of
our programs.

The designers of concurrent programming languages have invented many con-
cepts and notations for concurrency. The choice of concurrent control structures is
therefore somewhat controversial. The remainder of this chapter focuses on con-
cepts in the mainstream of concurrent programming, including both concurrency
primitives (Section 10.5) and high-level constructs (Section 10.6).

10.5 Concurrency primitives

In this section we consider a set of low-level operations that affect concurrency,
by creating it, by destroying it, or by controlling it. An understanding of these
operations is valuable because it provides a basis for understanding the higher-
level constructs of concurrent programming languages, and because it shows how
these higher-level constructs might be implemented.

But first, a clarification about our use of the term process. Up to now, we have
used it to mean nothing more specific than a flow of control through a program,
but the word carries more baggage than that. Let us now unpack it.

A conventional, heavyweight, process is the execution of a program. To
support that execution, an operating system normally provides an address space,
an allocation of main storage, and a share of the CPU time, as well as access
to files, input/output devices, networks, and so on. This amounts to a substantial
overhead, so that the creation of a process takes a non-trivial amount of the
computer’s resources, and context switching the computer from one process to

10.5.1

10.5 Concurrency primitives 241

another takes a significant time. Implementing a concurrent system by means of
many processes therefore incurs a penalty: poor execution efficiency.

A thread is a lightweight alternative. Like a heavyweight process, a thread
is a flow of control through a program, but it does not possess independent
computational resources. Instead, a thread exists within a process and depends on
the resources of the process. Switching the computer from thread to thread is a
matter of swapping the contents of its working registers. The rest of the execution
environment remains the same, so thread-to-thread context switching can be very
rapid. (The thread concept originated in the real-time world, where the term task
is more often used. True to their origins, ADA uses “‘task’ terminology while JAva
goes with “thread”.)

In what follows we are interested primarily in the semantics of concurrent
programming concepts, and only secondarily in their pragmatic qualities (such as
efficiency). For that reason, we will use the term process neutrally to mean a flow
of control, when what is being said applies equally well to heavyweight processes
and to lightweight threads (as it usually does).

Process creation and control

The primitive operations on processes are the following:

e create a new, dormant, child process;

e load the program code to be executed by a process;

e start the execution of a process;

e suspend the execution of a process (temporarily);

e resume the execution of a (suspended) process;

e let a process stop itself at the end of its execution;

e let its creator wait for the process to stop;

e destroy a stopped process, freeing any resources allocated to it.

It is often convenient to combine create, load, and start into one
operation, usually called fork. When this is done, wait and destroy may be
combined into a single operation, join. The fork operation is often defined so
that the child process’s program is an exact copy of its parent’s. There must be
a means by which the parent process and its child can subsequently be made to
follow different paths through this program. One method is to give a code address
as a parameter to fork, so that the parent continues at the instruction following
the fork, whereas the child continues at the given address. An alternative method
that is more convenient for use in a high-level language is employed in the UNix
operating system. The Unix fork operation is a parameterless function that
returns an integer. In the parent process this integer is an identification number
for the newly created child process, but in the child process it is zero.

These primitives are quite general, letting us create any desired system of
concurrently active processes. In this they resemble jumps, which allow us to set up
any sequential control flow. They have a similar disadvantage: a scan of the static
program text does not easily reveal the control flow, which develops dynamically.

242 Chapter 10 Concurrency

EXAMPLE 10.5

Forking a new process in UNix
A common fragment of a Unix concurrent program is the following:

child_id := fork;
if child_id = 0 then
perform the child process’s program code ;
else
continue with the parent process’s program code ;
end if;

Here fork is a parameterless function that returns either the child process’s identification
number or zero.

So much for process creation and termination. We also need operations to
enable orderly competition and communication. Initially we will present these in
rather an abstract manner; later we will describe various alternative realizations.

To make the critical sections of competing processes disjoint in time, we need
primitive operations for mutual exclusion. These are:

e acquire(r), to gain exclusive access to resource r;

e relinquish(r), to give up exclusive access to resource r.

If resource r is already allocated, acquire (r) blocks the process that calls
it, i.e., holds it up so that (for the time being) the acquire operation makes
no progress. When relinquish(r) is called, r is made free for reallocation.
Processes waiting to gain control of r are unblocked and rescheduled. One of them
will be able to complete the call of its acquire (r) operation and so get exclusive
access tor.

A similar pair of operations provides inter-process communication. The
most basic communication operation sends the smallest possible amount of
information — the fact that some condition ¢ now exists. Typical conditions that
a receiver might be interested in are, for instance ‘“‘an input/output operation
has completed”, or “CPU 2 has rebooted”. We can view conditions as values
of an abstract type, in which each value represents a different condition to be
communicated. The primitive operations for communication are:

e transmit(c),called by asender to notify an occurrence of the condition c;

e receive(c), called by a receiver to wait for an occurrence of c.

An important issue in the design of communication primitives is how selective
the transmission is. Some implementations of transmit communicate with a
specific receiving process. Others are ‘“‘broadcast” operations that make the
transmission available to any interested receiver. Another issue concerns what is
to happen when no process is waiting to receive at the time of transmission. In
some designs the transmission is lost. In others the transmission is stored until a
receive operation is performed.

10.5 Concurrency primitives 243

10.5.2 Interrupts

The end of a concurrent input/output operation is a relatively infrequent condition
to which the CPU should respond quickly. It would not normally be efficient to
test repeatedly for this, so, when parallel input/output transfers were introduced,
the end of each input/output operation was made to cause an interrupt. That is
to say, a signal from the input/output hardware forces an asynchronous call to
a routine that will deal with the new situation. So an interrupt is, in effect, an
invisible procedure call inserted at a random point in the program!

If we view the activity of an input/output device as an external process, we
can treat the interrupt as a mechanism for inter-process communication. This
is extended, in many operating systems, to a facility whereby one (internal)
process can interrupt another, a well-known example being the Unix kill system
call. Using this mechanism for reliable inter-process communication is every
bit as tricky as the idea of an invisible, random, procedure call might suggest.
Unfortunately, it is one of the most-used mechanisms for communication between
application code and graphical user interfaces.

In many computer systems there is only one CPU, and concurrency is
supported by switching the CPU rapidly from one process to another (context
switching). This happens whenever a blocked process, of higher priority than the
process currently running, becomes unblocked and ready to run. A process can
therefore give itself exclusive use of the CPU by ensuring that no context switch is
possible. Since context switches are driven by interrupts, it suffices to ensure that
no interrupt can occur. How this is done depends on the computer architecture,
but it is usually possible to defer acting on interrupt requests until a later time.
A process that gains exclusive control of the CPU, by this means, prevents every
other process from accessing any resource whatever. This gives it exclusive access
to the whole system, including the one resource it actually needs. So, deferring
interrupts implements the acquire operation for any resource, and restoring
them implements relinquish.

Acquiring all resources in order to use just one of them is a heavy-handed way
of gaining exclusivity, and has disadvantages. If a computer inhibits interrupts too
often, or for too long, it will be unresponsive. Many computer architectures classify
interrupts into several priority levels, depending on the urgency of communication
with the external device. This makes it possible to inhibit only those interrupts
that may lead to conflict over a particular resource. Designing software to exploit
such an interrupt system effectively requires considerable expertise and finesse.

10.5.3 Spin locks and wait-free algorithms

On a multiprocessor, several processes may be executing simultaneously. Manip-
ulating the interrupt system of such a machine does not provide a means of mutual
exclusion, for preventing one CPU from responding to interrupts does nothing to
exclude access to a shared resource by processes running on the other CPUs.

In these circumstances a different mechanism must be used. A spin lock is a
“busy-waiting loop”, in which a process waits for access to a shared resource by
repeatedly testing a flag that indicates whether the resource is free.

244 Chapter 10 Concurrency

Spin-lock algorithms depend upon the fair serialization of concurrent load and
store operations by the CPU/store interface. That is, they assume that accesses
to the same storage location initiated concurrently are performed sequentially,
and that no process is starved of storage cycles. Given these properties it is
possible to program fair spin locks — algorithms that implement acquire(r) and
relinquish(r) operations without starving any competing process of access to
resource r.

This is no small feat, as we shall see. It was first achieved in Dekker’s algorithm,
and presented by Dijkstra (1968a) with an illuminating preamble, in the form of a
series of incorrect attempts that illustrate the subtle problems that arise. Here we
shall follow that development. We assume that there are two processes, numbered
1 and 2, and that each is executing a program of the following form, with a cyclic
pattern of accesses to resource r (self is the number of the executing process):

loop
noncritical code for process self’;
acquire(r);
critical section for process self’;
relinquish(r);
exit when process selfis finished ;
end loop;

The acquire (r) operation, although stated as an action on r, actually focuses
on locking out the competing process.

The first idea is to use a variable turn, initialized to either 1 or 2, that indicates
which of the two processes has permission to enter its critical section. Each process
implements the exclusion primitives as follows, where other is 1 when self is 2, and
vice versa:

acquire(r) =
while turn = other loop null; end loop;
relinquish(r) =
turn := other;
This certainly guarantees that only one of the processes can enter its critical
section. However, it is too rigid, because they are forced to enter their critical
sections alternately. Should either be held up, or stop, the other will be locked out
of its critical section after at most one more cycle.

A second attempt uses an array claimed, with one boolean component for
each process, indicating whether that process has claimed the right to enter its
critical section. Both components of claimed are initialized to false. Each process
self implements the exclusion primitives as follows:

acquire(r) =
while claimed(other) loop null; end loop;

claimed(self) := true;
relinquish(r) =
claimed(self) := false;

This fails if process 1 (say) is held up between finding claimed (2) to be false and
setting claimed (1) to true. A “window of opportunity” then opens for process

10.5 Concurrency primitives 245

2 to enter its loop and discover claimed (1) to be still false. Both processes will
now set their components of claimed to true and go on to enter their critical
sections concurrently. Thus mutual exclusion is not guaranteed.

We might attempt to rectify this fault as follows:

acquire(r) =
claimed(self) := true;
while claimed(other) loop null; end loop;

But now a problem arises if process 1 (say) is held up after setting claimed (1)
to true, but before entering the loop. This allows process 2 to do the same.
Now both processes will discover that the other is claiming the shared resource.
Consequently both must loop indefinitely and neither can ever enter its criti-
cal section.

To correct this fault we allow each process, while looping, to withdraw its
claim temporarily. This gives the other process an opportunity to go ahead:

acquire(r) =

claimed(self) := true;

while claimed(other) loop
claimed(self) := false;
while claimed(other) loop null; end loop;
claimed(self) := true;

end loop;

This idea works (albeit rather inefficiently) in most circumstances, but it has one
fatal flaw. If both processes run at exactly the same speed, and perfectly in phase,
they may execute the code in lock step, in which case neither will ever discover
that the other process has offered it a chance to proceed. This attempt fails, by
being speed-dependent.

Dekker’s algorithm combines the best features of these four failed attempts.
It uses both turn and claimed, initialized as before:

acquire(r) =
claimed(self) := true;
while claimed(other) loop
if turn = other then

claimed(self) := false;
while turn = other loop null; end loop;
claimed(self) := true;
end if;
end loop;
relinquish(r) =
turn := other;
claimed(self) := false;

This overcomes the previous objection: the if-command uses turn as a tie-
breaker, forcing the processes out of phase, so that one of them must find itself
able to proceed.

Dekker’s algorithm is rather complex, and is hard to generalize to more
than two processes while preserving fairness. Peterson’s algorithm is free of
these defects:

246 Chapter 10 Concurrency

acquire(r) =
claimed(self) := true;
turn := other;
while claimed(other) and (turn = other)
loop null; end loop;

relinquish(r) =
claimed(self) := false;

That it took almost twenty years to discover so simple an algorithm speaks volumes
about the difficulty we find in understanding concurrent systems.

There is a serious problem with all of the spin-lock code above. Many compilers
optimize accesses to a variable inside a loop by pre-loading the variable into a
register, and accessing the register instead of the variable (because a register can be
accessed much faster than a storage cell). If turn in Dekker’s algorithm is treated
in this way, the innermost loop would never exit, because a relinquishing process
would update the storage cell, while the acquiring process uselessly re-examined
an unchanging value in a register!

To prevent this, it is necessary to tell the compiler that a variable may
be updated by more than one process. This is done by declaring it to be
volatile. The compiler then ensures that inspections and updates are always
directed to its storage cell. In C, C++, and Java, the volatile qualifier may
be included in a type. In Java, 1long and double variables declared volatile are
also thereby made atomic (variables of other types are always atomic, whether
volatile or not). However, the volatility of a pointer to an object does not extend
to the object itself. If variable components of the object need to be volatile,
they must themselves be declared as such. Similarly, the volatility of an array
does not extend to the array’s components, and there is no way in Java to
make them volatile. In ApA, a variable declared to be atomic is automatically
volatile. A variable v that cannot be atomic can be made volatile by “‘pragma
volatile(v);”. The componentsof an array a can be made volatile by “‘pragma
volatile_components(a);”.

Spin locks are wasteful of CPU time. Unless the waiting time is short, it
would be better for an acquiring process to give up the CPU each time around
the loop, and wait until there is a better chance of being able to continue.
But this is not always possible. Consider the CPU scheduler’s own data struc-
tures, which must be modified under mutual exclusion. To avoid an infinite
regress, spin locks used by the scheduler cannot contain calls on scheduler oper-
ations (such as those a process uses to make itself wait). These non-blocking
spin locks may be significant bottlenecks, limiting the performance of a highly
concurrent system.

A way of reducing this overhead is to use wait-free algorithms, which have
been proven correct, despite the fact that they apply no locking. Some of these
algorithms need hardware support, in the form of special instructions that atom-
ically update more than one storage cell. But Simpson’s algorithm (1990) creates
an atomic shared variable of type T (in effect), using just four atomic flag variables
and an array of four volatile components of type T. The remarkable thing about
Simpson’s algorithm is that it neither blocks nor spins.

10.5 Concurrency primitives 247

EXAMPLE 10.6 Simpson’s algorithm

The following code implements an atomic shared variable of arbitrary type T, equipped
with update and inspect operations, using a wait-free algorithm.

data_bank : array (Boolean, Boolean) of T;
pragma volatile_components(data_bank);

data_col : array (Boolean) of Boolean
:= (false, false);
pragma atomic_components(data_col);

last_row_inspected : Boolean := false;
pragma atomic(last_row_inspected);

last_row_updated : Boolean := false;
pragma atomic(last_row_updated);

procedure update (item : in 7) is

row : constant Boolean := not last_row_inspected;

col : constant Boolean := not last_row_updated;
begin

data_bank(row, col) := item;

data_col(row) := col;

last_row_updated := row;

end update;

function inspect return 7 is

row : constant Boolean := last_row_updated;
col : Boolean;
begin
last_row_inspected := row;
col := data_col(row);

return data_bank(row, col);
end inspect;

Now for the skeleton in the closet! A basic assumption of most shared-
variable algorithms is that an update to a variable v by one process is immediately
observable by any other process that uses v. A necessary condition for this is that
v be declared volatile, so that each access goes to v’s storage cell, and not a copy
in an internal CPU register. But that is not sufficient. The great disparity in speed
between CPU and storage means that many computer designs rely on complicated
buffering schemes to reduce the delay on access to storage. These schemes keep
copies of data in transit between a CPU and storage. For example, it is common
to keep a per-CPU copy of recently accessed data in a cache. Caching is normally
transparent to a single process, but can cause major difficulties with variables
shared between two or more processes.

Consider a multiprocessor computer that uses write-back caches, so that an
update to v in one CPU’s cache does not reach v’s cell in common storage until
its cache entry is re-allocated to another variable. An update to v by CPU A need
not be observable to CPU B until some time after it is observable to all processes
running on A. So A can see data inconsistent with that seen by B. To prevent this,

248 Chapter 10 Concurrency

10.5.4 Events

EXAMPLE 10.7

A must flush v from its cache, so that its storage cell is updated; and B must also
flush v from its cache, so that the next inspection by B fetches the updated value
from v’s storage cell.

Ensuring that this will happen is error-prone, inefficient, and non-portable.
No major programming language provides operations to flush buffered copies of
shared variables. So programs using shared variables, on such computers, must
use machine-dependent and extra-linguistic means to coordinate their accesses
properly. This creates yet another obstacle to correct and reusable programming
with shared variables. Bear this in mind throughout the following discussion of
low-level concurrency primitives. A huge advantage of supporting concurrency
in a programming language is that it enables the compiler to handle these
difficult implementation issues transparently and portably, with little or no explicit
programming effort.

An eventis an entity that represents a category of state changes. We can view events
e as values of an abstract type that is equipped with operations event_wait(e)
and event_signal(e), where:

e event_wait(e) always blocks, and unblocks only when the next signaled
occurrence of an event of category e occurs;

e event_signal (e) unblocks all processes that are waiting for e.

The operations event_wait and event_signal provide implementations
of the transmit and receive primitives, where we make a unique event
represent each condition.

A blocking spin lock

Events can be used to program a blocking version of the spin-lock operation acquire(r).
With each resource r we associate an event r_freed that is signaled by every process
relinquishing r. Then (using Peterson’s algorithm) we have:

acquire(r) =
claimed(self) := true;
turn := other;
while claimed(other) and (turn = other) loop
event_wait(r_freed);
end loop;

Considered as communication primitives, events have important drawbacks.

Firstly, the net effect of a pair of wait and signal operations depends on
the order in which they execute, so they are not commutative. For example,
the sequence:

10.5 Concurrency primitives 249

(1) process Q waits for e
(2) process P signals e

unblocks @, as intended, whereas the sequence:

(1) process P signals e
(2) process Q waits for e

leaves Q waiting for a signal that has come and gone. If the signaling of e
is not repeated, Q gets stuck. This makes code that uses events liable to be
speed-dependent.

Secondly, event_signal(e) awakens all processes blocked on event e, so
this implementation of the transmit operation is interpreted as “broadcast”.
One-to-one transmission requires auxiliary data to identify the intended recipient.
All awakened processes must test this data, note whether the signal is for them,
and repeat the wait if it is not. Selective waiting therefore suffers significant
context-switching overhead.

Thirdly, events are not useful for mutual exclusion, so separate provision must
be made for that (such as spin locks or interrupt management).

Despite their various disadvantages, it is worth noting that the combination
of interrupt management and events provided the original basis for process
management in the very successful Unix family of operating systems.

10.5.5 Semaphores

The abstract type semaphore has the three operations: sema_initialize(s,
n), sema_wait(s), and sema_signal (s), where:

e sema_initialize(s, n) must be called to initialize the semaphore s
with the integer n, before any other operation is applied to s;

e sema_wait (s) may either block or complete, depending on the state of s;
e sema_signal(s) unblocks at most one process that is waiting on s.

To be more specific, these operations are defined in terms of their effects on
three integer values associated with s: s.waits is the number of completed calls to
sema_wait(s); s.signals is the number of completed calls to sema_signal(s);
and s.initial is the value of n in the single allowed call to sema_initialize(s,
n). The integer n is the number of calls by which sema wait can lead
sema_signal. For example, if n is 0, the first call to sema_wait is forced
to block until there has been a call to sema_signal; whereas if n is 1, the first
call to sema_wait will complete without blocking.

Any sequence of sema_wait and sema_signal operations on s must leave
invariant the relation:

0 < s.waits < s.signals + s.initial (10.1)

To achieve this, a process is blocked within a wait operation until it can
complete without violating (10.1). So, if a process calls sema_wait(s) when
s.waits = s.signals + s.initial, then it will be blocked. It will not resume until

250 Chapter 10 Concurrency

EXAMPLE 10.8

some other process completes a call to sema_signal(s), increasing the value of
s.signals.

If several processes are waiting on the semaphore s, it is not defined which
of them will be resumed by a signal operation on s. This provides a degree of
freedom that can be exploited to implement an appropriate schedul