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Abstract—The recent growing interest for indoor Location-Based Services (LBSs) has created a need for more accurate and real-time

indoor positioning solutions. The sparse nature of location finding makes the theory of Compressive Sensing (CS) desirable for

accurate indoor positioning using Received Signal Strength (RSS) from Wireless Local Area Network (WLAN) Access Points (APs).

We propose an accurate RSS-based indoor positioning system using the theory of compressive sensing, which is a method to recover

sparse signals from a small number of noisy measurements by solving an ‘1-minimization problem. Our location estimator consists of a

coarse localizer, where the RSS is compared to a number of clusters to detect in which cluster the node is located, followed by a fine

localization step, using the theory of compressive sensing, to further refine the location estimation. We have investigated different

coarse localization schemes and AP selection approaches to increase the accuracy. We also show that the CS theory can be used to

reconstruct the RSS radio map from measurements at only a small number of fingerprints, reducing the number of measurements

significantly. We have implemented the proposed system on a WiFi-integrated mobile device and have evaluated the performance.

Experimental results indicate that the proposed system leads to substantial improvement on localization accuracy and complexity over

the widely used traditional fingerprinting methods.

Index Terms—Indoor positioning, fingerprinting, compressive sensing, clustering, radio map, WLANs
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1 INTRODUCTION

RECENT advances in smartphones have made it feasible to
provide indoor Location-Based Services (LBSs) such as

indoor positioning, tracking, navigation, and location-based
security [1], [2]. However, due to the complexity of the
indoor environment, it is usually difficult to provide a
satisfactory level of accuracy in most applications. Thus,
one of the key challenges is to design accurate and real-time
indoor positioning systems that can be easily deployed on
commercially available mobile devices without any hard-
ware installation or modification.

Received-Signal-Strength-based (RSS-based) localization
algorithms have been extensively studied as an inexpensive
solution for indoor positioning in recent years [3], [4], [5],
[6]. Compared with other measurement-based algorithms,
(e.g., time-of-arrival (TOA) or angle-of-arrival (AOA)
measurements of ultrawideband (UWB) signals [7]), RSS

can be easily obtained by a WiFi-integrated mobile device,
without any additional hardware. Several RSS-based indoor
positioning and tracking algorithms have been proposed
using the location information of access points (APs), which
may not be available or hard to obtain in practice [8]. The
positioning scheme proposed in this paper only measures
RSS readings from available APs, without knowing their
location in advance.

The major challenge for accurate RSS-based positioning
comes from the variations of RSS due to the dynamic and
unpredictable nature of radio channel, such as shadowing,
multipath, the orientation of wireless device, etc., [9]. Thus,
instead of using a propagation model to describe the
relationship between RSS and position [10], a prebuilt radio
map is used in fingerprinting methods to localize a Wi-Fi
device [11], [12]. The position of a mobile user is estimated by
comparing online RSS readings with offline observations.
One simple solution is the k nearest neighbor algorithm
(kNN), which estimates the mobile user’s location by
computing the centroid of the k closest neighbors that have
the smallest euclidean distance to the online RSS reading
[13], [14]. Such a system is easy to implement but the
estimation is not very accurate.

Another solution to the fingerprinting approach is to
solve the problem by a statistical method, in which the
probability of each potential position is analyzed using the
Bayesian theory and kernel functions [5], [15], assuming
that the RSS readings from different APs are independent at
every time instant. However, an explicit formulation of RSS
distribution is challenging and the independence may not
hold in real environments. Meanwhile, these probabilistic-
based systems often have high computational complexity,
which makes it difficult to run on mobile devices with
limited processing power and small memory.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 12, DECEMBER 2012 1983

. C. Feng is with the Department of Electrical and Computer Engineering,
University of Toronto, 33 Cornell Common Road, Markham, ON L6B 1B5,
Canada, and the State Key Laboratory of Rail Traffic Control and Safety,
Beijing Jiaotong University, Beijing 100044, China.
E-mail: chenfeng@comm.utoronto.ca.

. W.S.A. Au is with the Department of Electrical and Computer
Engineering, University of Toronto, 18 Gordon Weeden Road, Markham,
ON L6E 1R5, Canada. E-mail: anthea@comm.utoronto.ca.

. S. Valaee is with the Department of Electrical and Computer Engineering,
University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada. E-mail: valaee@comm.utoronto.ca.

. Z. Tan is with the State Key Laboratory of Rail Traffic, Control and Safety,
Beijing Jiaotong University, Siyuan Building 8th Floor, #3 Shang Yuan
Cun, Hai Dian District, Beijing 100044, China.
E-mail: zhhtan@center.njtu.edu.cn.

Manuscript received 23 Sept. 2010; revised 10 Sept. 2011; accepted 20 Sept.
2011; published online 10 Oct. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2010-09-0441.
Digital Object Identifier no. 10.1109/TMC.2011.216.

1536-1233/12/$31.00 � 2012 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



In this paper, we use the theory of Compressive Sensing
(CS) to match the signal strength measured by the mobile
phone to the fingerprint database. Compressive sensing
provides a novel framework for recovering sparse or
compressible signals with far fewer noisy measurements
than that needed by the Nyquist sampling theorem [16],
[17], [18]. The sparse signal can be reconstructed exactly
with high probability by solving an ‘1-minimization
problem [19], [20].

The localization problem can be modeled as a sparse
problem since at each time instant the user is located at a
specific point in space. If an identifier function can be
formed for the localization problem, it takes the value 1 at
the position of the mobile user and 0 elsewhere. The sparse
nature of location estimation in the spatial domain
motivates us to exploit the CS theory for indoor positioning
system [21], [22], [23], which offers exact deterministic
recovery using linear programming that can be computed
on mobile devices in real time.

We also show that the theory of compressive sensing can
be used to reconstruct the radio map based on RSS
measurements at only a subset of fingerprints, reducing
the number of measurements significantly for updating the
database in real applications. This is an important property
since collecting and maintaining an accurate radio map is a
labor-intensive operation, which needs to be repeated every
time that the number or the power of WiFi access points in
the environment changes significantly.

The proposed localizer consists of two phases: an offline
phase, and an online phase. In the offline phase, RSS readings
are collected on a grid of reference points (RPs). The RSS
readings are then decomposed into multiple clusters using
the affinity propagation algorithm, and the outliers are
identified and adjusted accordingly. The online phase
consists of the mobile device measuring RRS, using a coarse
localizer to find the clusters to which it belongs, and a
fine location estimation using CS. In this paper, different
coarse localization metrics are investigated to reduce the
maximum error of the positioning system. In the fine
localization stage, AP selection schemes are studied to
further improve the accuracy of the estimation.

We have implemented the proposed positioning system
on a Personal Digital Assistant (PDA) with Windows
Mobile 2003 to evaluate the performance. The positioning
accuracy, the computational complexity, and the use of
memory on resource limited devices are considered when
designing the system. The coarse localization stage reduces
the computational time for solving the ‘1-minimization
problem, which allows this procedure to be executed on
mobile devices. In the actual implementation, the process
latency for location estimation is in the order of 100 msec on
a PDA with 624 MHz processor and 64M RAM. We have
shown that the proposed system is able to estimate the
location in real time with an average error of 1.5 m on the
resource limited PDA.

The remainder of this paper is organized as follows:
Section 2 sets up the problem and describes the proposed
two-phase positioning scheme in detail. Section 3 recon-
structs the radio map by the theory of CS to reduce the
redundancy of collecting fingerprints. The performance is
evaluated through implementations in Section 4. Finally,
Section 5 concludes the paper.

2 INDOOR POSITIONING SYSTEM

We start with a typical WLAN positioning scenario, where a
user carries a mobile device equipped with a WLAN
adapter, taking RSS measurements from available APs in an
indoor environment. The location of these APs is unknown.
The main task of the positioning system is to estimate and
illustrate the user’s current location on a map (floor plan) on
the device, by only using RSS readings.

The location of the mobile is estimated by comparing the
current RSS reading to a prestored database called the
fingerprints, which is the table of measured RSS for a similar
device over a grid of points on the map. Several methods can
be suggested to compare the RSS reading and the finger-
prints. In this paper, we use the theory of compressive sensing
to find the best match between the received signal strength
and the fingerprint database. The proposed CS-based
localization scheme reformulates the location finding pro-
blem into a sparse signal recovery problem and thus finds the
location estimation accurately by solving a linear program.

As depicted in Fig. 1, the proposed compressive sensing-
based positioning system consists of two phases: an offline
phase, in which RSS samples at specific positions within the
area of interest are collected, and an online phase, which
performs the actual localization. The offline phase is
composed of a clustering scheme using the affinity propaga-
tion, followed by outlier adjustment. The online phase
comprises two stages: the coarse localization stage, which
reduces the area of interest into a smaller region by using
cluster matching, and the fine localization stage that uses
the theory of compressive sensing to estimate the actual
location. The individual blocks are described in details in
the following sections.

2.1 Offline Phase

2.1.1 Collecting Database

During an offline phase, the time samples of RSS readings
are collected at known locations, referred to as the Reference
Points, by pointing the mobile device to different orienta-
tions, (i.e., north, south, east, west). The raw set of RSS time
samples collected from AP i at RP j with orientation o
is denoted as f ðoÞi;j ð�Þ; � ¼ 1; . . . ; q; q > 1g, with the q
representing the total number of time samples collected.
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Fig. 1. Block diagram of the proposed indoor positioning system.



Then, the average of the RSS time samples is computed and
stored in a database, known as the radio map. Such radio
map can be represented by �ðoÞ:
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where  
ðoÞ
i;j ¼ 1

q

Pq
�¼1  

ðoÞ
i;j ð�Þ is the average of RSS readings

(in dBm scale) over time domain from AP i at RP j
with orientation o, for i ¼ 1; 2; . . . ; L, j ¼ 1; 2; . . . ; N , and
o 2 O ¼ f0�; 90�; 180�; 270�g. L is the total number of APs
that can be detected, and N is the number of RPs. The
columns of �ðoÞ, radio map vectors, represent the RSS
readings at each RP with a particular orientation o, which
can be referred to as
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where the superscript T denotes transposition.
The variance vector for each RP is defined as
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2 is the unbiased esti-
mated variance of RSS readings from AP i at RP j with
orientation o. The variance can be used to select the APs that
should be included in the localization scheme. The radio
map is then the table ðxj; yj;  ðoÞj ;��

ðoÞ
j Þ; j ¼ 1; . . . ; N; o 2 O,

where ðxj; yjÞ is the coordinates of the jth RP. If no RSS
reading is found for an AP at a RP, the corresponding RSS
entity in the radio map is set to a small value, (e.g.,�110 dBm
in our implementation) to imply its invalidity.

2.1.2 Clustering by Affinity Propagation

The RPs collected in the offline phase are divided into a
number of clusters. Since the database at different orienta-
tions has a different set of RSS readings, the clustering is
performed independently for each orientation. The affinity
propagation algorithm [24] is used to generate the clusters,
as it does not require initialization of exemplars in the
traditional K-means clustering algorithm [25]. Affinity
propagation considers all RPs equally as potential exem-
plars by assigning the same real number, known as
preference, for each RP as an input. Then, real-valued
messages are recursively transmitted between pairs of RPs
based on a measure of similarity, until exemplars and
corresponding clusters are generated. The pairwise simi-
larity sði; jÞðoÞ indicates how well the RP j is suited to be the
exemplar for RP i, which in this paper is defined as

sði; jÞðoÞ ¼ � k   ðoÞi �   
ðoÞ
j k2;

8i; j 2 f1; 2; . . . ; Ng; j 6¼ i; o 2 O:
ð4Þ

The self-similarity value sðj; jÞðoÞ; j ¼ 1; 2; . . . ; N , indi-
cates the possibility that RP j may become an exemplar.
Since all the RPs are equally desirable to be exemplars, their
preferences are set to a common value. In order to generate
a moderate number of clusters, the common preference for
each orientation is defined as

pðoÞ ¼ �ðoÞ �medianfsði; jÞðoÞ; 8i; j 2 f1; 2; . . . ; Ng; j 6¼ ig; ð5Þ

where �ðoÞ is a real number which is experimentally
determined, such that a desired number of clusters is
generated (see parameter settings for implementing the
positioning system in Section 4.1). Its effect on the complex-
ity and the accuracy of the positioning system will be
discussed in Section 4.2.

The core operation of the algorithm is the transmission of
two kinds of real-valued messages between pairs of RPs.
The responsibility message rði; jÞðoÞ, sent from RP i to
candidate exemplar RP j, is given by

rði; jÞðoÞ ¼ sði; jÞðoÞ �max
j0 6¼j

�
aði; j0ÞðoÞ þ sði; j0ÞðoÞ

�
; ð6Þ

where i 6¼ j, and the availability message aði; jÞðoÞ, sent from
candidate exemplar RP j to RP i, is defined as

aði; jÞðoÞ ¼ min 0; rðj; jÞðoÞ þ
X
i0 6¼i;j

maxf0; rði0; jÞðoÞg
( )

: ð7Þ

The messages are passed recursively between pairs of
RPs within each radio map and the above updating rules
are followed until a good set of exemplars and correspond-
ing clusters emerges.

This process is conducted after the fingerprints are
collected during the offline phase. For each radio map with
a particular orientation o, letHðoÞ be the set of exemplars, and
for each RP j 2 HðoÞ, let CðoÞj denote the set of RPs for which RP
j is an exemplar. We further adjust each outlier, referred to as
a RP, which is in the set of CðoÞj but physically far away from
its exemplar j on the map, by assigning a new exemplar that
is in its close proximity. Therefore, using the set of exemplars
and their corresponding radio map vector, we will propose a
coarse localization procedure to select the clusters that match
the online RSS observations, and then the RPs of these
candidate clusters will be used to localize the mobile device
during the fine localization stage.

2.2 Online Phase

The actual localization of the mobile device takes place in
the online phase. During the online phase, an RSS
measurement vector, denoted as

  r ¼ ½ 1;r; . . . ;  L;r�T ; ð8Þ

where f k;r; k ¼ 1; . . . ; Lg, is collected by the mobile device
in an arbitrary orientation. As shown in Fig. 1, there are two
stages in the online phase, the coarse localization by cluster
matching to reduce the area of interest, and the fine
localization by using compressive sensing to recover the
location estimation.

2.2.1 Coarse Localization by Cluster Matching

The goal of the coarse localization stage is to reduce the
region of interest from the whole fingerprint database to a
subset of it. Thus, it removes outliers, and reduces the
computational complexity of the fine localization stage, as
fewer RPs are considered. Furthermore, it confines the
maximum localization error to the size of this subset,
whereas this error can be much larger when no coarse
localization is implemented.
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The coarse localization is operated by comparing the

similarity between the online RSS measurement vector and

each exemplar to identify the cluster to which the online

readings belong. Instead of selecting one cluster, we keep a

few best matched exemplars S with their corresponding

cluster member set C to avoid the edge problem, which can

lead to inaccurate estimation when the location of the

mobile device is at the cluster boundaries. Meanwhile, due

to the time variation of the RSS, the online measurement

can deviate from the values stored in the database. Four

coarse localization schemes are investigated in this paper to

define the appropriate similarity function. The clusters

with the largest similarity values are selected as the

candidate clusters

. Criterion I—Similarity to the RSS of exemplar. Similar
to (4), the similarity function is defined as the
negative of euclidean distance of the online mea-
surement vector   r to the individual exemplar’s RSS
radio map vector

sðr; jÞðoÞ ¼ � k   r �   
ðoÞ
j k2; 8j 2 HðoÞ; 8o 2 O: ð9Þ

. Criterion II—Similarity to the averaged RSS of cluster
members. Instead of using the RSS radio map vector
of each exemplar for cluster matching, the average of
the RSS radio map vectors of all the cluster members
is used to average out the possible RSS variations
that come from a specific exemplar. It gives a more
comprehensive and representative readings of the
cluster. In this case, the euclidean distance of
the online measurement vector   r to the jth cluster
can be computed by

sðr; jÞðoÞ ¼ � k   r �   c k2 ð10Þ

with

  c ¼
1

jCðoÞj j

X
k2CðoÞj

  
ðoÞ
k ; 8j 2 HðoÞ; 8o 2 O; ð11Þ

where jCðoÞj j denotes the number of members in the

jth cluster.
. Criterion III—Similarity to the weighted average RSS of

cluster members. Since the variance of the RSS
readings from each AP at each RP is calculated
during the offline phase, the stability of the RSS
readings from a specific AP within a certain cluster
can be considered as a weight for cluster matching.
In this scheme, different weights are added to the
above similarity function for each AP, so that stable
RSS readings have larger weights. The correspond-
ing similarity function is defined as

sðr; jÞðoÞ ¼ � k !!ðoÞj � ð  r �   cÞ k2; ð12Þ

where   c is the same as the one defined in (10) and

� is the elementwise multiplication between two

vectors. !!
ðoÞ
j ¼

�
!
ðoÞ
1;j ; . . . ; !

ðoÞ
l;j ; . . . ; !

ðoÞ
L;j

�T
, l2f1; . . . ; Lg,

where !
ðoÞ
l;j represents the weight for the RSS reading

from AP l in the cluster j with orientation o, which

is proportional to the inverse of the corresponding
RSS variance, namely,

!
ðoÞ
l;j /

1

��
ðoÞ
l;j

and ��
ðoÞ
l;j ¼

1

jCðoÞj j

X
k2CðoÞj

�
ðoÞ
l;k : ð13Þ

The weights are normalized, so that
PL

l¼1 !
ðoÞ
l;j ¼ 1.

. Criterion IV—Similarity using the strongest APs. Since
the strongest APs provide the highest probability of
the coverage over time, only the set of the APs
with the highest online RSS readings is selected.
Thus, in this scheme, the similarity is calculated
using any of the above schemes by only consider-
ing these selected APs.

Different cluster matching schemes do not affect the
average localization error of the positioning system sig-
nificantly. However, choosing the wrong cluster at this stage
is the main source of the maximum localization error—de-
fined as the largest localization error that can be observed
during the experiment. Therefore, all the above cluster
matching schemes attempt to reduce the possibility of
choosing the wrong cluster and thus, reduce the maximum
localization error. Experimental results for different cluster
matching schemes will be shown in Section 4.2.

The best matched clusters can be found by using one or
more of the above schemes. By evaluating the similarity
function described above, the set of best matched exemplars
S with their corresponding cluster member set C can be
found as

S ¼ fðj; oÞ : sðr; jÞðoÞ > �; j 2 HðoÞ; 8o 2 Og; ð14Þ

C ¼
[
ðj;oÞ2S

CðoÞj ; ð15Þ

where � is a predefined threshold to obtain a moderate
number of clusters in S (see parameter settings for
implementing the positioning system in Section 4.1).
Instead of fixing the number of selected clusters, we use a
percentage-based approach such that the number of
matched clusters might vary at different runs and at
different orientations. This is in particular important since
the correct orientation of the device is unknown and the
RSS readings might match to clusters from different
orientations. Since only a small number of clusters is
desired to be included in S, in this paper, � is set to be a
large percentage of the maximum similarity, namely,

� ¼ �1 � max
j2HðoÞ;8o2O

fsðr; jÞðoÞg þ �2 � min
j2HðoÞ;8o2O

fsðr; jÞðoÞg; ð16Þ

where �1 þ �2 ¼ 1. (�1 ¼ 0:95 in our implementation.)
After the coarse localization, the set of interest can be

reduced to the set C. The partial radio map matrix e�
L�eN ,

with eN ¼ jCj can be obtained by

e� ¼ �  ðoÞj : 8ðj; oÞ 2 C
�
: ð17Þ

The matrix e� will be used by the following fine
localization stage. Note that it is possible that more than
two columns in e� represent the same RP, but with
different orientations, as all clusters from different orienta-
tions are considered for the cluster matching.
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2.2.2 Fine Localization by Compressive Sensing

The localization problem setup in Section 2 has a sparse
nature, as the position of the mobile user is unique in the
discrete spatial domain at a certain time. Ideally, assuming
that the mobile user is located exactly at one of the RPs
pointing at one of the orientations, the user’s location can be
formulated as a 1-sparse vector, denoted as ��. Thus, �� is aeN � 1 vector with all elements equal to zero except �ðnÞ ¼ 1,
where n is the index of the RP at which the mobile user is
located, namely

�� ¼ ½0; . . . ; 0; 1; 0; . . . ; 0�T : ð18Þ

Then, the online RSS reading measured by the mobile
device can be expressed as

yy ¼ � e���þ ""; ð19Þ

where e� is the partial radio map matrix as defined in (17),
and "" is an unknown measurement noise that comes from
RSS deviations. The M � L matrix � is an AP selection
operator applied on the online RSS measurement vector   r,
such that

yy ¼ �  r: ð20Þ

Next, we discuss how � can be determined.
Due to the wide deployment of APs, the total number of

detectable APs is generally much greater than that
required for positioning, which leads to redundant
computations. Furthermore, unreliable APs with large
RSS variances may also lead to biased estimation and
affect the stability of the positioning system. This motivates
the use of AP selection techniques to select a subset of
available APs for positioning. In this section, we will
introduce different AP selection schemes to increase the
accuracy of the fine localization.

According to (1), the set of APs covering the RPs can be
denoted as L, with jLj ¼ L. The objective of AP selection is
to determine a set M� L such that jMj ¼M 	 L. This
process is carried out by using the AP selection matrix �.
Each row of � is a 1� L vector with all elements equal to
zero except �ð‘Þ ¼ 1, where ‘ is the index of the AP that is
selected for positioning

��m ¼ ½0; . . . ; 0; 1; 0; . . . ; 0�; 8m 2 f1; 2; . . . ;Mg: ð21Þ

We introduce three different approaches to determine the
matrix ��:

. Strongest APs [26]. Same as what we used in the
coarse localization, the set of APs with the highest
RSS readings is selected, arguing that the strongest
APs provide the highest probability of the coverage
over time. The measurement vector (8) is sorted in
the decreasing order of RSS readings, and the APs
corresponding to the least indices are used. Since ��
is created based on the current online measurement
vector, this criterion may create different �� for each
location update.

. Fisher criterion [27], [5]. The Fisher criterion is used to
quantify the discrimination ability for each AP
across RPs over four orientations, by comparing
the metric �i, 8i 2 f1; . . . ; Lg, defined as

�i ¼
P
ðj;oÞ2Cð 

ðoÞ
i;j � � iÞ2P

ðj;oÞ2Cð�
ðoÞ
i;j Þ

; ð22Þ

where

� i ¼
1eN X
ðj;oÞ2C

 
ðoÞ
i;j :

The denominator of �i ensures that RSS values do
not vary much over time so that the offline and
online values are similar, while the numerator
represents the discrimination ability of each AP by
evaluating the strength of variations of mean RSS
across RPs. The APs with the highest �i are selected
to construct the matrix �� for the fine localization.

. Random combination. Unlike the above two schemes,
which select the APs based on a certain criteria and
create the matrix �� dynamically for each location
update, in this scheme, the AP selection operator ��
is defined as a random M � L matrix with i.i.d
Gaussian entries. The random combination scheme
has less computational complexity, as the matrix is
fixed at different runs, and it does not require as
much RSS time samples to calculate the variance as
required by the Fisher criterion.

Besides sparsity in (19), incoherence between � and e� is
another important property that should be satisfied to
enable the use of the CS theory for a sparse signal recovery
from a small number of measurements [28]. As indicated in
[16], the smaller the coherence, the fewer the number of
samples needed by the CS. In CS, the Restricted Isometry
Property (RIP) provides a sufficient condition for robust
recovery of a sparse signal from a small number of noisy
measurements. An equivalent description of the RIP is to
say that the columns of matrix � e� should be nearly
orthogonal [16]. This incoherence holds with high prob-
ability between � generated by random combination and
the fixed basis e�. However, � (generated by either the
strongest APs or the Fisher criterion) and e� are in general
coherent in the spatial domain, which violates the incoher-
ence requirement for the CS theory. We propose the
following orthogonalization preprocessing procedure that
restores such property.

Define an orthogonalization operator T as

T ¼ QRy; ð23Þ

where R ¼ � e�, and Q ¼ orthðRT ÞT , where orthðRÞ is an
orthogonal basis for the range of R, and Ry is a
pseudoinverse of matrix R.

The orthogonalization process is done by applying the
operator T on the measurement vector yy, such that

zz ¼ Tyy ¼ QRyR��þ ""0; ð24Þ

where ""0 ¼ T"". It is straightforward to show that
QRyR ¼ Q. Therefore, the localization problem formulated
in (19) can be reformulated as

zz ¼ Q��þ ""0: ð25Þ

Here, Q is a nearly orthogonal matrix with unit norm
(we have more columns than rows). It is shown in [29] that
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Q obeys the Restricted Isometry Property that is needed by
the CS [30]. Since �� has a sparse nature, according to the
theory of compressive sensing [29], [31], [32], if the number
of APs M is in the order of logð eNÞ, the location indicator ��
can be well recovered from zz with very high probability, by
solving the following ‘1-minimization problem:

�̂ ¼ arg min
��2ReN k �� k1; s:t: zz ¼ Q��þ ""0; ð26Þ

where k : k1 is the ‘1-norm of a vector.
On a special note, the complexity of the ‘1-minimization

algorithm grows proportional to the dimension of vector ��,
which represents the number of potential RPs. Therefore,
the coarse localization stage, which reduces the area of
interest from all the N RPs into a subset of eN RPs ( eN 
 N),
reduces the computational time for solving the ‘1-mini-
mization problem and thus, allows this procedure to be
executed on resource-limited mobile devices.

If the mobile user is located at one of the RPs pointing at
one of the measured orientations, the recovered position is
almost exact. However, in real scenario, the mobile user may
not be exactly located at a certain RP facing a certain
orientation. In such cases, the recovered location �̂ is not an
exact 1-sparse vector, but with a few nonzero coefficients.
Therefore, a postprocessing procedure is conducted for real
applications. We choose the dominant coefficients in �̂
whose values are above a certain threshold � (see
Section 4.1), and take the normalized value in �̂ as the
corresponding weight for each potential RP to calculate
the location estimation. Let R be the set of all indices of
the elements of �̂ such that

R ¼ fnj�̂ðnÞ > �g: ð27Þ

The location of the mobile user can be estimated by a
weighted linear combination of these candidate points,
which is

ðx̂; ŷÞ ¼ 1P
n2R �̂ðnÞ

X
n2R

�̂ðnÞ � ðxn; ynÞ: ð28Þ

3 REDUCING THE NUMBER OF FINGERPRINTS BY

COMPRESSIVE SENSING

Due to the dynamic and unpredictable nature of indoor
radio propagation, a prebuilt radio map is always needed in
fingerprinting methods to localize a Wi-Fi device. More-
over, the database may need to be updated if the number or
the power of WiFi access points in the environment changes
significantly. This may increase the labor cost during the
offline calibration. In this section, we show that the CS
scheme can also be used in the offline phase to reconstruct
the radio map based on a small number of RSS measure-
ments. The intuition behind this technique is that the RSS
readings vary smoothly over the area of interest, and the
corresponding Fourier coefficients of the radio map have a
sparse nature.

Specifically, let vector rri represent the RSS readings from
AP i over the RPs that cover the experimental area, which is
also the transpose of the ith row of the RSS radio map
database defined in (1), namely, rri ¼ �ði; :ÞT . Let FF denote

the linear operator that transforms the rri from the pixel
representation in the spatial domain into the sparse
representation in the frequency domain, (e.g., F can be
generated by taking DFT of an identity matrix in our case,
which is nonsingular), namely,

xx ¼ FFrri: ð29Þ

Further define a selection matrix GM�N . Each row of G,
represented by gg, is a 1�N vector with all elements equal
to zero except ggðnÞ ¼ 1, where n is the index of the RP that
is measured on the radio map by the mobile device during
the offline phase. For simplicity, the measured RPs are
randomly selected such that they are not placed densely at
one region. The matrix G is filled accordingly.

Therefore, the offline RSS vector from a certain AP
measured by the mobile device can be expressed as

mm ¼ Grri ¼ GF�1xx ¼ RRxx: ð30Þ

Since xx is sparse, with the similar orthogonalization
procedure in (24), namely, zz ¼ Tmm, the radio map can be
reconstructed by solving the following ‘1-minimization
problem. Here, we use total variation (TV) minimization,
a special case of the ‘1-minimization, to solve the sparse
signal recovery problem, as it is widely used for 2D images
recovery. The use of TV regularization makes the recovered
radio map quality sharper by preserving the edges or
boundaries more accurately [20], [33] (Other ‘1-minimiza-
tion methods can also be used for the signal recovery.)

x̂x ¼ arg min
xx
k rðxxÞ k1 s:t: zz ¼ Qxxþ "; ð31Þ

where k rðxxÞ k1 , defined as the total variation of xx, is the
sum of the magnitudes of the gradient at every point [34],
and " is the measurement noise.

Finally, the reconstructed RSS radio map from AP i over
the area of interest can be obtained by

rri ¼ F�1xx: ð32Þ

The radio map from the rest of the APs can be recovered
using the same approach. Therefore, RSS is measured on a
small number of grid points and (31) is used to reconstruct
the radio map on the whole grid. Since the number of
measurements (M) needed for the radio map recovery
obeys Oðk logðNÞÞ, where N is the total number of RPs, and
k indicates the sparsity level of signal xx, significant
reduction in the number of measured RPs can be expected.

4 SIMULATION AND IMPLEMENTATION RESULTS

This section provides details on the experimental evalua-
tion of the proposed positioning system. The positioning
software was developed in C# using Microsoft .Net
Compact Framework version 3.5, and installed on a PDA
(HP iPAQ hx4700 with Windows Mobile 2003 pocket PC) to
provide the localization service. In addition, two open
source libraries: OpenNetCF [35] and DotNetMatrix [36]
were used to provide the RSS scanning function and matrix
operations. The MAC address and RSS values of available
WLAN APs were collected on the device, with a sampling
interval of 1 second.
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Real data were obtained from an office building. Specifi-
cally, the experiments were carried out on a 30 m�46 m area
of the fourth floor of an eight-story building (Bahen Centre at
the University of Toronto), which is comparable to those
reported in [5] and [10]. A total of 26 APs were detected
throughout the area of interest. During the offline phase, the
RSS observations from 26 APs were recorded for a period of
50 seconds (one sample per second) over 72 RPs with an
average grid spacing of 1.5 m. At each RP, RSS values from
four orientations were recorded. The online observations
were collected on a different day by the device at 60 in-
dependent unknown locations with two repetitions for each
as the testing points to evaluate the actual performance of
the system in time-varying environment.

The localization error, which is measured by averaging
the euclidean distance between the estimated locations of
the mobile user and the actual location over the testing
points, has been reported as the performance measure. The
performance of the positioning system is affected by
the RSS variation, the number of available APs, and the
reliability of the APs. Reducing the RSS variation by taking
more RSS samples averaging out can improve the localiza-
tion accuracy. However, that will result in a longer RSS
scanning interval hence slowing the process. Therefore, in
our experiments, each online observation is an average of
two RSS time samples, which takes 2 seconds for Wi-Fi
scanning on the device. In the following sections, the
number of APs needed by the CS for accurate recovery,
different coarse localization schemes, and different AP
selection schemes will be analyzed through experiments.

4.1 Offline Stage: Clustering by Affinity
Propagation

In order to mitigate the RSS variations and to remove
potential outliers for coarse localization, affinity propagation
is applied on each radio map to generate clusters and their
corresponding exemplars during the offline phase. Fig. 2

shows an example of the clustering result on the PDA for the
radio map at the north orientation. Each point represents one
RP at which RSS readings are collected, and each color
represents one cluster. It shows that the 72 RPs are divided
into 13 clusters, and most of RPs belonging to the same
cluster are geographically close to each other. Table 1 lists
the parameter settings for implementing the proposed
positioning system. We note that the number of clusters
might be different at different orientations.

4.2 Online Stage: Coarse Localization

According to the theory of compressive sensing, the location
indicator can be well recovered when the number of APs is in
the order of logð eNÞ, where eN is the number of selected RPs
for the fine localization. Fig. 3 shows the average localization
error as a function of the number of APs used in the
algorithm under different number of clusters generated by
the affinity propagation. As illustrated in Fig. 3, when no
clustering scheme is used, the number of APs needed for
reasonable recovery is 8, which is approximately equal to
logð eNÞ ¼ logð72� 4Þ � 8, considering four orientation data-
base. Therefore, when the number of APs conforms with the
CS theory, the system can achieve a high performance in
terms of localization accuracy.

In addition, as mentioned in Section 2.2.1, since the
coarse localization is used to reduce the area of interest for
location estimate into a subset C, the dimension of the
sparse signal in the CS algorithm is reduced. This allows
the system to reduce the number of APs required for
accurate location recovery. As shown in Fig. 3, only eight
APs are needed to achieve about 1.1 m error when a total of
58 clusters are generated in all four directions, and 1.9 m
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Fig. 2. An example of the clustering result on the PDA, using affinity
propagation on the radio map at the north orientation (13 clusters are
generated). Each point represents one RP, and different clusters are
indicated by different colors for the RPs. The point indicated by a
number inside represents the exemplar for cluster members that share
the same color.

Fig. 3. The implementation result of the average localization error of the
system with respect to the number of access points used, under different
number of clusters generated in all four orientations.

TABLE 1
Parameters Settings for Proposed Positioning System



error under 29 clusters. However, 18 APs are needed to

achieve 1.8 m error if no clustering scheme is applied.
Furthermore, the number of clusters generated by the

affinity propagation is determined by the input of pre-
ference value, which is experimentally set. On one hand,
increasing the number of clusters helps to reduce the area of
interest into a smaller region after the coarse localization
and thus, improves the average localization accuracy and
also reduces the complexity for the fine localization. In the
other hand, this increases the chance of choosing the wrong
cluster, which induces a large localization error of the
positioning system. Therefore, we studied different coarse

localization schemes to reduce the possibility of choosing
the wrong cluster. Fig. 4 illustrates the Cumulative
Distribution Function (CDF) of the localization error of the
positioning system under different coarse localization
schemes that are proposed in Section 2.2.1, when 10 APs
are used. The strongest APs selection scheme is used for the
fine localization at this stage. Different cluster matching
schemes do not affect the system performance in terms of
the average localization error significantly. However, it
affects the maximum error of the positioning system. It is
shown that the weighted cluster matching scheme reduces

the maximum localization error from 9.1 to 6.2 m over the
experiments, as it takes into account the stabilities of the
RSS readings from different APs.

4.3 Online Stage: Fine Localization

Fig. 5 shows the average localization error under different
AP selection schemes for the fine localization. In the
random combination scheme, according to (20), the value
of x-axis implies the number of linear random combinations
of online RSS values from the L APs. Among the three
schemes proposed in Section 2.2.2, AP selection using the
Fisher criterion achieves the best performance especially
when the number of APs is less than 5, while the strongest

APs selection achieves the worst performance. The pro-
posed random selection scheme achieves a localization
error comparable to that of the Fisher criterion, but does not
require a large number of offline RSS time samples to
calculate the variance. In addition, the matrix � can be

reused for each location update, saving the computational
time for the fine localization.

Meanwhile, since each location is only covered by a
certain number of APs (6-12 in our experiments), using
more APs for the fine localization may not necessarily
increase the accuracy, as a biased estimation generated by
unreliable APs is introduced. As shown in Fig. 5, when the
number of APs is above 11, the performance of the
positioning system decreases. It is not affected by the way
we choose the APs, as redundant APs are introduced for all
of the three cases.

4.4 Comparison to Prior Work

We compare the proposed positioning system with the
traditional fingerprinting approaches, known as the kNN
[10] and the kernel-based methods [5], in terms of the
cumulative error distribution (M ¼ 6). The proposed posi-
tioning system used affinity propagation to generate overall
58 clusters at four orientations during the offline phase, and
then performed coarse localization by weighted cluster
matching, followed by a fine localization stage consisting of
a random AP combination, an ‘1-minimization algorithm
and a postprocessing procedure. For fairness, the three
positioning systems use the same coarse localization scheme,
but are different in the fine localization stage. Fig. 6 shows
the cumulative error distribution for these three schemes,
and Table 2 shows the corresponding statistical result. As
noticed, the proposed CS-based method provides a 90th
percentile error of 2.7 m, which outperforms the kNN and
the kernel-based method by 25 and 27 percent, respectively.

In addition, since the dimension of the sparse signal is
reduced through coarse localization, and the location
finding using compressive sensing is implemented through
a linear program, it is fairly quick for the mobile device to
perform the actual sparse signal recovery. During our
experiments, the process latency for location estimation is in
the order of 100 msec on a PDA with 624 MHz processor
and 64M RAM. However, since the kernel-based localiza-
tion scheme incorporates all RSS time samples from the
fingerprint database for computation [5], it requires much
more time to obtain the estimated position than the
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Fig. 4. The CDF of the localization error of the positioning system under
different coarse localization schemes. (The Strongest APs selection is
used for fine localization). Fig. 5. The Implementation result of the average localization error under

different AP selection schemes.



proposed scheme. Meanwhile, its computational time also
increases as the number of used APs increases. Due to its
high-volume computational cost, it is not desirable to
implement on the resource-limited PDA as a real-time
positioning system.

4.5 Reduce the Size of FPs

In order to reduce the number of RPs for the fingerprinting
approach, the same CS scheme is also used in the offline
phase to reconstruct the radio map based on RSS measure-
ments at only a small number of RPs. In general, small-
scale variations happen when the user moves over a small
distance (in the order of wavelength) [37]. For example, the
variation in the average RSS could reach up to 10 dBm in a
distance as small as 10 cm in our experiments. It is noticed
that since the wavelength for the 802.11b/g networks
working at the 2.4 GHz range is 12.5 cm, the RPs are placed
with an average of 1.5 m apart in our experiments. This
means that the radio map does not capture the small-scale
variations and thus, it is smooth. The smoothness of the
radio map across the whole experimental site allows the CS
theory to be used for sparse signal recovery. In the
simulation, only 36 of the RPs are randomly picked, and
we show that the radio map at the overall 72 RPs can be
well recovered compared with the values we actually
measured at these 72 RPs. Note that increasing the density
of RPs may increase the sparsity level of the radio map
signal, which results more measurements for accurate
recovery in practice.

Fig. 7a shows an example of the actual measured RSS
radio map (in average over 50 time samples) from AP 1 at
72 RPs over the experimental area, while Fig. 7b is the

corresponding reconstructed radio map, based on samples
from 36 randomly picked FPs using the same PDA. The
same technique is used for recovering RSS readings for the
rest of APs.

In addition, based on our experiments, the averaged
recovery error of the CS-based scheme, defined as the
averaged absolute RSS difference between the actual
measured RSS and the recovered RSS at those nonmeasured
locations, is 1.7 dBm

	 ¼ 1

N � L� jOj
X
o2O

XL
i¼1

XN
j¼1

�� ðoÞi;j �  ̂ðoÞi;j �� � 1:7 dBm; ð33Þ

where o represents the orientation (jOj ¼ 4); L is the number

of APs (L ¼ 26); N is the number of nonmeasured locations

(N ¼ 36);  oi;j is the actual measured RSS from AP i at RP j

pointing at direction o, and  ̂oi;j is the corresponding

recovered RSS by the CS scheme.
We further use all the reconstructed RSS radio map for

localization, compared with the localization using the actual

measured radio map. Fig. 8 shows that the proposed

scheme is able to achieve an average error of 1.6 m by using

the reconstructed radio map, when 10 APs are used.

However, using the radio map recovered by the traditional

interpolation approach [38] reduces the average localization

error to 2.6 m, when 10 APs are used.

FENG ET AL.: RECEIVED-SIGNAL-STRENGTH-BASED INDOOR POSITIONING USING COMPRESSIVE SENSING 1991

Fig. 6. The cumulative error distribution for kernel-based method, kNN,
and the proposed CS-based method.

TABLE 2
Position Error Statistics

Fig. 7. Recover the radio map during the offline phase using the theory
of compressive sensing.

Fig. 8. Comparison of the localization accuracy, using actual RSS
measurements at 72 RPs, the recovered RSS radio map from samples
on 36 RPs, and that using interpolated RSS radio map. The 36 RPs are
randomly picked but fixed during the radio map recovery for each AP at
each orientation. Y -axis indicates the average result over 60 indepen-
dent locations with two repetitions for each.



5 CONCLUSION

In this paper, we have proposed an accurate RSS-based
indoor positioning system using compressive sensing. The
intuition behind this technique is that location estimation is
a sparse problem and thus according to the CS theory, the
location can be well recovered from only a small number of
noisy measurements through an ‘1-minimization program.
For accurate location recovery, the number of APs needs to
be enough to conform with the CS theory. We have used
different coarse localization schemes to compensate for the
complex radio channel effects, and a preprocessing to
induce incoherence needed by the CS theory. Meanwhile,
the CS scheme is also used to recover the overall radio map
from measurements at only a small number of random RPs.
The positioning system is implemented on a PDA. The
experimental results demonstrate that the proposed two-
stage localization method leads to substantial improve-
ments on the localization accuracy and the complexity over
the widely used traditional fingerprinting methods.

The feasibility of using the CS theory to reconstruct the
RSS radio map from measurements at a small number of
fingerprints is studied, which reduces the labor cost when
updating the database. Future research direction includes
an analysis on the density of FPs needed for accurate
positioning systems. Meanwhile, new algorithms to build a
more accurate and robust system that generates and
maintains the fingerprint database automatically at a server
without manual offline calibration are needed.
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